

111

THE MAGIC OF
MACINTOSH

6)<5 -

111

THE MAGIC OF
MACINTOSH
Programming Graphics
and Sound

William B. Twitty

Scott, Foresman and Company
Glenview, Illinois London

111

111

For Othermamma

Macintosh is a trademark of Mcintosh Laboratory, Inc. and is licensed to Apple
Computer, Inc. and is being used with express permission of its owner.
MacPaint, MacWrite, MacDraw, and Macintosh Pascal are trademarks of Apple
Computer, Inc.

Library of Congress Cataloging-in-Publication Data

Twitty, William B.
The magic of Macintosh.

Bibliography: p. 305
Includes index.
1. Macintosh (Computer)-Programming.

graphics. 3. Computer sound processing.
QA76.8.M3T84 1986 006.6'76
ISBN 0-673-18253-3

2. Computer
I. Title.

86-3750

1 2 3 4 5 6-KPF-91 90 89 88 87 86

ISBN 0-673-18253-3

Copyright © 1986 William B. Twitty and Pacific Systems, Inc.
All Rights Reserved.
Printed in the United States of America.

Notice of Liability

The information in this book is distributed on an "As Is" basis, without
warranty. Neither the author nor Scott, Foresman and Company shall have any
liability to customer or any other person or entity with respect to any liability,
loss, or damage caused or alleged to be caused directly or indirectly by the
programs contained herein. This includes, but is not limited to, interruption of
service, loss of data, loss of business or anticipatory profits, or consequential
damages from the use of the programs.

Scott, Foresman Professional Publishing Group books are available for bulk
sales at quantity discounts. For information, please contact Marketing Manager,
Professional Books, Professional Publishing Group, Scott, Foresman and
Company, 1900 East Lake Avenue, Glenview, IL 60025.

111

PREFACE

The magic of the Macintosh is its graphics and sound. The Macintosh's
ease of use and its appeal to nonprogrammers depend on its graphics.
Anyone who writes programs for the Macintosh quickly finds that learning
how to generate and manipulate images is an absolute must; you can't do
anything on the Macintosh until you can understand and use the Quick­
Draw graphics package.

This book was written to introduce programmers with little or no
graphics background to Macintosh graphics and sound. The book has a
fair amount of technical material, but there's also a lot of fun with graphics
and sound.

The early chapters are very basic and deal with graphics fundamen­
tals, QuickDraw, making images on the Macintosh, and drawing text in
various type fonts. The later chapters address more technical subjects but
always with the understanding that the reader may be able to program but
has no prior experience with computer graphics.

The material is ordered so that a user can start writing programs
immediately without having to understand all of the details of QuickDraw
coordinates and mathematics. Those kinds of details are covered in later
chapters.

The emphasis is on explaining by example. I felt it important to
provide a concise example for each concept that is explained in the text,
so The Magic of Macintosh is filled with programming examples and
illustrations. The examples are designed so that the reader can take parts

of the programs and transfer them to his or her own applications. They are
a set of pretested parts for the software builder.

The example programs are written in Macintosh Pascal. To keep them
as simple as possible, I did not use any toolbox routines except those
directly associated with graphics and sound.

Chapter 1 introduces the reader to computer graphics and their
implementation on the Macintosh. Chapter 2 explains the fundamentals of
drawing in two dimensions and coordinate systems and begins introduc­
ing QuickDraw topics. Chapter 3 goes into more detail on drawing shapes
and patterns with QuickDraw. Chapter 4 introduces the reader to text
fonts and how they are drawn on the Macintosh with tools from the
QuickDraw package. Chapter 5 deals with the mouse, the cursor, and
more advanced tools in QuickDraw, as well as pictures, polygons, and
regions. Chapter 6 leads the reader into the more technical subjects
through an understanding of the fundamental concepts behind Quick­
Draw, its coordinate systems and data structures.

From chapter 7 on, the topics are not strictly limited to the Macintosh
and QuickDraw but range over a variety of technical methods used in
computer-aided design systems and other graphics programs. Chapter 7
discusses how to draw and store objects. Chapter 8 takes us into the exotic
climes of spline curves and fractals.

Chapter 9 brings the book to a close with explanations and examples
of how to produce complex sounds on the Macintosh.

Writing a technical book is a demanding task, but along with the work
on this book, there was a lot of fun doing graphics and sound with the
magical Macintosh. I hope that you have as much fun with this book as
I did.

Programmers new to the Macintosh will find the first book in this
series, Programming the Macintosh: An Advanced Guide, to be another
useful addition to their library.

Many people helped to create and produce this book. Among them
are the folks at Apple Computer who provided information and technical
advice and my editor at Scott, Foresman, Richard Swadley, who had more
patience than one could reasonably expect. A special thank-you goes to
Jeanine Johnson, who put in many editing hours helping to make sense out
of my technical ramblings and fumble-fingered typing.

111

CONTENTS

CHAPTER 1 UN• EASHING THE MAGICIAN 1
The Magic in Your Macintosh 2
The Macintosh Display 3
Pixel Coordinates 4
Jaggies 7
Halftone Images 8
QuickDraw 9
Programming 9

CHAPTER 2 DRAWING IN TWO DIMENSIONS 11
Dimensions 12
Coordinate Systems 12
Pixels and Memory 13
The Pen 13
Coordinate Transformations 15
Points and Rectangles 20
Clipping and Windows 24

CHAPTER 3 DRAWING SHAPES AND PAnFRNS 27
Coordinates and the Pen 28
The Pen Pattern 29
Drawing Modes 31
QuickDraw Shapes 40
Drawing QuickDraw Shapes 44

CHAPTER 4 DRAWING TEXT 49
Displaying Text with Type Fonts 50
Type Style 51
Type Size 51
Font Files 5 3
Text Character Images 5 3
Kerning 55
QuickDraw and the Font Manager 5 7
QuickDraw Routines 58
Drawing Text 59
Getting Information about the Font 61
A Program to Draw a Font's Character Set 63

CHAPTER 5 MORE TOOLS FOR THE MAGICIAN 69
The Cursor 70
The Mouse 76
Pictures, Polygons, and Regions 79
Creating QuickDraw Pictures 83
QuickDraw Polygons 87
Using Regions 94

CHAPTER 6 QUICKDRAW COORDINATES AND
DATA STRUCTURES 101
Coordinates and Data Structures 102
QuickDraw Coordinates 102
Pixels and Memory 106
The Graph Port 108
More on Coordinates 111
Translation and Scaling 116

CHAPTER 7 DRAWING OBJECTS 119
What's an Object? 120
Using Data Structures to Define Objects 121
An Object as a Collection of Shapes 122
Basic Trigonometry 12 8
Rotation 130
Rotation about an Arbitrary Point 134
Scaling an Object 135
A Program with Objects 139
Modifying the Object-Drawing Program 152

CHAPTER 8 SPLINES AND FRACTALS 179
Drawing Smooth Curves 180
Spline Curves 184
The Spline Program 190
Drawing Jagged Curves 191
Drawing Fractals 193
Simulating Nature 200

CHAPTER 9 SOUND MAGIC 227
Sound Basics 228
Making Music with the Macintosh 230
SysBeep and Note 232
Controlling the Volume 233
The Sound Synthesizers 234
Generating Square-Wave Tones 237
Sound from Free-Form Waves 239
Using the Four-Voice Synthesizer 245

APPENDIXES 265
A QuickDraw Data Structures 267
B QuickDraw Routines 271
C Mouse Routines 293
D Macintosh Pascal Window Routines 295
E Sound Routines and Data Structures 297

GLOSSARY 301

BIBLIOGRAPHY 305

INDEX 307

CHAPTER

111

The Magic in Your Macintosh

The Macintosh Display

Pixel Coordinates

Jaggies

Halftone Images

QuickDraw

Programming

lll

1

2 UNLEASHING THE MAGICIAN

THE MAGIC IN YOUR
11111111111111111111111111111111 MACINTOSH

A magician is someone who performs supernatural and astonishing feats
through the mastery of secret and mysterious forces. And what could be
more magical than a tan-colored box that draws pictures and makes music
by its own hand? Your Macintosh computer is like a magician, accom­
plishing tasks that no small computer could before. However, the real
magic within the Macintosh lies in the programs that produce the pictures
and sound.

Writing programs for sound and graphics may seem an arcane art
calling for secret knowledge, but taken step by step, it's really very simple.
When you learn the basics of computer graphics with examples pro­
grammed for the Macintosh, you are on your way to unleashing the
magician in your Macintosh.

The Macintosh produces pictures of striking quality for an inexpen­
sive computer. The basis of this high quality is the high-resolution display,
which produces finely detailed images. The inexpensive high-resolution
graphics open up many new possibilities for graphics on personal
computers.

The high-resolution display provides the fine artist with an entirely
new medium in which to work and a new set of tools as well. Every
medium has its own characteristics, and artists have been quick to capi­
talize on the Macintosh's. Commercial artists were not caught napping
either. Some of the first third-party products for the Macintosh were disks
containing pictures that any nonartist could use to add spice to proposals,
newsletters, circulars, or other types of documents produced on the
Macintosh.

Business people use the graphics capabilities of the Macintosh to
prepare for presentations and illustrate financial data. Engineers now have
a tool for quickly producing graphs and charts based on engineering
calculations. There are a number of low-cost computer-aided design
programs on the market that will do everything from lay out printed circuit
boards to help you design a garden. Of all the new application programs
for personal computers, the most exciting are the ones designed specially
for the Macintosh. They relate pictures to information in new and inno­
vative ways. Some are so new in concept that old labels no longer apply.

Commercial packages provide graphics-based tools for doing a job. In
this book we are more interested in the fun of graphics and sound on the
Macintosh. We don't have any specific goals to produce a useful program.
We're in it for the fun. Along the way we will learn a lot about graphics and

THE MACINTOSH DISPLAY 3

how to write programs that do useful work, but that's more a side effect
than a goal.

Some of the more basic graphics software techniques that we explore
are useful for creating paint-type programs, sometimes called graphics
editors. These programs allow you to create pictures by drawing on the
Macintosh screen. You can manipulate the pictures only as if they were on
a piece of paper. The tools the program provides are similar to the
drawing, cutting, and pasting tools that artists use. You will also learn
about more advanced techniques that let you store a mathematical
description of an object. You can then manipulate the object as its picture
is displayed, moving it, changing the scale, or rotating it. These are the
kinds of techniques used in writing computer-aided design programs,
used for such things as architectural drawing or laying out printed cir­
cuit boards.

The remainder of this chapter covers some very basic information
about computer graphics. If you already understand bit-mapped displays,
pixels, aliasing, and halftone images, you should skip to the beginning of
the next chapter.

11111111111111111111111111111111 THE MACINTOSH DISPLAY

The Macintosh has a high-resolution bit-mapped display. When you draw
a picture on the Macintosh, it creates the image by lighting small discrete
squares on the screen. If you draw a line, the Macintosh turns on each little
square that falls along the course of the line (figure 1.1). These small
squares are called pixels (a contraction of picture elements). A pixel is the
smallest portion of the screen that you can control. You can turn a pixel
on (make it black) or turn it off (make it white). All images that you create

111111111111111111111111111111111 Figure 1.1 A line on a bit-mapped display

4 UNLEASHING THE MAGICIAN

on the screen are made up of sets of pixels turned on or off. It sounds like
a crude way to create a picture, but if the pixels are small enough, they
blend together, and the picture appears more a continuous range of gray
colors than a collection of individual pixels.

Each pixel has an exact location on the screen and never moves. If
you turn on a pixel, it will remain on until you turn it off. A display that
is composed of pixels is called a bit-mapped display because each pixel
corresponds to 1 bit in the computer's random access memory (RAM).

11111111111111111111111111111111 PIXEL COORDINATES

Since each pixel has a discrete, dedicated location on the display, it stands
to reason that we have a method of selecting exactly which pixel we will
turn on or off. You select a pixel by specifying the vertical and horizontal
coordinates of its position on the screen. The coordinate system is like the
Cartesian coordinate system that you learned about in high school algebra.
Each point has a vertical coordinate that specifies its location in the vertical
direction and a horizontal coordinate that specifies its location in the
horizontal direction.

Figure 1.2 shows a portion of the display (the upper left corner)
somewhat enlarged so that we can identify individual pixels. Note how the
horizontal and vertical coordinates uniquely identify a pixel.

By turning sets of pixels on and off, we can draw lines, circles, or
objects of any shape. Figure 1.3 shows a small square, a circle, and a text

--------------~H

0 2 3 4 5 6 7 8 9 10 11

0

2
t---+--+--+-+---+--+---+-+--+----+--l---l

3
t---+--+--+-+---+--+---+-+--+----+--l---l

'I

5
i----t--+---+-+--+----+---i-+---+---+-1---l

6 !
i----t--t---t-;--t---+---+---ir-+---+---+-1---l

7
u

H=J, U=6

111111111111111111111111111111111 Figure 1.2 Pixels and coordinates

PIXEL COORDINATES 5

D 0 .a
111111111111111111111111111111111 Figure 1.3 Pixels and shapes

character. Each is shown enlarged so that you can see the individual pixels
and also at normal size so that you can see the blending effect.

When you draw a picture by setting pixels, you can either draw a
black image against a white background, as in figure 1.3, or do the
opposite, drawing a white image on a black background. Most Macintosh
software draws black images on a white background. It's more like
drawing on a piece of paper. In the examples, I do it that way, too. When
I talk about setting a pixel or turning it on, I mean making it black.

When we write a program to draw a picture, the program must set
each individual pixel that makes up the picture, specifying the coordinates
of each pixel and whether the pixel is to be turned on or off. The range
of values for pixel locations depends on the shape of the screen and the
number of pixels. The Macintosh has a rectangular screen 512 pixels wide
and 342 pixels high. The horizontal and vertical coordinates of the pixel
in the upper left corner of the screen are both 0. The horizontal coordinate
of the pixel in the lower right corner is 511; the vertical coordinate is 341.

We usually write a pixel's coordinates as a pair of numbers in
parentheses, the horizontal coordinate first. The coordinates of the upper
left corner of the screen are thus (0, 0), and the coordinates of the lower
right corner are (511, 341). Note that the coordinate numbering system
starts with 0.

In high school when you learned about the Cartesian coordinate
system, higher numbers for the vertical coordinate of a point meant that
the point was closer to the top of the graph or picture. On the Macintosh,

6 UNLEASHING THE MAGICIAN

larger numbers for the vertical coordinate indicate that the pixel is closer
to the bottom of the screen, just the opposite of the Cartesian coordinate
system.

We are using Macintosh Pascal for all programming examples, and it
always draws in a window on the Macintosh screen. In most cases the
window will be somewhat smaller than the screen. The coordinates that
we use will be relative to the upper left corner of the inside of the window;
that is, the coordinate of the upper left corner of the window's interior
(not the window frame) is (0, 0).

Let's see what a simple program to draw a line looks like (listing 1.1).
The MoveTo statement tells the Macintosh where to start the line. The

LineTo statement tells it the end point for the line. When we run the
program, it draws the line shown in figure 1.4.

111111111111111111111111111111111 Listing 1.1 DrawLine

program DrawLine;
{listing 1.1)

begin
Moveto (10, 15);
LineTo(llO, 142)

end.

111111111111111111111111111111111 Figure 1.4 The line

]AGGIES 7

11111111111111111111111111111111 JAGGIES

The line that we drew in figure 1.4 looks a little strange. It's not exactly a
straight line. Let's look at an enlargement (figure 1.5) and see if we can
figure out what's wrong with it.

The pixels that make up the line don't fall exactly on the line. More
correctly, the line falls between the pixels. The QuickDraw LineTo routine
turned on the pixels closest to the line. The jagged appearance of the line
is caused by the fact that the screen is made up of discrete pixels; a line
drawn by turning on pixels is only an approximation of a straight line
drawn with pencil and paper. This effect is called jaggies or, if you want
to sound more technical, aliasing. More sophisticated (and more expen­
sive) computer graphics displays can minimize the effects of aliasing by
varying the intensity of pixels adjacent to the line. We really can't do that
on the Macintosh. We're stuck with aliasing on some lines.

On the Macintosh, there is no aliasing on lines that are exactly
vertical, exactly horizontal, or at a 45-degree angle (figure 1.6). The
only thing we can do about jaggies is to try to design our pictures with a
minimum number of lines that are not vertical, horizontal, or at
45 degrees.

If you really need to have lines at other angles, don't worry about it.
It doesn't look that bad, especially if you look from across the room and
squint. I've been told that you can also remove jaggies by internal use of
enough tequila, but I can't recommend that. The lines look fine, but
walking becomes a problem.

111111111111111111111111111111111 Figure 1. 5 The line enlarged

8 UNLEASHING THE MAGICIAN

111111111111111111111111111111111 Figure 1.6 Lines and aliasing

11111111111111111111111111111111 HALFTONE IMAGES

So far we have seen how to draw lines by turning pixels on and off, but that
makes our drawing capabilities pretty limited. We would like to be able to
draw objects in various colors and shades. Even though some of the
Macintosh's built-in software allows you to specify colors, the Macintosh
display can show only black and white. We can, however, use a newspaper
printing trick to make images appear to be drawn in various shades of gray.

If you look closely at a newspaper photograph, you can see that it is
made up of a collection of dots. Each dot is the same shade of gray
(actually, they are all black), but they are different sizes. By varying the size
of the small dots that make up an image, you can make the image appear
to be drawn in shades of gray. Your eyes and brain blend the dots together.
A picture using this method of producing shades of gray is called a
halftone image.

We can't draw dots of different sizes on the Macintosh because all of
the pixels are the same size. We can do something nearly as good. We can
vary the number of dots that we turn on in a given area of the screen. Take
a look at figure 1. 7. You can see several shades of gray. The enlarged

11111111111
111111111111111111111111111111111 Figure 1. 7 Shading patterns

PROGRAMMING 9

portion shows that more pixels are turned on in the darker shaded areas.
The built-in software in the Macintosh allows you to dictate specific
patterns that determine which dots are turned on. You can then use other
routines to fill areas of your picture with those patterns.

11111111111111111111111111111111 QUICKDRAW

I've mentioned the Macintosh's built-in software several times, so let me
talk about it in a little more detail. The Macintosh has a great deal of
built-in software in read-only memory (ROM) chips in the machine. This
software provides the tools for programmers to write programs that fit
into the standard Macintosh user interface using menus, windows, text
fonts, and so on. The section of software that provides the tools for
drawing pictures and text on the screen is called QuickDraw.

QuickDraw can be a complex subject if you try to learn all of it at
once, so I will introduce QuickDraw routines and other information only
as we need it. There's more to QuickDraw than you will see in this book,
and if you are interested in exploring it further, you can find a copy of the
QuickDraw manual in the Macintosh Pascal Technical Appendix or in
Apple Computer's publication, Inside Macintosh.

11111111111111111111111111111111 PROGRAMMING

All of the programs that we use in this book will be in Macintosh Pascal.
It's an interpretive language that is easy to use for experimentation. What's
more, it can access the QuickDraw routines in the Macintosh ROM.
Macintosh Pascal comes with a technical appendix that includes the
complete documentation for QuickDraw.

You can try most of these examples with any language that allows
access to the QuickDraw routines. Some languages (Microsoft BASIC is an
example) don't let you access QuickDraw directly but provide program
statements or subroutines that do a subset of the QuickDraw functions. If
you want to be able to try all of the techniques in this book, you would
be better off using a language that allows direct access to all of the
QuickDraw routines.

There are other interpretive languages that allow access to the Quick­
Draw routines. FORTH is one example. Most compiled languages let you
call QuickDraw routines, but they are somewhat more time-consuming
and are not as well suited to experimenting and prototyping as is Macin­
tosh Pascal.

10 UNLEASHING THE MAGICIAN

In this book we focus on how to do graphics and sound. There is very
little information about how to program in Pascal or how to run the Pascal
interpreter. If you have a copy of Macintosh Pascal, you will find that type
of information in the documentation that comes with the software. If not,
you may want to investigate other books on Macintosh Pascal. The first
book in this series, Programming the Macintosh: An Advanced Guide, has
a chapter on Macintosh Pascal that is a good introduction to the language.

111

CHAPTER

2 DRAWING IN TWO
DIMENSIONS

Dimensions

Coordinate Systems

Pixels and Memory

The Pen

Coordinate Transformations

Points and Rectangles

Clipping and Windows

111

11

12 DRAWING IN TWO DIMENSIONS

11111111111111111111111111111111 DIMENSIONS

In one sense, all of the drawing that we will do is two-dimensional; we will
always draw on a flat surface (the Macintosh display or the printer). I
use the term two-dimensional when talking about representing a two­
dimensional-that is, flat-image on the Macintosh. I use the term three­
dimensional when we are representing a three-dimensional image by
drawing it in perspective views on the Macintosh display.

In fact, the vast majority of Macintosh applications do strictly two­
dimensional drawing. Only a very specialized application will draw three­
dimensional perspective views. Two-dimensional drawing techniques are
still the basis for three-dimensional drawing programs. In the end, they
must represent the three-dimensional object by drawing it in two dimen­
sions on the display, and they do that by using the two-dimensional
techniques discussed in this chapter.

11111111111111111111111111111111 COORDINATE SYSTEMS

All computer graphics programs are based on fundamental principles of
mathematics and geometry. The more rigorous their application of math­
ematical tools, the better the resulting software, so QuickDraw has a very
exactly defined mathematical basis. I will introduce the mathematical
concepts and definitions at appropriate times in the book. Taken a piece
at a time, the definitions may seem arbitrary or restrictive, but after I've
explained each with examples and shown how they fit together, you'll
appreciate their rigor.

The first of these concepts is the QuickDraw coordinate system. In
the preceding chapter, I discussed pixel coordinates and rather loosely
defined the horizontal and vertical coordinates of a pixel. The QuickDraw
coordinate definition is similar but more exact. Let's see an example.

In figure 2 .1, we see an array of pixels on the Macintosh screen set
into a grid, a network of horizontal and vertical lines. The lines are
between the pixels and represent the QuickDraw coordinate system. A
pair of QuickDraw coordinates is a pair of numbers specifying a horizontal
and a vertical coordinate. The coordinates represent the intersection of
two of the lines in figure 2 .1. The coordinate system actually specifies
points between the pixels.

That's all very nice, but what we ultimately want to do is use the
coordinate system to specify a pixel, not a pair of intersecting imaginary
lines. The coordinate pair in the diagram, (3, 5), identifies the intersection
of two lines in the coordinate system, and they identify a single pixel, the

0

1

2
3

4

5

6

7

8

9

10

0123456789

El El El El El El El El El
El El 1111 1111 1111 1111 1111 1111 El
El El 1111 1111 El 1111 El 1111 El
El El 1111 El I'll El El I'll I'll
El 1111 1111 I'll I'll I'll 1111 1111 El
1111 El 1111 • El El II II El
II El II II II II II II Ell
II mm II II 1111 11111111 II

II 1111 II 1111 11111111 II II II

II mm II mm mm II

Coordinotes (3,5)

El
1111

El
I'll
El
El
El
II

II

II

111111111111111111111111111111111 Figure 2 .1 Pixels and coordinates

THE PEN 13

one immediately below and to the right of the intersecting lines (the
darkest pixel in figure 2 .1).

11111111111111111111111111111111 PIXELS AND MEMORY

The data that turns a pixel on or off is actually stored in a section of
memory in the Macintosh called the display RAM. There is 1 bit of display
RAM for each pixel on the screen. The Macintosh display hardware
automatically reads the display RAM and uses the data to turn pixels on the
screen on and off. Turning on a bit in the display RAM causes the
Macintosh's display hardware to light the associated pixel.

The Macintosh's memory is organized into 8-bit bytes, but the screen
is usually organized into windows of arbitrary size. There are other
QuickDraw definitions that tell us how to find a pixel in the Macintosh
memory, what the active drawing area on the screen is, and what coor­
dinate system is being used in that drawing area. For now, we'll just ignore
all of that and assume that we are always drawing in a window in which
the coordinates of the upper left pixel are (0, 0).

11111111111111111111111111111111 THE PEN

Let's take another look at the routine we used to draw a line (listing 2.1).
You tell QuickDraw how to draw something by describing how to

draw it as if you were using a pen on a piece of paper ruled with the
coordinate system. You tell QuickDraw where to move the pen and

14 DRAWING IN TWO DIMENSIONS

111111111111111111111111111111111 Listing 2.1 DrawLine

program DrawLine;
{listing 2.1}

begin
Moveto (10, 15);
LineTo (110, 142)

end.

whether to put the pen down on the paper, drawing as it moves, or to lift
the pen up and just move it without drawing. The MoveTo statement
moves the pen to the starting point. The LineTo puts the pen down on the
paper and moves it to the end point, drawing a line.

Let's draw something a little more ambitious. We'll draw a square,
this time putting the coordinates in variables instead of having the actual
numbers in the calls to the drawing routines (listing 2.2, figure 2.2).

By putting the coordinates in variables, we can do some processing
on them before we call the drawing routines and vary the size, location,
and orientation of the object we are ~rawing.

111111111111111111111111111111111 Listing 2 .2 Draw Box

program DrawBox;
{listing 2.2}
var
vl, hl, v2, h2, v3, h3, v4, h4

begin
hl .- 20;
vl := 20;

h2 .- 20;
v2 := 80;

h3 := 80;
v3 .- 80;

h4 .- 80;
v4 := 20;

Moveto (hl, vl);
LineTo (h2, v2);
LineTo (h3, v3);
Line To (h4, v4) ;
LineTo (hl, vl);

end.

INTEGER;

COORDINATE TRANSFORMATIONS 15

-o Om wing

D

'2J

111111111111111111111111111111111 Figure 2.2 The square box

COORDINATE
11111111111111111111111111111111 TRANSFORMATIONS

Suppose we wanted to draw the box again but in a different location in the
window, stretched in one direction or rotated. We can do all of those
things using coordinate transformation formulas . There are three basic
coordinate transformations: translation , scaling, and rotation . Transla­
tion is moving a point (or each point in an object) from one screen location
to another. Scaling is changing the scale in either the vertical or horizontal
direction. Changing the scale in one direction causes the object to shrink
or stretch in that direction.

Let's see how we would do a coordinate translation. We will draw the
box again but further over to the right and a little lower in the display
window. We could figure out the new coordinates by hand and add them
to the coordinates of each corner of the box, or we can let Pascal figure
them out for us . We can calculate the new coordinates of a point we are
translating (moving) by adding or subtracting the distance we want to
move it . After we add the coordinate translation, the program is as shown
in listing 2. 3.

The distance to move the box (in numbers of pixels) is in the DeltaH
and DeltaV variables. We just add DeltaH and DeltaV to the coordinates of
each corner of the box.

We can change the drawing scale in either the horizontal or vertical
direction by multiplying the final coordinates of each point by the scale
factor. If we want to shrink the box to three-fourths of its original size in

16 DRAWING IN TWO DIMENSIONS

111111111111111111111111111111111 Listing 2.3 DrawBox with Translation

program DrawBox;
{Listing 2.3)
var
vl, hl, v2, h2, v3, h3, v4, h4
DeltaH, DeltaV : INTEGER;

begin
{set initial coordinate values}
hl .- 20;
vl .- 20;
h2 . - 20;
v2 : = 80;
h3 .- 80;
v3 .- 80;
h4 .- 80;
v4 := 20;

{set transformation parameters}
DeltaH := 45;
DeltaV := -10;

{perform coordinate transformation}
hl := hl + DeltaH;
vl := vl + DeltaV;
h2 .- h2 + DeltaH;
v2 .- v2 + DeltaV;
h3 := h3 + DeltaH;
v3 .- v3 + DeltaV;
h4 .- h4 + DeltaH;
v4 := v4 + DeltaV;
Moveto (hl, vl);
LineTo(h2, v2);
LineTo(h3, v3);
LineTo (h4, v4);
LineTo(hl, vl);

end.

INTEGER;

the horizontal direction, we would modify the program to include a scale
factor of 0.75. In the next version of the program (listing 2.4), we add scale
factors for both directions and convert the coordinate transformation
calculation into a subroutine.

Note that the scale factors are real numbers (floating-point), but the
coordinates are integers. Many of the calculations that we must do to
transform coordinates can be done only with real numbers in Pascal, but
the results are pixel coordinates, and they are always integers. The trans­
form routine adds two integers, the coordinate (h or v) and the translation
value (HDelta or VDelta). The result is an integer. The routine multiplies
that integer by a real number, and the result is a real number. The routine
uses the Round function to convert that real number to an integer. The
Round function returns a long integer value, but Pascal allows you to

COORDINATE TRANSFORMATIONS

111111111111111111111111111111111 Listing 2.4 DrawBox with Translation and Scaling

program DrawBox;
{Listing 2. 4}
var
vl, hl, v2, h2, v3, h3, v4, h4 INTEGER;
DeltaH, DeltaV : INTEGER;
ScaleH, ScaleV : REAL;

procedure transform (var h, v : INTEGER;
HDelta, VDelta : INTEGER;
HScale, VScale : REAL) ;

begin
{do coordinate translation and scaling}

h := Round((h + HDelta) * HScale);
v : = Round ((v + VDel ta) * VS ca le) ;

end;

begin
{set initial coordinate values}
hl := 20;
vl := 20;
h2 : = 20;
v2 := 80;
h3 := 80;
v3 := 80;
h4 .- 80;
v4 := 20;

{set transformation parameters}
DeltaH := 45;
Deltav := -10;
ScaleH := 0.75;
ScaleV : = 1 . O;

{transform coordinates}
transform(hl, vl, DeltaH, Deltav, ScaleH, ScaleV);
transform (h2, v2, DeltaH, DeltaV, ScaleH, ScaleV);
transform (h3, v3, DeltaH, Deltav, ScaleH, ScaleV);
transform (h4, v4, DeltaH, DeltaV, ScaleH, ScaleV);

{Draw a Box}
Moveto(hl, vl);
LineTo (h2, v2);
LineTo (h3, v3);
LineTo (h4, v4);
LineTo (hl, vl);

end.

17

assign a long integer value to an integer if the number is not too large to
store in an integer.

What we have done so far with coordinate transformation is simply to
move an object's location on the screen. If we recalculated the position of
every object on the screen, the effect would be the same as if we moved
the entire picture relative to the coordinate system. In some cases we want
to move the coordinate system but keep the picture in the same location.

18 DRAWING IN TWO DIMENSIONS

For instance, if for some reason we needed to redefine the coordi­
nates of the upper left corner of the screen to be (40, 60) instead of (0, 0),
we would in effect be moving the coordinate system to the left 40 pixels
and up 60 pixels. Then the origin of the coordinate system, the point
(0, 0), would not be on the screen. In figure 2.3, we see the coordinate
system moved so that the origin is off the screen.

The Point (0,0) The Point (40,60)
/ The Rect8ngle(60,70,90,90)

D

Before Moving the Origin

The Point (0,0)

/ The Point (40,60)

/ The Rectangle(60,70,90,90)

After moving the Origin

lllllllllllllllllllllllllllllllll Figure 2.3 Coordinate system translation

COORDINATE TRANSFORMATIONS 19

If we want to draw our objects in the same locations on the screen
but using the new coordinate system, we must convert the coordinates
of each object to the new coordinate system by adding 40 to all of the
horizontal coordinates and adding 60 to all of the vertical coordinates.

Sometimes we move a coordinate system because it is more conve­
nient for doing a particular calculation. The scaling calculation that we did
in our coordinate transformation routine doesn't really work well for
scaling objects. The way we wrote the routine, the scale factor affects the
object's position on the screen as well as its size. There are several
methods that we could use to scale an object properly, but one method
requires that the object be centered on the origin of the coordinate
system. If we want to scale just one object, we perform a coordinate
system translation to move the origin of the coordinate system to the
center of the object, perform the scaling calculation, and then move the
coordinate system back to where it was. In chapter 7 we will see how this
same technique is used in doing the calculations to rotate an object about
an arbitrary point.

When we work in a window, our program draws pictures using a
coordinate system that has the origin at the upper left pixel in the window.
That pixel is not the origin in the Macintosh screen coordinate system. The
Macintosh QuickDraw software translates the coordinates that we use in
drawing commands (in the coordinate system of our window) to the
coordinate system of the Macintosh screen. It uses methods similar to the
method we used to move our bpx around on the screen.

Fortunately for us, QuickDraw has a lot of built-in routines for
handling things like converting from one coordinate system to another or
moving an object by changing its coordinates. {For instance, we'll shortly
be using the OffsetRect routine, instead of our own coordinate translation
routine, to move a rectangle.)

MapRect and MapPt are two of the QuickDraw routines that perform
coordinate conversion. The MapRect routine performs coordinate system
conversion doing both translation and scaling of a rectangle.

MapPt converts the coordinates of a point in one rectangle to the
coordinates of another rectangle. It performs translation and scaling so
that the point ends up in the same relative location in the destination
rectangle. If you used MapPt to convert the coordinates of a point in the
center of a rectangle to the coordinates of a point in a destination rectangle
that was twice the size of the source rectangle, the point's new coordi­
nates would be in the center of the destination rectangle.

You won't find MapPt and MapRect in the section of the QuickDraw
manual on points and rectangles; they are in the miscellaneous utilities
section. We'll take a closer look at MapRect and MapPt in chapter 6.

20 DRAWING IN TWO DIMENSIONS

QuickDraw has other routines for converting coordinates from the
coordinate system of one window to the coordinate system of another
window or a print buffer. We will take a closer look at those when we get
into QuickDraw' s GrafPort data structure and GrafPort coordinate systems
in chapter 6.

11111111111111111111111111111111 POINTS AND RECTANGLES

We have been representing a point as a pair of integers, and that would
suffice for everything that we want to do, but it would be more convenient
to have a data type for representing a point. QuickDraw has a data type
called point. Its definition looks like this:

type
Point =record case INTEGER of

0 : (v, h : INTEGER);
1 : (vh : array [VHSelect] of INTEGER);

end;

By defining a point this way, we can refer to it as a pair of integers or
as an integer array of size 2. If we add the point type to our program, we
can get a better idea of how it is used. We will make a few other changes
also. The transform routine will be split into a translation function and a
coordinate transform routine (listing 2 .5).

Note that we used the point data type but did not define it with a type
definition. The program ran anyway. How can we get away with that? The
answer is that Macintosh Pascal has all of the QuickDraw constants, types,
procedures, and functions predefined.

As of now, there seems little reason to split up the transform routine,
but we will find it more useful to have it split up when we do the object
rotation calculations. Wherever we used a point data type, we referred to
its coordinates as parts of a record rather than as elements of an array.
When we call the transform routine, we pass it a point, but when the
transform routine calls the translate routine, it passes an integer that is one
of the coordinates of a point (coord.v or coord.h).

Anyone who has already looked at the QuickDraw documentation
knows that we are really drawing this box the hard way. QuickDraw has a
data structure that describes a rectangle and a routine that will draw a
rectangle for us. Let's take a look at those.

POINTS AND RECTANGLES

111111111111111111111111111111111 Listing 2.5 DrawBox with the Point Data Type

program DrawBox;
{listing 2.5)
var

Vl t hl t
DeltaH,
ScaleH,
TopLeft
Bot Left
TopRight
BotRight

v2, h2, v3, h3, v4, h4
Del taV : INTEGER;
ScaleV : REAL;

point;
point;

point;
: Point;

INTEGER;

function Translate (hv, Delta Integer;
Scale : REAL) INTEGER;

begin
{do coordinate translation and scaling}

translate := Round((hv +Delta) *Scale);
end;

procedure Transform (var coord : point;
HDelta, VDelta : INTEGER;
HScale, VScale : REAL);

{translate each coordinate of the point}
begin

coord. h . - translate (coord.h, HDelta, HScale);
coord.v .- translate (coord.v, VDelta, VScale);

end;

begin
{set initial cccrdinate values}

Top Le ft . h . - 2 O;
TopLeft.v := 20;
BotLeft.v := 20;
BotLeft.h .- 80;
BotRight.v := 80;
BotRight.h := 80;
TopRight.v .- 80;
TopRight.h .- 20;

{set transformation parameters}
DeltaH . - 45;
DeltaV .- -10;
ScaleH := 0.75;
ScaleV . - 1 . 0;

{transform coordinates}
transform (TopLeft, DeltaH, Deltav,
transform(BotLeft, DeltaH, Deltav,
transform (BotRight, DeltaH, Deltav,
transform (TopRight, DeltaH, DeltaV,

{Draw a Box}
MoveTo(TopLeft.h,
LineTo(BotLeft.h,
LineTo(BotRight.h,
LineTo(TopRight.h,
LineTo(TopLeft.h,

end.

TopLeft.v);
BotLeft.v);
Bot Right. v) ;
TopRight.v);

TopLeft.v);

ScaleH,
ScaleH,

ScaleH,
ScaleH,

ScaleV);
ScaleV);

ScaleV) ;
ScaleV) ;

21

22 DRAWING IN TWO DIMENSIONS

type
Rect =record case INTEGER of

O : (top : Integer;
left : Integer;
bottom : Integer;
right : Integer);

1 : (TopLeft : point;
BotRight : point);

end;

The Rect data type can define a rectangle two ways. The first way lists
the vertical coordinates of the top and bottom and the horizontal coor­
dinates of the left and right sides. The other method defines the rectangle
by giving coordinate pairs for the upper left corner and the lower right
corner. Either way, it requires the same amount of memory to store a
rectangle: four integers.

QuickDraw has a collection of routines for drawing rectangles and
performing calculations with the rectangle data type. For now, we will use
only two in our program:

SetRect(var theRect : Rect, top, left, bottom, right : INTEGER)

SetRect sets the values of the fields in the rectangle data
structure to the integer values that you supply.

FrameRect(theRect: Rect)

FrameRect draws the rectangle as specified by the corner
coordinates in the rectangle data structure.

We could get by without the SetRect routine by setting the value of
each integer in the rectangle data structure individually, but it's a little
easier to use the SetRect routine. Let's see what our program looks like
now (listing 2.6).

It doesn't look much like our old program. We've replaced most of
our variables with a rectangle variable and most of our program statements
with a couple of QuickDraw routines. In fact, if you look closely you will
see that we have eliminated the lower left corner and upper right corner
definitions from our program. They aren't in the rectangle definition
because it doesn't need them. You can define a QuickDraw rectangle by
specifying just two points, the upper left corner and the lower right corner.

QuickDraw uses rectangles extensively to define rectangular shapes,
the limits of other shapes, windows, the limits of drawing areas on the
screen, scale changes, and coordinate conversions, to name just a few.

POINTS AND RECTANGLES 23

111111111111111111111111111111111 Listing 2.6 DrawBox with SetRect

program DrawBox;
{listing 2.6}
var

DeltaH, DeltaV
ScaleH, ScaleV
theBox : Re ct;

INTEGER;
REAL;

function Translate (hv, Delta : Integer;
Scale : REAL) : INTEGER;

begin
{do coordinate translation and scaling}

translate . - Round ((hv + Delta) * Scale);
end;

procedure Transform (var coord : point;
HDelta, VDelta : INTEGER;
HScale, VScale : REAL);

{translate each coordinate of the point}
begin

coord.h := translate (coord.h, HDelta, HScale);
coord.v := translate(coord.v, VDelta, VScale);

end;

begin
{set initial coordinate values}
SetRect (theBox, 20, 20, 80, 80);

{set transformation parameters}
DeltaH := 45;
DeltaV .- -10;
ScaleH := 0.75;
ScaleV := 1.0;

{trans form coordinates}
transform (theBox. TopLeft, DeltaH, DeltaV, ScaleH, ScaleV);
transform (theBox. BotRight, DeltaH, DeltaV, ScaleH, ScaleV);

{Draw a Box}
FrameRect(theBox)

end.

QuickDraw uses memory economically by defining a rectangle with two
points instead of four. There is a trade-off, though; conserving memory
places a fundamental limitation on the use of rectangles, and because
rectangles are used for so many things in QuickDraw, this same limitation
is placed on other things you do with QuickDraw.

The major thing that QuickDraw does not do is rotate images. It uses
rectangles to define the limits of all of the images it draws. It cannot rotate
a rectangle through an angle that is not a multiple of 90 degrees because
a rectangle that is not strictly horizontal and vertical cannot be fully
defined by only two corners.

24 DRAWING IN TWO DIMENSIONS

11111111111111111111111111111111 CUPPING AND WINDOWS

A window on the Macintosh screen presents us with a limited area in
which to draw. For that matter, the Macintosh screen itself is a limited area.
What would happen if we drew off the screen? On some computers, a line
drawn off the screen on one side reappears on the opposite side of the
screen. In other computers, a line drawn off the screen is written into
an area of memory in which it can destroy data or programs. In any
case, writing outside a window or off the screen is something we don't
want to do.

We want to make sure that we prevent our program from drawing
even part of an image outside a window. The act of limiting the drawing
area is called clipping. We need to clip our image to make sure it fits inside
the rectangle in which we are drawing.

How can we draw an object like a rectangle if we move part of it
outside the window? We could check each rectangle that we draw and
draw only the part of it that is inside the window. That would be difficult
with rectangles and worse with more complex objects.

QuickDraw comes to the rescue. It has a routine called ClipRect that
sets a clipping rectangle. The location of the clipping rectangle is stored in
QuickDraw's internal data structures. QuickDraw then checks each pen
motion against the limits set by the clipping rectangle and doesn't draw
outside of the clipping rectangle. When we first start drawing in the
Macintosh drawing window, the clipping rectangle is set to the window
location and dimensions. We can set the clipping rectangle to any size and
dimensions that we want in order to limit the drawing area to a portion of
the window.

Let's modify our program to draw several rectangles. Then we'll add
a call to ClipRect to limit the drawing area, and see what happens. Listing
2.7 shows the program set up to draw several rectangles. (Notice the use
ofOffsetRect, as promised.) In figure 2.4, we see what the program draws.

Listing 2 .8 shows where we added the ClipRect statement. Figure 2 .5
shows the results of drawing while limited by the clipping rectangle.

CLIPPING AND WINDOWS 25

111111111111111111111111111111111 Listing 2. 7 DrawBox Modified to Draw Several Rectangles

program DrawBox;
{listing 2. 7}
var

theBox : Re ct;

begin
{set initial coordinate values}
SetRect (theBox, 20, 20, 80, 80);

{Draw a Box}
FrameRect(theBox);

{translate coordinates, moving the box}
OffsetRect (65, 0);

{Draw it again}
FrameRect(theBox);

{draw more boxes at different locations}
offsetRect (-65, 75);
FrameRect(theBox);
OffsetRect (65, 0);
FrameRect(theBox);

end.

!U Drawing

DD
DD

121

111111111111111111111111111111111 Figure 2.4 Rectangles

26 DRAWING IN TWO DIMENSIONS

111111111111111111111111111111111 Listing 2.8 DrawBox with ClipRect

program DrawBox;
{listing 2. 8}
var

theBox, Clipping : Rect;

begin
{set clipping rectangle}
SetRect (Clipping, 40, 40, 120, 135);
ClipRect(Clipping);

{set initial coordinate values}
SetRect (theBox, 20, 20, 80, 80);

{Draw a Box}
FrameRect(theBox);

{translate coordinates, moving the box}
OffsetRect (theBox, 65, 0);

{Draw it again}
Fr~meRect(theBox);

{draw more boxes at different locations}
offsetRect (theBox, -65, 75);
FrameRect(theBox);
OffsetRect (theBox, 65, 0);
FrameRect(theBox);

end.

-o Drowing

_JL
II

l2l

111111111111111111111111111111111 Figure 2. 5 Clipped rectangles

lll

CHAPTER

3 DRAWING SHAPES
AND PArrERNS

Coordinates and the Pen

The Pen Pattern

Drawing Modes

QuickDraw Shapes

Drawing QuickDraw Shapes

lll

27

28 DRAWING SHAPES AND PATTERNS

11111111111111111111111111111111 COORDINATES AND THE PEN

Remember our picture of the coordinate system and pixels from chapter
1? The coordinates actually run between the pixels. The coordinate system
determines where the pen goes when it draws. The pen can actually be
larger than a pixel; you can set the size of the pen yourself by using
QuickDraw's PenSize procedure. The pen is shaped like a rectangle, and
each side is an integral number of pixels in length, from 0 to 32,767.

The coordinates of the pen determine the location of the upper left
corner of the pen's rectangular shape. You can imagine the pen as having
a grid with squares the same size as pixels. Every time you draw with the
pen, it stamps down on the screen's pixels like a rubber stamp and leaves
its mark.

Up to now, we have used the default pen size, 1 pixel by 1 pixel. It
covered a single square, and when we positioned the pen at a particular
pair of coordinates, it landed on the pixel below and to the right of the
coordinate system lines (figure 3 .1).

If we define a pen size of 8 by 8 pixels, the coordinates of the pen will
determine the location of the upper left corner of the pen rectangle. The
pen will mark the pixels in the 8-by-8 square whose upper left pixel lies
immediately to the right and below the coordinate system lines; that is, the
pen marks the pixels immediately under the squares in the pen rectangle
(figure 3.2).

0
I

2
3

4

s
5
7

8
g

10

0 I 2 3 4 S 5 7 8 9

II• 1111 II• II II llllf
• 111111••1111lll•

• II • • II • • II .. I• • • • • II • • II II II

•• II • • • • II II II II II II • • • • II II II

• II • • • • • II II II
II II II II II II II II II II

• II • • • • II II II • II • • • • • • • • II
Pen Coordinates (8,2)

•
~

[!] Pen

111111111111111111111111111111111 Figure 3.1 The 1-by-1 pen within the coordinate system

0

2

3

4

5

6

7

8
g

10

0 1 2 456789

1111 .. 1111 Ill Ill • • • • • Ill • • • • • • • • • 1111 • • • • • • • • • Ill • • • •• • • • • II • • • • i. • • • 1111

1111 • • • .. • • • • • Ill • • i. •• • • • • • • • • •• •• • Ill Ill i. • • •• •• • .@
II • • • Ill 1111 Ill II Ill II

Pen Coordinotes (1, 1)

THE PEN PATTERN 29

• Pen

• • • • •• • • • • • • • • • • • • • • •• • • • • • • •• • •

111111111111111111111111111111111 Figure 3.2 The 8-by-8 pen within the coordinate system

11111111111111111111111111111111 THE PEN PATTERN

We now have in our minds an image of the pen stamping its way across the
screen, turning white pixels into black pixels, but it doesn't have to work
that way. We can make the pen turn pixels black or white. We can do more
than that; we can make the pen lay down a predefined pattern as it moves.

A pattern is an 8-by-8 pixel sequence that repeats itself over some area
of the display. The gray background of the desk top is a pattern. If you have
used MacPaint, you have seen patterns that you can select along the
bottom of the screen. QuickDraw has four predefined patterns that you
can use (figure 3.3), or you can design your own.

The actual squares that are turned on or off on the pen are not the
same for every pen location. They change to keep the pen's pattern aligned
with the last pattern stamped. The pen becomes more like a roller laying
down a pattern than a stamp that stamps the same thing every time it hits
the paper.

30 DRAWING SHAPES AND PATTERNS

ltGroy Groy

dkGroy Block

111111111111111111111111111111111 Figure 3. 3 Predefined patterns

Patterns are always aligned on 8-pixel boundaries. If you decide to
join two patterns that you have drawn near each other, you can just fill in
the area between them with more of the pattern. There's no problem with
alignment. In figure 3.4, note how the two areas filled with the pattern
have been joined with perfect pattern alignment.

Let's run a short program (listing 3.1) that sets the pen size and draws
some simple figures with three different pen patterns (figure 3.5).

We can also define our own custom patterns. A pen pattern is 8 pixels
by 8 pixels, so the first thing we should do to define a pen pattern is draw
an 8-by-8 grid and mark the squares (pixels) that we want to set. For our
example, we will define a pattern that can be used to draw a grid on the
screen. Our pattern is shown on its 8-by-8 grid in figure 3.6.

Now we need to define a variable of the type pattern. A pattern is a
64-bit variable defined thus:

type
Pattern = packed array [0 .. 7) of 0 .. 255;

It's an 8-byte array. We don't need to include the actual pattern definition
in our program, just the variable. The pattern data type is predefined along
with all of the other QuickDraw data types.

In our example program, we defined a variable called grid that is of
the pattern data type. Before we use the pattern, we must set the bits in the
pattern variable . To set the bits, we will use a FOR loop to set each byte

DRAWING MODES 31

111111111111111111111111111111111 Figure 3.4 Pattern alignment

in the 8-byte array. Setting a byte will set all of the pixels in one row of the
pattern; byte O sets the pixels in the top row, and byte 7 sets the pixels in
the bottom row. The bits in each byte correspond to the pixels in the same
order as you see them in the grid. The leftmost pixel has a bit value of 128;
the rightmost pixel has a bit value of 1. To set the rightmost pixel in each
of the first seven rows, we set the first 7 bytes of the array to 1. To set all
of the pixels in the last row, we set the eighth byte to 255 (all 8 bits on).

In the listing for the program (listing 3.2), you will see that we start
drawing the pattern 1 pixel to the left and 1 pixel above an 8-pixel
boundary (the boundary of a pattern on the screen). We do that in order
to make a complete grid. If we started on 8-pixel boundaries, we would
not include the top line and left line of the grid pattern that we draw. The
pattern that the program draws is shown in figure 3. 7.

11111111111111111111111111111111 DRAWING MODES

Whether we are drawing a pattern or drawing solid black lines, we have
another means of controlling how the pen draws on the screen. In all of
the drawing we have done so far, the pen has either drawn a black line over
everything it crosses or laid down a pattern over everything it crosses. The

32 DRAWING SHAPES AND PATTERNS

111111111111111111111111111111111 Listing 3 .1 PenPatterns

program PenPatterns;
{Listing 3 .1}
{Pen Pattern exercise}

procedure DrawBox;
begin

moveto(90, 10);
line (0, 20);
line (20, 0);
line (0, -20);
line (-20, 0)

end;

procedure DrawTriangle;
begin

moveto(lOO, 50);
line (-25, 50);
line (50, 0);
line (-25, -50);

end;

procedure DrawLine;
begin

moveto(63, 130);
line (80, 0);

end;

begin
PenSize (3, 3);
PenPat(black);
DrawBox;
PenSize(8, 8);
PenPat (ltGray);
DrawTriangle;
PenSize (1, 18);
PenPat(dkGray);
DrawLine;

end.

pen pattern, whether solid black or something else, was copied onto the
pixels that the pen passed over.

It is possible to have the existing image on the screen affect the
drawing done by the pen. For instance, instead of copying the pattern to
the screen pixels, the pen can do a logical OR between the pen squares and
the screen pixels. The result would be that any black squares on the pen
would set screen pixels to black, but any white squares on the pen would
have no effect.

The pen has eight writing modes that are two sets of variations on
four basic writing modes. We've already seen the COPY mode; we've been

DRAWING MODES 33

D

-
111111111111111111111111111111111 Figure 3.5 The result of the PenPatterns program

111111111111111111111111111111111 Figure 3.6 A custom pattern

using it in our programs. It is the default pen mode. We just discussed the
OR mode. There's also an XOR mode and a BIC mode. Programmers
should recognize the Boolean OR and XOR functions from their program­
ming experience.

With the OR, XOR, and BIC modes, the white squares on the pen do
not affect the pixels on the screen. In OR mode, the black squares on the
pen set the corresponding pixels under them on the screen to black. In
XOR mode, the black pen squares invert the pixels on the screen. BIC
mode does not correspond to a Boolean function. Like OR and XOR it
affects only the pixels under black pen squares. It sets the screen pixels
under the black pen squares to white.

We have four basic transfer modes now, COPY, OR, XOR, and BIC.
The remaining four modes are notCOPY, notOR, notXOR, and notBIC .
They work like the first four except that the squares on the pen are treated
as if their values were inverted. The pen squares have an effect opposite the
one they had in the first four modes (table 3. I).

34 DRAWING SHAPES AND PATTERNS

111111111111111111111111111111111 Listing 3.2 PenPatterns with a FOR Loop

program PenPatterns;
{Listing 3.2}
var
grid : pattern;

procedure InitPattern;
var

i : integer;
begin
for i := 0 to 6 do
grid[i] := 1;

grid[7] .- 255;
end;

begin
InitPattern;
PenSize (1, 129);
PenPat(grid);
MoveTo (31, 31);
Line(128, 0);

end.

0 Drawing

l2J

111111111111111111111111111111111 Figure 3. 7 Another custom pattern

We can see a graphic illustration of pen modes with a little program
(listing 3.3). We'll first define two patterns. The first pattern consists of
horizontal lines that we'll draw using COPY mode. The other pattern will
be vertical lines, and we will draw that pattern on top of the first, using the
various pen modes.

DRAWING MODES 35

111111111111111111111111111111111 Table 3.1 Pen Modes

Pen mode Pen square Screen pixel Resulting screen pixel

patCOPY Black Black Black
patCOPY White Black White
patCOPY Black White Black
patCOPY White White White

notPatCOPY Black Black White
notPatCOPY White Black Black
notPatCOPY Black White White
notPatCOPY White White Black

patOR Black Black Black
patOR White Black Black
patOR Black White Black
patOR White White White

notPatOR Black Black Black
notPatOR White Black Black
notPatOR Black White White
notPatOR White White Black

patXOR Black Black White
patXOR White Black Black
patXOR Black White Black
patXOR White White White

notPatXOR Black Black Black
notPatXOR White Black White
notPatXOR Black White White
notPatXOR White White Black

patBIC Black Black White
patBIC White Black Black
patBIC Black White White
patBIC White White White

notPatBIC Black Black Black
notPatBIC White Black White
notPatBIC Black White White
notPatBIC White White White

38 DRAWING SHAPES AND PATTERNS

111111111111111111111111111111111 Listing 3.3 ModesExperiment

program ModesExperiment;
{Listing 3. 3}

var
hStripes, vStripes : Pattern;
GraphRect : Rect;

procedure InitPatterns;
var

i : Integer;
begin

for i := 0 to 7 do
vStripes[i] := 15;

hStripes[O] := 255;
hStripes[l] := 255;
hStripes[2] := 255;
hStripes [3] := 255;

and;

procedure DrawStrip (Modes : BOOLEAN;
StartMode : INTEGER) ;

var
i : Integer;

{the modes are numbered 8-15 starting with patCopy}
begin

for i := 0 to 3 do
begin
if Modes than

PenMode (i + StartMode)
else

PenMode(patCopy);
Line (31, 0);
move (33, 0);

end;
end;

procedure DrawStripes (DoModes
begin

MoveTo (8, 112);
DrawStrip(DoModes, patCopy);
MoveTo (8, 160);
DrawStrip(DoModes, notPatCopy);

end;

procedure DrawPatterns;
beqin

PenPat(HStripes);
Moveto (8, 16);
DrawStrip(FALSE, PatCopy);
PenPat(vStripes);
MoveTo (8, 64);
DrawStrip(FALSE, PatCopy);

BOOLEAN);

Continued

DRAWING MODES 37

111111111111111111111111111111111 Listing 3. 3 Continued

end;

begin
SetRect (GraphRect, 50, 50, 310, 270);
SetDrawingRect(GraphRect);
ShowDrawing;
InitPatterns;
PenSize (1, 32);
DrawPatterns;
PenPat(hStripes);
DrawStripes(FALSE);
PenPat(vStripes);
DrawStripes(TRUE);

end.

Looking at the first three statements in the main part of the program,
we see a call to SetRect to set values in a rectangle data structure, followed
by two unfamiliar statements, SetDrawingRect and ShowDrawing. We use
those three statements to set the size of the drawing window and make it
the active window. The default drawing window size just isn't large
enough to display the output of our program.

The two unfamiliar statements are Macintosh Pascal procedures that
control the drawing window. The SetDrawingRect statement sets the size
and location of the drawing window to the rectangle GraphRect. The
values in GraphRect are in Macintosh screen coordinates (global coordi­
nates). The origin of that coordinate system is the upper left corner of the
screen.

The ShowDrawing procedure makes the Macintosh Pascal drawing
window the active window (it overlays the other windows on the screen).

Our program works with two patterns. It draws a series of eight
identical copies of the first pattern (horizontal stripes). Then, with the
pen, it draws the second pattern (vertical stripes) over the first pattern,
using the eight different drawing modes. The program first draws four
copies of the first pattern that we put on the screen; then, on the next line,
it draws four copies of the second just so we can see what they both look
like. It then draws the series of eight pattern combinations, using the eight
pen modes.

What interests us most about this program are the results (naturally)
and the routine that selects which mode to use. The DrawStrip routine
draws a strip of four patterns. It has two parameters: Modes (Boolean) and
StartMode (Integer). If Modes is FALSE, the procedure does not use the
various drawing modes; it just draws four copies of the current pattern,
using the patCopy pen mode. The program uses DrawStrip with Modes =

38 DRAWING SHAPES AND PATTERNS

FALSE for drawing the first two strips of patterns and for laying down the
first pattern in the second two strips.

If Modes is TRUE, the procedure draws four copies of the current
pattern, using the four different drawing modes. The drawing mode is
specified as an integer from 8 to 16. The StartMode parameter is an integer
that contains the drawing mode to be used for drawing the first copy of the
pattern. The drawing mode integer is incremented as we draw each of the
four patterns.

It may seem strange to start the drawing mode number with 8, but it
works out that way because the numbers O through 7 are used for another
type of drawing mode. PenMode uses the numbers 8 through 15.

Drawing mode Integer

patCOPY 8
patOR 9
patXOR 10
patBIC 11
notPatCOPY 12
notPatOR 13
notPatXOR 14
notPatBIC 15

The results of using the pen modes show up in the third and fourth
strips of patterns (figure 3.8). The third strip has the modes patCOPY,
patOR, patXOR, and patBIC. The fourth strip has notPatCOPY, notPatOR,
notPatXOR, and notPatBIC.

We would use the patCOPY mode when we want to eliminate
whatever image we may be writing over. We use the patOR mode when we
want to draw an image that intersects with, but does not eliminate,
another image. A good example is drawing a grid in a computer-aided
design program. If you give your program the capability of showing the
grid or not showing it, the user may elect to show the grid when a drawing
is already on the screen. Drawing the grid with pen mode patOR will put
the grid on the screen without disturbing the existing drawing. Where the
grid is black (at the grid lines), it turns pixels black. Where the grid is white
(between the grid lines), it does not alter the pixels.

If you are drawing one image over another, you may want to be able
to identify the areas where the images intersect. If you draw one image
over another using patXOR, in the areas where the images coincide (are
both black) the pixel values are inverted (turned white). The intersecting
parts of the two drawings look like a photographic negative. Sometimes it
is useful to have a cursor behave that way. If you have a cross-hair cursor,

DRAWING MODES 39

_o Drawing

- - - -- - - -- - - -- - - -
1111 1111 1111 1111

1111 II • •••• •••• •••• ••••

1111 II • • ••• •••• •••• ••••

l2J

111111111111111111111111111111111 Figure 3.8 The result of the ModesExperiment program

you still want to be able to identify the cross point even though it may be
over a black portion of the drawing. Using patXOR to draw your cursor
will cause the cursor to appear black against the white portions of the
screen and white on the black areas.

The patXOR mode has an interesting property. If you draw over
another image with patXOR, you can restore the old image to its original
condition by again drawing the same new image in the same location with
patXOR. Drawing with patXOR a second time reverses the effect of the first
drawing. If you are drawing a cursor, draw it once with XOR to put it on
the screen, and draw it again with XOR to remove it so you can draw it in
another location.

MacPaint uses an XOR mode to draw the cursor and brush shapes
when you are moving them about without pressing the mouse button.
When you press the mouse button, MacPaint switches to COPY mode to
draw on the screen.

To give you another look at what the various PenModes do, I've
modified the program slightly to change the second pattern to a set of
small squares. The new pattern is called Blocks, and its initiation routine
is shown in listing 3.4. The result of drawing the Blocks pattern over the
horizontal stripes pattern with all eight modes is shown in figure 3. 9.

40 DRAWING SHAPES AND PATTERNS

11 11 11 11 111111 11 11111 11 11 11 111111 Listing 3.4 The Blocks Initiation Routine

{listing 3.4}
f o r i := 2 t o 5 d o

Blocks [i] := 60;

D Drawing

- - -- - -- - -- - -
• • • • •••• • • • • •••• • ••• •••• •••• • ••• •••• •••• • •••

•••• - ~

•••• - ~

•••• - ~

•••• - ~

• II .:.0::.:00
.:.0::.:00
.:.0::.:00
.:.0::.:00

----. ...
• ••• • ••• • •••
.........

Q]

11111111111111111111 1111111111111 Figure 3.9 Blocks drawn over horizontal stripes with all eight modes

111 11 11 11 11 11 11 111111 11 11 11 11 111 QUICKDRAW SHAPES

Using QuickDraw, you can draw objects by drawing a series of line
segments or by using the QuickDraw predefined shapes. The QuickDraw
predefined shapes and the QuickDraw routines that manipulate them give
you a powerful set of tools for drawing on the Macintosh. There are,
however, several limitations inherent in the design of QuickDraw. Quick­
Draw deals strictly with two-dimensional shapes, and you cannot rotate a
QuickDraw shape through an arbitrary angle .

If the object you want to draw can be represented by QuickDraw
shapes and you don't need to rotate it, the QuickDraw shapes are the way
to go. QuickDraw has many routines for manipulating these shapes. They
are easier to define, draw, fill, move, and otherwise manipulate than
shapes made up of line segments.

The QuickDraw predefined shapes are the rectangle, round rectan­
gle, oval, and wedge (arc) . QuickDraw also manipulates polygons (arbi­
trary shapes made up of line segments) and regions (objects of arbitrary

111111111111111111111111111111111

QUICKDRAW SHAPES 41

shape, not necessarily composed of line segments). The methods used to
define and manipulate regions and polygons are a little more complex than
for the other QuickDraw shapes, and I will put off discussing them until
chapter 5. Let's take a look at the simple QuickDraw shapes (figure 3.10).

The rectangle should be familiar by now. We define it using the same
rectangle data structure we used before.

The oval is a little different. It has the shape of an ellipse but is not
defined the way you would expect an ellipse to be defined. A mathema­
tician would define an ellipse by specifying the coordinates of its foci and
the lengths of its major and minor axes. In QuickDraw, you define an oval
by specifying a rectangle whose sides just touch the outer limits of the oval
(figure 3.11). Note that since rectangles cannot be specified at arbitrary
angles to the coordinate system (they must be horizontal and vertical), an
oval must have its major and minor axes aligned with the coordinate
system. It cannot be tilted at an arbitrary angle.

D 0
Rectongle Ouol

D C>
Round Rectongle Rrc

Figure 3.10 QuickDraw shapes

The Rectongle Thot Defines the Ouol r---
Ouol

111111111111111111111111111111111 Figure 3.11 The oval

42 DRAWING SHAPES AND PATTERNS

What about a circle? The circle is a special case of the oval. To draw
a circle, you specify an oval whose defining rectangle is a square.

The round rectangle is simply a rectangle with rounded corners. You
define a round rectangle by specifying the rectangle that just touches its
sides and an oval that forms the shape of the rounded corners (figure 3.12).
In this case, you specify the width and height of the oval's rectangle
instead of using a rectangle data structure to define the oval. To draw a
rounded rectangle, you need to pass the following data to a QuickDraw
routine:

Rectangle : Rect;
OvalWidth: INTEGER;
OvalHeight : INTEGER;

Note that all of the corners of a round rectangle are the same. You
cannot have different corners with different oval dimensions in the same
round rectangle.

Oual
Height

Rounded Rectangle

I Dual I
Width

The Rectongle Tho~? the Round Rectongle

f"

:.....~ --------~!

The Dual That Defines the Corner Curuature

111111111111111111111111111111111 Figure 3.12 The round rectangle

QUICKDRAW SHAPES 43

The arc (figure 3.13) looks like the curved edge of a slice of pie. It is
actually a section of an oval. To define an arc, you specify the rectangle
that defines the oval, the angle at which to start drawing the arc, and the
angle subtended by the arc.

The point of the arc is at the center of the rectangle. The angles of the
arc are measured relative to a vertical line from the center of the rectangle.
Arc angles are in degrees (MOD 360), not radians. Positive angles start at
the vertical line and go clockwise (figure 3.14). Negative angles are mea­
sured counterclockwise from the vertical line.

Here's a Pascal versus QuickDraw incompatibility: the
predefined trigonometric functions in Pascal (sin, cos, tan,
and so on) measure angles in radians; QuickDraw measures
angles in degrees.

There you have them, the four QuickDraw shapes. Let's see how to
draw them.

111111111111111111111111111111111 Figure 3.13 The arc

111111111111111111111111111111111 Figure 3.14 Arc angles

Start Rngle (45°)

Rrc Rngle (75 °)

44 DRAWING SHAPES AND PATTERNS

DRAWING QUICKDRAW
11111111111111111111111111111111 SHAPES

You can draw each of the QuickDraw shapes five ways. The drawing
operations areframe,paint, erase, invert, and/ill. Frame is the most basic
drawing operation. It draws an outline of the shape, using the current pen
size, mode, and pattern. When the drawing has been done, the pen returns
to the location it occupied before drawing the shape. None of the other
shape-drawing procedures change the pen location either.

The paint and fill operations are similar. The paint operation fills the
interior of the shape with the current pen pattern, using the current pen
mode. The fill operation fills the interior of the shape with a specified
pattern, not necessarily the current pen pattern. The pen draws the pattern
in COPY mode; that is, the pixels inside the rectangle are replaced with
pixels from the pattern.

Erase works like paint except that it uses the current background
pattern instead of the current pen pattern. The default background pattern
is white, so if you don't set the background pattern, erase fills the shape
with white, exactly as you would expect.

Paint Fill

Current pen pattern Specify a pattern

Current pen mode COPY mode

Erase

Current background
pattern

COPY mode

The invert operation inverts every pixel inside the shape. It converts
the interior of the shape to a negative image of itself.

Now you have four shapes and five ways to draw each. To form the
name of a procedure to draw a shape, you combine the name of the
drawing operation with the name of the shape.

A B

Erase Arc
Fill Oval
Frame Re ct
Invert RoundRect
Paint

Take one from column A and one from column B (no egg roll).

DRAWING QUICKDRAW SHAPES 45

To frame a round rectangle, you use the procedure FrameRoundRect.
When you use one of the shape-drawing procedures, you must supply it
with the parameters that define the shape you are drawing. The list below
shows statements that use the paint operation to paint each of the four
shapes, and how the shape is defined in each case.

PaintRect(aRectangle : rect);

PaintRoundRect(aRectangle : rect; OvalWidth, OvalHeight :
INTEGER);

PaintOval(OvalRectangle : rect);

PaintArc(ArcRectangle : rect; StartAngle, StopAngle : INTEGER);

If we were using the fill procedure instead of paint, we would also
need to supply a parameter that specifies the pattern to use, for instance:

FillRect(aRectangle : rect, aPattern : pattern);

To fill a rectangle called BigRect with the light gray pattern, we would
use the statement:

FillRect(BigRect, LtGray);

Let's see how to use some of these procedures in a simple program
(listing 3 .5).

The program draws a series of figures using various pen patterns, fill
patterns, and background patterns (for erasing). The DrawShapes routine
accepts the parameters DrawPat, FillPat, and ErasePat, the patterns used
for drawing, filling, and erasing. The program calls DrawShapes three
times, each time with a different set of patterns.

The rest of the program is straightforward. The Framelt routine
frames each shape, using the specified pattern. The Filllt routine fills
each shape with the specified pattern, and the Eraselt routine erases each
shape with the specified pattern. Each of these patterns draws a rectangle,
round rectangle, oval, and arc. Figure 3. 15 shows the drawing window
after the shapes are framed. In figure 3.16, we see the shapes after they
have been filled.

One interesting thing to note when you run this program is that the
FrameArc routine draws just the curved part of the arc while the FillArc
and EraseArc routines draw the interior as well.

46 DRAWING SHAPES AND PATTERNS

111111111111111111111111111111111 Listing 3.5 An Untitled Program

program Untitled;
{listing 3.5}

var
vStripes : Pattern;
GraphRect, aRect, OvalRect, RoundRect, ArcRect
i : INTEGER;

procedure InitPatterns;
var

i : INTEGER;
begin

for i := 0 to 7 do
vStripes[i] := 15;

end;

procedure Delay;
var

j : INTEGER;
jsq : LONG INT;

begin
for j := 1 to 300 do

jsq := sqr(j);
end;

procedure Eraseit (ErasePat pattern);
begin
backPat(ErasePat);
EraseRect(aRect);
Delay;
EraseRoundRect (RoundRect, 32, 32);
Delay;
EraseOval(OvalRect);
Delay;
EraseArc(ArcRect, O, 90);
Delay;

end;

procedure Fillit (FillPat pattern);
begin
FillRect (aRect, FillPat);
Delay;
FillRoundRect(RoundRect, 32, 32, FillPat);
Delay;
FillOval (OvalRect, FillPat);
Delay;
FillArc (ArcRect, O, 90, FillPat);
Delay;

end;

procedure FrameUp;
begin

Rect;

Continued

111111111111111111111111111111111 Listing 3.5 Continued

FrameRect(aRect);
Delay;

DRAWING QUICKDRAW SHAPES 47

FrameRoundRect(RoundRect, 32, 32);
Delay;
Frameoval(OvalRect);
Delay;
FrameArc (ArcRect, O, 90);
Delay;

end;

procedure DrawShapes (FramePat, FillPat, ErasePat
pattern);

begin
penPat(FramePat);
FrameUp;
Delay;
Fillit(FillPat);
Delay;
Eraseit(ErasePat);
Delay;

end;

begin
SetRect (GraphRect, 50, 50, 270, 270);
SetDrawingRect(GraphRect);
ShowDrawing;
InitPatterns;
PenSize (8, 8);
SetRect (aRect, 1'6, 16, 16 + 64, 16 + 64);
SetRect (Roundrect, 120, 16, 120 + 64, 16 + 64);
SetRect (OvalRect, 16, 120, 16 + 64, 120 + 64);
SetRect (ArcRect, 120, 120, 120 + 64, 120 + 64);
for i := 1 to 20 do
begin

DrawShapes(black, vStripes, DkGray);
Delay;
DrawShapes(LtGray, vStripes, Black);
Delay;
DrawShapes(DkGray, vStripes, White);
Delay;

end;
end.

Note that when we use the fill procedure, it fills all of the interior of
the shape, even the part that the frame procedure drew. The frame
procedure draws the outside frame of the shape, but the frame starts at the
outside edge and extends into the interior by a distance equal to the pen
size. The frame routine draws the shape by running the pen around the
inside edge of the shape.

48 DRAWING SHAPES AND PATTERNS

-D Drewing

D 0
0 '

'2l

111111111111111111111111111111111 Figure 3.15 Framed shapes

~O Drewing

111111111111111111111111111111111 Figure 3 .16 Filled shapes

111

CHAPTER

4 DRAWING TEXT

Displaying Text with Type Fonts

Type Style

Type Size

Font Files

Text Character Images

Kerning

QuickDraw and the Font Manager

QuickDraw Routines

Drawing Text

Getting Information about the Font

A Program to Draw a Font's Character Set

111

41

50 DRAWING TEXT

DISPLAYING TEXT WITH
11111111111111111111111111111111 TYPE FONTS

Most personal computers have the text character shapes defined in the
hardware that controls the CRT display. Programs need only write the
ASCII character codes for each character to the display controller. The
controller takes care of drawing the characters. Macintosh programs that
put text on the screen (or printer) must use QuickDraw to draw the text
characters. On the Macintosh, text characters are treated as any other
image that you want to draw on the display.

Since the shape and appearance of text characters is under the control
of Macintosh software, the characters can have any shape that we choose
to define. The designers of the Macintosh came up with a set of terms and
definitions to describe text characters. The terms they chose are com­
monly used in the printing trade.

The term type/ ace means a set of characters all of the same general
appearance. A type font is a complete set of characters (the alphabet,
numbers, punctuation, and special symbols) that all belong to the same
typeface. They have a similar appearance.

Type fonts usually have distinctive names. Most fonts for the Macin­
tosh are named after cities. Let's see some examples (figure 4.1).

Most of the fonts shown in figure 4 .1 are proportionally spaced fonts.
The spaces allowed for the characters are proportional, not uniform. Each
character in the font has a specification for the amount of space it
occupies. The spacing varies to improve the appearance of the type. The
Monaco font is not proportionally spaced; the space allowed its characters

This is the Toronto font in the 1 2 point size.
This is the Los Angeles font in the 12 point size.
This is the Chicago font in the 12 point size.
This is the Geneva font in the 12 point size.
This is the New York font in the 12 point size.
This is the Monaco font in the 12 point size.
This is the Venice font in the 14 poi.nt si.:u.

1lCbis is tlJe lfAnbon font in tlJe ts point si~e.
This is the Bthens font in the 18 point size.

111111111111111111111111111111111 Figure 4.1 Type fonts

TYPE SIZE 51

does not vary. It is called a monospaced font. Monospaced fonts are used
to imitate the appearance of text printed by other computers, those that
can print only monospaced fonts. On the Macintosh, they are sometimes
useful in applications where data or text must be aligned in tables.

The terms typeface, type font, and type style are used interchangeably
in some documents. I will use the term type font to mean a complete
collection of characters of the same appearance. When we actually draw
a character from a type font, we can specify other attributes that affect its
appearance: the type size and the type style.

11111111111111111111111111111111 TYPE STYLE

The characters of a font may be drawn in several styles other than plain.
They still have the same general shape, but their appearance is nevertheless
different from that of characters of the same font drawn in the plain style.
Figure 4.2 shows examples of all of the Macintosh type styles for the New
York type font.

11111111111111111111111111111111 TYPE SIZE

The size of type is measured in points. A point is approximately 1 /72 inch.
Most application programs use 12 points as the default type size. In other
applications, where the designers need to get more text on the page, they

New York 18 point plain
New York 18 point bold
New York 18 point italic
New York 18 point underline
Ntew Jorrt ll~ po!mitt Ol\Jlttll!mite
N~\W lf crrt n ~ JP)Cfimlrt ~Jhlll.«JlC\W

N te l.'I Y lO rr t Il ~ IP lO fi ml tt !bl lO Il (cil lO lUl tt Il fi ml te

111111111111111111111111111111111 Figure 4.2 Type styles

52 DRAWING TEXT

use a smaller type size-9 points in the case of MacTerminal. Figure 4.3
shows various type sizes.

A Macintosh type font is stored as a data file containing bit images of
the characters in the font. The font file usually has the bit images of all of
the characters for several different type sizes. If you want to draw char­
acters in a size that is not defined in the font file, QuickDraw will use a
scaling algorithm to scale down a larger type size or scale up a smaller type
size. The characters drawn on the screen will look better if you choose a
type size that is included in the font file. Most application programs tell
you which sizes are in the system's font file by displaying them in the
outline style in the type size selection menu. Figure 4.4 shows the type size
menu from MacPaint. The sizes displayed in outline style are in the font
file; the sizes in plain text are created by scaling another size.

New York 9 point.
Nev York 10 point.
New York 12 point.
New York 14 point.
New York 18 point.

New York 24 point.

New York 36 point.
111111111111111111111111111111111 Figure 4.3 Type sizes

9 point
10

..... n~
14
18
~~
36
48
72

111111111111111111111111111111111 Figure 4.4 The MacPaint type size menu

TEXT CHARACTER IMAGES 53

11111111111111111111111111111111 FONT RLES

The Macintosh keeps a set of fonts stored in the operating system. They are
actually in a disk file (the system resource file), but it doesn't show up on
the desk top or in a disk directory window. When you buy new type fonts,
they come in a disk file. You must use the font mover utility to load them
from the disk file into the system resource file.

The system has a limited number of type fonts stored in the system
resource file. A type font takes up a lot of disk space, so there's a practical
upper limit on how many fonts you can have on a system disk. You can add
or delete fonts from the system resource file using the font mover utility.
If you have the latest version of the system disk, you will find a FONT/DA
mover utility. It moves both fonts and desk accessories between the system
resource file and external disk files.

11111111111111111111111111111111 TEXT CHARACTER IMAGES

We know now that the images of all of the characters of a font in a given
size are stored in the system resource file. If we want to draw in a size that
is not in the system resource file, QuickDraw will scale one of the existing
sizes of that font as it draws. That takes care of the font and size, but how
is the type style information stored? It isn't.

All of the characters that QuickDraw gets from the system resource
file are in the plain text style. If you specify that text will be drawn in
another style, QuickDraw uses type style routines to change the shape of
the plain text characters.

Let's take a closer look at some text characters drawn by QuickDraw.
Figure 4. 5 shows the uppercase and lowercase y in the Geneva font as

drawn by QuickDraw on the Macintosh screen. The ascent line is the
highest point reached by any character in the font (in the current font size).
The base line is the lowest point for uppercase characters. Some lowercase
characters have a descender, a part of the character that goes below the
base line. The descent line is the lowest point reached by any character in
the font. The font height is the maximum height of any character in the
font, the distance between the ascent line and the descent line.

The image width is the width of the actual image drawn by Quick­
Draw. The character width includes the image width and the spacing
between characters. Each character is defined separately in the font file,
and each has its own definition for the amount of space to leave before
drawing the next character.

54 DRAWING TEXT

Ascent Line

Bese Line

Descent Line

Cherecter
Width

• • • • • •
• • •••
l_J

Image
Width

1'
Cherecter
Height

l
J

Cherecter
Width

• • • • • • • • • • • • • •
L___J

lmege
Width

lllllllllllllllllllllllllllllllll Figure 4.5 Text characters enlarged

The font file also contains a specification for the amount of space to
leave between lines of text. Typesetters call this leading. On the Macin­
tosh, the leading specification in the font file tells how many pixels to leave
between the descent line of a line of text and the ascent line of the next
line of text (figure 4.6).

The outer dimensions of a character are defined by the character
rectangle (figure 4. 7). The font rectangle is similar; its height is the
maximum character height, and its width is the maximum image width.

When you draw a character with QuickDraw, you first use the
MoveTo routine to position the pen in the location where you want the

•• ••

l

• •

I • • ••• •• •• • ••
• •••

Leading

T • • •••

•
• • • ••• • • • • • • • • • • • • • • • ••• • • • • • • • • • •• •• •• • •• • • • • •••

lllllllllllllllllllllllllllllllll Figure 4.6 Leading

KERNING 55

111111111111111111111111111111111 Figure 4. 7 Character rectangles

character to appear. You then call the DrawChar routine to draw the
character. It draws the character so that the character's origin point is at
the starting pen location. The character origin is always on the base line
and is usually on the left edge of the character rectangle (figure 4.8).

After drawing the character, the pen is still on the base line but is to
the right of its starting position by an amount equal to the character width
(not the image width).

11111111111111111111111111111111 KERNING

Some type fonts allow the descending tail of one character to pass under
the preceding character. Sometimes they allow a lowercase character to
tuck itself under the roof of an uppercase character like a T. Typesetters
call the adjusting of space between characters kerning. Figure 4.9 shows
two kerned lowercase letters, one with a descender.

In figure 4. 10, we see a blowup of the two characters and can see how
the tail of the j actually passes under the right edge of the a.

If we defined character origin and character rectangle the way we
have so far, we could not get the tail of the j drawn under the a. After
drawing the a, the pen would move by an amount equal to the character

Cheracter ~
Origin

• • • • • •
•
•
•••

• • • •

•
Characte~

Origin

111111111111111111111111111111111 Figure 4.8 Character origins

• • • • • • • • • • • • • •

56 DRAWING TEXT

aj

111111111111111111111111111111111 Figure 4.9 Kerned characters

•

aj I
•• • • • • • • • • • • • • • • •• ••

111111111111111111111111111111111 Figure 4.10 Kerned characters enlarged

width of the a and then start drawing the j, starting at its origin. A font
designer can get around that limitation by offsetting the origin of the j to
the right of the left edge of the character rectangle (figure 4.11).

Now if we ask QuickDraw to draw an a followed by a j, it sets the
origin of the j on the base line at the first pixel after the intercharacter
space defined for the a (in this case, the a is followed by a 2-pixel space).
Because the origin is offset, when QuickDraw draws the tail of the j, it
passes back under the a. Figure 4.12 shows the two characters kerned and
shows the locations of their origins.

Most fonts that have kerned characters also have nonkerned versions
of the same characters. The nonkerned characters are what you get if you
just type the normal characters on the keyboard. Usually, to get a kerned

Character ----)
Origin

• • •
•

•

•• ••• • • • • •• ••• ••

•
•• • • • • • • • • • •• ••

111111111111111111111111111111111 Figure 4.11 Offset character origins

QUICKDRAW AND THE FONT MANAGER 57

•
•• • • • • • • • • • • •• • ••• •• • • • • •• ••

111111111111111111111111111111111 Figure 4.12 Enlarged kerned characters with origins

character, you must hold down the option key and type the character.
Only a few fonts have kerned characters. When you use them, you must be
careful not to use a kerned character next to one that it will overlay.

A font designer must supply some kind of image for 256 possible
characters. Besides the usual uppercase and lowercase alphabetic charac­
ters there are numbers, punctuation marks, and special characters. Even
so, there will rarely be a need for 256 characters. The font designer can
specify an image for a default character for the font file, and it will be used
for any character that doesn't have its own image definition in the file.
Most fonts use a square about the size of an average character rectangle for
the default character image.

QUICKDRAW AND THE
11111111111111111111111111111111 FONT MANAGER

Most of the routines that we will use to draw text characters are Quick­
Draw routines. There are also a few useful routines in the font manager.
QuickDraw calls the font manager to load fonts into memory from the
system font file, but we will occasionally use a font manager routine to do
such things as lock a font in memory so it cannot be purged, or find out
if a font of a particular size is in the font file. If the font file does not have
a font in the size we want to use, QuickDraw will have to use another font
size, scaled to the size it is trying to draw.

QuickDraw refers to fonts by number. The font manager has routines
to find the name of a font if we know the font number or find the number
if we know the name.

When we want to draw characters on some device (the ImageWriter,
for instance), QuickDraw, the font manager, and the device driver decide
what font size would be appropriate for drawing on the device. If we had
some text that we drew on the Macintosh screen in the 12-point size,

58 DRAWING TEXT

QuickDraw and the font manager would use the 24-point size scaled down
to 12 points for drawing on the Image Writer. The Image Writer has a higher
resolution than the Macintosh display, and using the larger font size scaled
down results in higher-resolution fonts on the printer.

Normally, an application program would call the font manager rou­
tine, InitFonts, before drawing any text. We don't need to do that with
Macintosh Pascal because the Pascal interpreter does it for us.

11111111111111111111111111111111 QUICKDRAW ROUTINES

QuickDraw has a set of routines for setting the font characteristics and
another set for actually drawing the font. If you don't set the font charac­
teristics, QuickDraw uses the default settings: the application font
(Geneva), 12-point size, and plain text. Let's start our exploration of
QuickDraw text drawing by looking at the procedures that set the font
characteristics.

TextFont(font: INTEGER);

You pass TextFont a font number, and it sets the current font to
that number.

TextFace(face : style);

TextFace sets the style in which the text will be drawn.

TextMode(mode : INTEGER);

TextMode sets the drawing mode, much like the pen mode that
we saw in chapter 3.

TextSize(size : INTEGER);

The TextSize procedure sets the font size for drawing text. If the
font you specified is not in the font file, QuickDraw will scale
another size.

After setting the font characteristics, we will need the QuickDraw
procedures that draw the text.

DrawChar(textChar: char);

DrawChar draws a single character with its base line at the
current pen location.

DRAWING TEXT 59

DrawString(textString : Str255);

Drawstring draws a string of characters with the base line at the
current cursor location.

Both DrawChar and Drawstring advance the pen by the character's
width after drawing each character. Neither will do a carriage return, line
feed, or form feed or perform any other automatic formatting. The most
you can expect them to do is leave a space when they encounter a space
character.

11111111111111111111111111111111 DRAWING TEXT

Let's take a look at a simple program that uses the QuickDraw procedures
to put some text on the screen (listing 4.1).

The InitText procedure sets the font characteristics. The InitDrawing­
Window procedure sets up the drawing window the same way we did in
chapter 3. The main part of the program draws a text string in the drawing
window. We see the result in figure 4.13.

111111111111111111111111111111111 Listing 4.1 DrawFont in Preliminary Form

program DrawFont;
{Listing 4 .1}

procedure InitDrawingWindow;
var

GraphRect : Re ct;
begin

SetRect (Graphrect, 50, 50, 310, 270);
SetDrawingRect(GraphRect);
ShowDrawing;

end;

procedure InitText;
begin

TextFont(3);
TextF ace ([]) ; {normal}
TextMode(srcOR);
TextSize(12);

end;

begin
!nit Text;
InitDrawingWindow;
MoveTo (10, 20);
Drawstring ('The Macintosh Character Set') ;

end.

60 DRAWING TEXT

D Drawing

The Meci ntosh Cherecter Set

'2l

111111111111111111111111111111111 Figure 4.13 The result of the preliminary DrawFont program

Note that before drawing, we set the pen location to (10, 20). Your
first thought might be to set it at (0, 0). That would work for the horizontal
coordinate; it would make the first character flush with the left edge of the
window. It wouldn't be beautiful, but it would be readable. The problem
is with the vertical coordinate. Remember, the vertical coordinate of the
pen becomes the base line for drawing characters. If we set the vertical
coordinate to 0, only the descenders on the lowercase characters would be
visible in the window.

One problem with this program is that we hard-coded the font number
in the InitText procedure (we used a number instead of a symbol). Not only
is this a bad practice but we would like to know the names of the fonts we
are using. We will add a string array that defines the font name for each font
number, but first we need the following list of font names and numbers.

Font number Font name

0 System Font
1 Application Font
2 New York
3 Geneva
4 Monaco
5 Venice
6 London
7 Athens
8 San Francisco
9 Toronto

GETTING INFORMATION ABOUT THE FONT 81

We will also define font names as constants so that when we look at
the listing of the section of our program that sets the font type, we can tell
what it's doing. We also add a few lines of code to write the font name on
the screen below the title string (listing 4.2).

Look at the end of the main section of the program, and you will see
that we put the starting location for the pen in a pair.of variables so we can
manipulate the pen location when starting a new line of text. When we run
the program, we get the result shown in figure 4.14.

GETIING INFORMATION
11111111111111111111111111111111 ABOUT THE FONT

Looking at what the program drew, we see that the two lines of text are
quite far apart. How did we know how far down to move the pen before
drawing the second line? It was pure guesswork. We need to know how
far to move the pen between lines. The font definition in the font file has
that information, and QuickDraw has a procedure, GetFontlnfo, that will
get it for us. It returns the information about the font in a record called a
Fontinfo record.

type Fontinfo = record
ascent: INTEGER;
descent: INTEGER;
widMax: INTEGER;
leading : INTEGER

end;

Ascent is the distance from the base line to the ascent line, the highest
point reached by any character in the font. Descent is the distance from
the base line to the descent line, the lowest point reached by a descending
portion of a character. WidMax is the maximum character width of the
characters in the font (not the maximum character image width). Leading
is the distance from the descent line of one line of characters to the ascent
line of the line of characters below it.

QuickDraw has other routines that get information about text char­
acters in a particular font. Two of them are:

function CharWidth(ch : char) : INTEGER;

CharWidth returns the width of the specified character using the
current font, font size, and style.

62 DRAWING TEXT

111111111111111111111111111111111 Listing 4.2 DrawFont Revised

program DrawFont;
{Listing 4. 2)

con st
SystemFont = O;
ApplicationFont 1;
NewYork = 2;
Geneva 3;
Monaco 4;
Venice 5;
London 6;
Athens 7;
SanFrancisco 8;
Toronto = 9;

var
FontNum, StartH, StartV : INTEGER;
FontName : array [0 •. 9 J of Str255;

procedure InitDrawingWindow;
var

GraphRect : Rect;
begin

SetRect (GraphRect, 50, 50, 310, 270);
SetDrawingRect(GraphRect);
ShowDrawing;

end;

procedure InitText;
begin

FontName [0 J : = 'System Font';
FontName [1) := 'Application Font';
FontName[2J := 'New York';
FontName[3) := 'Geneva';
Font Name [4 J : = 'Monaco';
FontName [5) := 'Venice';
Font Name [6 J : = 'London';
Font Name [7 J : = 'Athens';
FontName[SJ := 'San Francisco';
FontName [9 J : = 'Toronto';
TextFont(FontNum);
TextFace ([J); {normal)
TextMode(srcOR);
TextSize(12);

end;

begin
FontNum : = NewYork;
InitText;
InitDrawingWindow;
StartH := 10;
StartV := 20;
MoveTo(StartH, StartV);
DrawStr ing ('The Macintosh Character Set') ;
MoveTo (StartH, StartV + 20);
DrawString(FontName[FontNum]);

end.

A PROGRAM TO DRAW A FONT'S CHARACTER SET 63

D Drawing

The Macintosh Character Set
New York

~

1111111111111111 11 11 11 11111111111 Figure 4.14 The result of the revised DrawFont program

function StringWidth(string : Str255) : INTEGER;

StringWidth returns the width of the specified string using the
current font , font size, and style.

Both CharWidth and StringWidth are useful when you want to see if
a character or string will fit on a line before you attempt to draw it. In the
next version of our program, we add a variable of the Fontinfo type and
a call to GetFontlnfo. We use the font information to calculate how far
down to move the pen before drawing the font name. (Listing 4.3 shows
just the sections that we changed.)

We did not need to define the Fontinfo data type in our program
because Macintosh Pascal already has that definition as part of its Quick­
Draw data types.

A PROGRAM TO DRAW
11111111111111111111111111111111 A FONT'S CHARACTER SET

In the last version of our program, we added a section to draw the entire
character set of the font in a matrix (shown in figure 4.15). The small
rectangles are used for characters that have no image defined in the font.

Listing 4.4 shows DrawFont in final form. We add two statements to
put the title in boldface and then to return the type style to plain text . We
also add two nested FOR loops to increment the character number. We use
a DrawChar procedure to draw each individual character. Note that we

64 DRAWING TEXT

111111111111111111111111111111111 Listing 4.3 DrawFont Further Revised (Variables and Main Program)

{listing 4.3, Variables and Main Program Only)
var

FontNum, StartH, StartV, LineH ; INTEGER;
Font Name : array [0 .. 9] of Str255;
FontStuff : Fontinfo;

begin
FontNum : = NewYork;
InitText;
InitDrawingWindow;
GetFontinfo(FontStuff);
StartH := 10;
StartV := 20;
LineH := FontStuff.ascent + FontStuff .descent +

FontStuff.leading;
MoveTo (StartH, StartV);
Drawstring ('The Macintosh Character Set');
StartV := StartV + LineH;
MoveTo (StartH , StartV);
DrawString(FontName[FontNum]);

end.

D Drtlwing

The Macintosh Character Set, New York. Font
0123456789ABCDEF

0 D O@P'pAe'Dl-DD
lDD! lAQaqJ..e• Di -DD
2DD"2BRbr~i¢DD" DD
3DD-3CScsEi £DON DD
4 00$ 4DTdt Ni S ¥ D' DD
5DD~5EUeucil. DD' DD
6 00&6 F Vf v Un <II DODOO
7 DD ' 7 G Wg wa 6 J3 D « o DD
800(aHXhxao ®D»Y DD
9 D)9IYiyao©D ... too
ADD* JZjzao""D DOD
BOD+' K[k{ ao' !!.ADDO
COD,< L\1 I !u·· 2ADDD
D 0-=M]m)<;U.DDODDD
EDD .) N. n- e Ufr.:alCEDDD
FDD/?O_o eU.011100000

111111111111111111111111111111111 Figure 4.15 A character set matrix

A PROGRAM TO DRAW A FONT'S CHARACTER SET

111111111111111111111111111111111 Listing 4.4 DrawFont

program DrawFont;
{Listing 4. 4}

con st
SystemFont = O;
ApplicationFont 1;
NewYork = 2;
Geneva 3;
Monaco 4;
Venice 5;
London 6;
Athens 7;
SanFrancisco 8;
Toronto = 9;
LMargin = 40;
Offset = 30;
TMargin = O;

var
FontNum, StartH, StartV, LineH, v, h, n, CharWidth

INTEGER;
FontName : array[0 •. 9] of Str255;
FontStuff : Font Info;
HexConv : array [0 .• 15 J of char;

procedure InitDrawingWindow;
var

GraphRect : Rect;
begin

SetRect (GraphRect, 20, 40, 380, 330);
SetDrawingRect(GraphRect);
ShowDrawing;

end;

procedure InitText;
begin

FontName [0 J : = 'System Font';
FontName [1 J : = 'Application Font' ;
FontName[2] := 'New York';
FontName[3) := 'Geneva';
FontName [4] : = 'Monaco' ;
FontName[5) := 'Venice';
FontName [6) := 'London';
FontName [7] : = 'Athens' ;
FontName [8 J : = 'San Francisco';
FontName [9 J : = 'Toronto';
TextFont(FontNum);
TextFace ([]); {normal}
TextMode(srcOR);
TextSize(12);

end;

function HexChar (num INTEGER) Char;

65

Continued

61 DRAWING TEXT

111111111111111111111111111111111 Listing 4.4 Continued

begin
if ((num > 15) or (num < 0)) then

HexChar : = 32
else if num < 10 then

HexChar := chr (num + 48)
else

HexChar : = chr (num + 55) ;
end;

begin
FontNum : = NewYork;
InitText;
InitDrawingWindow;
GetFontinfo(FontStuff);
FontStuff.Leading := FontStuff.Leading - 1;
LineH := FontStuff.ascent + FontStuff.descent +

Fontstuff.leading;
StartH := LMargin - Offset;
StartV := TMargin + LineH;
MoveTo(StartH, StartV);

{put the title in bold face}
TextFace([Bold]);
Drawstring ('The Macintosh Character Set, ');
DrawString(FontName[FontNum]);
Drawstring(' Font');
CharWidth : = Font Stuff. widMax + 2;

{draw the top line of hex numbers}
StartV := StartV + LineH;
StartH := LMargin + CharWidth;
MoveTo(StartH, StartV);
for h := 0 to 15 do
begin

DrawChar(HexChar(h));
StartH := StartH + CharWidth;
MoveTo(StartH, StartV);

end;
{set starting location to draw characters}
StartV : = StartV + LineH;
StartH := LMargin;
MoveTo(StartH, StartV);

{draw the character matrix}
TextFace ([l);
for v := 0 to 15 do
begin

TextFace([bold]);
DrawChar(HexChar(v));
StartH := StartH + CharWidth;
MoveTo(StartH, StartV);
TextFace ([]) ;
for h := O to 15 do
begin

Continued

A PROGRAM TO DRAW A FONT'S CHARACTER SET 67

111111111111111111111111111111111 Listing 4.4 Continued

DrawChar(chr(v + (h * 16)));
StartH := StartH + FontStuff.widMax + 2;
MoveTo(StartH, StartV);

end;
StartH := LMargin;
StartV : = StartV + LineH;
MoveTo(StartH, StartV);

and;
end.

have had to convert the character number from an integer to the CHR data
type. Instead of using the font's proportional spacing between characters,
we put them in a matrix so they all line up in columns and rows. This
allows us to put the hex equivalents of the character numbers across the
top and down the left side of the matrix, making it possible to locate any
character on the basis of its hex value. The HexChar function returns the
hex character (actually, its character number) for an integer that specifies
a row or column (the v and h variables).

We also have some additional code to put in the column and row
numbers (hex numbers) in boldface. It turns out that with the leading
specified in the New York font's definition, there isn't quite enough room
to draw the entire matrix and still be able to see the drawing window
borders at the top and bottom. Right after the call to GetFontlnfo, there is
a statement to subtract 1 from the leading. Note that changing the leading
variable doesn't affect the font definition; it's just an internal variable that
we use to figure out how far to move the pen.

Try changing the font that the program draws to see what some of the
special characters look like in different fonts. If you choose a font that is
not installed in your system disk, QuickDraw will draw the text in the
application font (Geneva).

111

CHAPTER

5 MORE TOOLS FOR
THE MAGICIAN

The Cursor

The Mouse

Pictures, Polygons, and Regions

Creating QuickDraw Pictures

QuickDraw Polygons

Using Regions

111

69

70 MORE TOOLS FOR THE MAGICIAN

11111111111111111111111111111111 THE CURSOR

The cursor is the image that moves around on the screen when you move
the mouse. It's used to relate the mouse position to a point on the screen.
Most Macintosh documentation calls the cursor a pointer because its
function is to point to things on the screen. We will call it a cursor so that
we do not confuse it with a Pascal pointer data type. As you have used the
Macintosh, you have probably seen the cursor change shape depending on
what the machine is doing. When a program starts a task that takes some
time, it will change the cursor to an image of a watch to let you know that
you will have to wait. In a program like MacPaint, the cursor shape
indicates what kind of tool you are using.

In your own programs, you control the cursor with QuickDraw
procedures. You can set the cursor shape, hide the cursor, show the
cursor, or hide the cursor until the next mouse button click.

The cursor image is a 16-by-16-pixel square. As you move the cursor
around on the screen, it appears to overlay parts of the image on the
screen. When you move the cursor, the parts of the image that were
beneath it are restored.

When you define a cursor, you specify the cursor image (16 by 16
pixels), a cursor mask, and the hot spot. The cursor image is the image that
appears on the screen and follows the mouse's movement. The cursor
mask determines which parts of the cursor image appear on the screen.
Usually, you will want the cursor mask to match the cursor image's
outline. Thus, the pixels in the cursor image that are not part of the cursor
shape will allow the existing pixels on the screen to show through.

In figure 5 .1 we see three cursors and their masks. The mask for the
left cursor covers the cursor and goes 1 pixel beyond the cursor in all
directions to create a cursor outline. When the cursor is over a white area
of the screen, it puts a black image of the arrow on the screen. When it is
over a black area of the screen, the combination of black mask pixels in the
cursor outline and white pixels in the same locations in the cursor
definition causes a white outline of the cursor to appear.

The mask for the middle cursor matches the black pixels in the
cursor. When the cursor is over a white area of the screen, it appears as a
black cross. When it is over a black area of the screen, it is not visible. It
is still turning screen pixels black, but since it is surrounded by black
pixels, you cannot see it.

The mask on the right cursor covers just the outside edges of the
cursor. The outside edges act like the cross in the middle cursor; they are

THE CURSOR 71

Cursor Cursor Cursor

Mosk Mnsk Mnsk

111111111111111111111111111111111 Figure 5.1 Three cursors and masks

visible as black against white but cannot be seen against a black back­
ground. The cross in the third cursor inverts the image on the screen. It
is always visible, no matter what the background.

Note the difference in the way the left and right cursors make
themselves visible against a black background. The left cursor produces a
I-pixel-wide white outline, leaving the rest of the cursor with its normal
appearance. The right cursor inverts the background to produce an image
of itself, not an outline. Figure 5.2 shows the three cursors against white,
black, and mixed backgrounds.

111111111111111111111111111111111 Figure 5.2 Three cursors on the screen

72 MORE TOOLS FOR THE MAGICIAN

The following table gives you a compact listing of the effects of the
cursor mask.

Cursor image Mask Screen Result

White 1 White White
Black 1 White Black
White 0 White White
Black 0 White Black
White 1 Black White
Black 1 Black Black
White 0 Black Black
Black 0 Black White

The cursor hot spot is the point on the cursor that corresponds to the
mouse location. If your cursor is a pointer of some kind, you will want the
hot spot to be at the tip of the pointer. The data structure that defines the
cursor is:

type
Cursor = record

data : array [O .. 15] of INTEGER;
mask: array [0 .. 15] of INTEGER;
hotspot : Point

end;

The data array defines the cursor image; the mask array defines its
mask. When we use the cursor data structure in our Macintosh Pascal
programs, we will not have to define it. It's another of those QuickDraw
data structures that is already defined in Macintosh Pascal.

You don't have to read the mouse position and draw the cursor on the
screen. In fact, you have no control over the cursor position. Macintosh
system routines read the mouse position periodically and set the cursor
position for you.

Before we examine a program that manipulates the cursor, let's take
a look at the QuickDraw routines that we will use.

procedure InitCursor;

Initialize the cursor. Set the cursor image to the arrow, and make
it visible.

THE CURSOR 73

procedure SetCursor(aCursor : cursor);

Set the cursor to the shape defined by the data structure
aCursor. Set the cursor's 16-by-16-pixel image, the mask, and
the hot spot.

procedure HideCursor;

Decrement the cursor level.

procedure ShowCursor;

Increment the cursor level.

procedure ObscureCursor;

Make the cursor invisible until the mouse button is pressed.

The cursor level is a number that QuickDraw uses to keep track of
calls to ShowCursor and HideCursor. When you initialize the cursor (with
InitCursor), QuickDraw sets the cursor level to zero. When you call
HideCursor, QuickDraw decrements the cursor level, and when you call
ShowCursor, it increments the cursor level. ShowCursor does not incre­
ment the cursor level beyond zero. As long as the cursor level is less than
zero, the cursor is invisible. If it is zero, the cursor is visible. This
technique allows you to have nested calls to HideCursor and ShowCursor.
If you call HideCursor five times in succession, the cursor will stay
invisible until you make five calls to ShowCursor.

We're going to use some of the cursor routines in a program to move
a cursor around on a grid and detect its position when the mouse button
is pressed. In listing 5.1, we have the beginnings of our program. It
initializes the drawing window, draws a grid, and creates a cursor. At the
end, it goes into an infinite loop (the repeat-until statement) so that we can
see our cursor and move it around. When you are ready to quit the
program, choose Halt from the Pause menu.

Before initializing the drawing window and drawing the grid, we set
the cursor data, mask, and hot spot. Our cursor is a 9-by-9-pixel rectangle
with cross hairs in the center. The mask corresponds only to the cross
hairs inside the rectangle (figure 5.3).

The result is that the cursor's rectangle causes underlying pixels in
the screen image to be inverted, but the cursor's cross hairs overlay
whatever is underneath. The cursor rectangle is the same size as the boxes
in the grid. When the cross hairs are exactly in the center of a grid box, the
cursor rectangle and grid box disappear (figure 5.4). The cross hairs,

74 MORE TOOLS FOR THE MAGICIAN

111111111111111111111111111111111 Listing 5 .1 Grid in Preliminary Form

program Grid;
(Listing 5.1}

var
CrossHairs : cursor;
i : INTEGER;
done : BOOLEAN;
GridRect Rect;

procedure InitGrid;
var

GridPat : Pattern;
i : INTEGER;

begin
GridPat[O) := 255;
for i := 1 to 7 do
GridPat [i) := 1;

SetRect (GridRect, 8, 8, 264, 264);
FillRect (GridRect, GridPat);
SetRect (GridRect, 7, 8, 264, 265);
FrameRect(GridRect);

end;

procedure InitDraw;
var

GraphRect : Re ct;
begin

SetRect (GraphRect, 40, 40, 330, 330);
SetDrawingRect(GraphRect);
ShowDrawing;

end;

begin
CrossHairs.data[4) := 8176;
CrossHairs.data[12J .- 8176;
for i := 5 to 11 do
begin
CrossHairs.data[i) := 4368;
CrossHairs.mask[i] .- 256;

end;
CrossHairs.data(8J := 8176;
CrossHairs.mask[8) := 4064;
CrossHairs.hotspot.v := 8;
CrossHairs.hotspot.h .- 8;
InitDraw;
InitGrid;
InitCursor;
SetCursor(CrossHairs);

(Do this forever}
repeat
until done = TRUE;

end.

THE CURSOR 75

Cursor Mask

111111111111111111111111111111111 Figure 5.3 A cursor and its mask

111111111111111111111111111111111 Figure 5.4 The cursor on the grid

however, stay visible. We end up with a cursor that makes it very easy to
position the mouse exactly in the center pixel of a small rectangle.

How did we figure out what numbers to use when we initialized the
cursor data structure? If you look at the 16-by-16-pixel matrix that defined
the cursor image and the one that defines the mask, you can see that each
row is 16 pixels wide. An integer is 16 bits. Each integer of the cursor
image's integer array corresponds to one row of pixels. The rows are
numbered from the top to the bottom, 0 to 15, corresponding to the index

76 MORE TOOLS FOR THE MAGICIAN

to locate integers in the array (0 to 15 also). To set pixels in the top row,
we set bits in the first integer in the array (index = 0).

We can now relate a row of pixels to an integer, but we need to figure
out how to set an individual pixel in a row. The pixels line up with bits in
the integer and take on the values of those bits. The rightmost pixel has a
value of 1, the next one to the left has a value of 2, the next 4, and so on
to the last, which has a value of 32,768 (figure 5.5).

To programmers, this should be a pretty familiar procedure. To set
several bits in a row, we add the bit values and set the integer for that row
to the resulting value.

Now that we can set the cursor, let's do something more interesting
with it. If we are going to do anything else with the cursor, our program
will need to read the mouse button state.

11111111111111111111111111111111 THE MOUSE

In normal Macintosh Pascal, we cannot get quite as sophisticated in the
way we handle mouse events as we can in other languages. Other lan­
guages allow you to specify a routine that executes automatically when
there is a mouse event (the mouse button goes down or comes up). The
only way to do that in Macintosh Pascal is to use the InLine facility to

11

16 by 16 PiHel
Cursor

_ 120
_256
- 512
- 1024
- 2048

4096
- 8192

16384
....__ _______ 32768

111111111111111111111111111111111 Figure 5.5 Pixel values

THE MOUSE 77

directly call the event manager routines in the Macintosh ROM. Besides
being somewhat cumbersome, that's dangerous in Macintosh Pascal. Us­
ing InLine turns off all type checking for your entire program. If you have
an assignment or range error, you get a system error message instead of a
warning from the Pascal interpreter. The only way to recover from those
system errors is to reboot the system.

Macintosh Pascal does have some predefined routines that let you
check the state of the mouse button. They don't work like an interrupt
handler, though. You must continually poll the mouse button state in a
program loop.

function Button: BOOLEAN;

The Button function returns the current state of the mouse
button: TRUE if the button is down, FALSE if it is up.

procedure GetMouse(var h, v : INTEGER);

GetMouse sets the variables to the coordinates of the cursor
hot spot. The coordinates are in the coordinate system of the
drawing window.

The first routine that we will use is the GetMouse procedure. In
listing 5.2, we have added a point variable and put a few statements in the
infinite loop to check the cursor position and see if it is inside the grid
rectangle. If the cursor is inside the grid rectangle, we set the cursor to the
cross-hair cursor that we created. If it is outside, we set the cursor to the
arrow.

We did not define the arrow cursor in our program. It's a predefined
data structure. The PtlnRect function tells us if the point we supplied, the
mouse point, is inside the rectangle we specified. Try this program, and
move the mouse around. You will see that when the cursor hot spot hits
the edge of the grid rectangle, the cursor changes shape.

Let's add one more modification to the program. This one will invert
a box in the grid if we click inside of it with the mouse. We add a section
of code to the infinite loop that tests the mouse button. If the button is
down inside the grid rectangle, we find out which box it is in and invert
the box. We also set a member of a Boolean array that corresponds to the
grid boxes.

At the end of the code that inverts the box in the grid, we wait for the
button to be released. If we did not, the next time we executed the infinite
loop, we would find the button still down and invert that same box again.
We use the Button function to see if the button is still down.

78 MORE TOOLS FOR THE MAGICIAN

111111111111111111111111111111111 Listing 5. 2 Grid Revised

program Grid;
{Listing 5.2}

var
CrossHairs : cursor;
i, h, v, hbox, vbox : INTEGER;
done : BOOLEAN;
GridRect, BoxRect, DisplayRect Rect;
MousePoint : point;

procedure InitGrid;
var

GridPat : Pattern;
i : INTEGER;

begin
GridPat[O] := 255;
for i := 1 to 7 do

GridPat[i] := 1;
SetRect(GridRect, 8, 8, 264, 264);
FillRect(GridRect, GridPat);
SetRect(GridRect, 7, 8, 264, 265);
FrameRect(GridRect);

and;

procedure InitDraw;
var

GraphRect : Rect;
begin

SetRect(GraphRect, 40, 40, 430, 330);
SetDrawingRect(GraphRect);
ShowDrawing;

end;

begin
CrossHairs.data[4] := 8176;
CrossHairs.data[12] := 8176;
for i := 5 to 11 do
begin

CrossHairs.data[i] := 4368;
CrossHairs.mask[i] := 256;

and;
CrossHairs.data[8] := 8176;

Continued

PICTURES, POLYGONS, AND REGIONS 79

111111111111111111111111111111111 Listing 5.2 Continued

CrossHairs.mask[8] := 4064;
CrossHairs.hotspot.v := 8;
CrossHairs.hotspot.h := 8;
InitDraw;
InitGrid;
InitCursor;
SetCursor(CrossHairs);

{Do this forever}
done := FALSE;
repeat
begin

GetMouse(MousePoint.h, MousePoint.v);
{if the mouse is outside the grid, set cursor to arrow}

if PtinRect(mousePoint, GridRect) then
SetCursor(CrossHairs)

else
SetCursor(arrow);

end;
until done = TRUE;

end.

One additional feature is the display rectangle in the upper right
portion of the expanded drawing window (figure 5.6). It shows an image
in which the pixels correspond to the boxes in our grid. If you count the
boxes in the grid, you will see that it is a 32-by-32 array-exactly the
dimensions of an icon. An icon is a special Macintosh graphics element
used by the Finder and application programs to represent files, application
programs, and so on. You see icons on the desk top and sometimes in
menus. Icons are so widely used in the Macintosh that it has special
routines to make it easy to deal with them. Since our program allows us to
set individual pixels in a 32-by-32-pixel array, it could be the basis for an
icon editor.

The final version of our program is shown in listing 5.3.

PICTURES1 POLYGONS1

11111111111111111111111111111111 AND REGIONS

QuickDraw pictures, polygons, and regions are very similar in the ways
that you create and use them. Each is a variable-sized data structure that
describes a graphic image or area of the screen. You don't need to worry

80 MORE TOOLS FOR THE MAGICIAN

0 Drawing

•• •• •• •• ••• • • • • •• •• •• •• •• •• •• •• •• •••
~ •• •• • • • • • • • • • • • • • • • •• ••• • • ••• •• • • • • •• •• • • • •• • • • • • •• • • •• •••

'2:J

111111111111111111111111111111111 Figure 5.6 A grid and a 32-by-32 image

about allocating a variable-sized memory area and tracking whether or not
you need to allocate additional memory; QuickDraw handles that for you.
You just define the data structure and then issue normal QuickDraw
drawing commands. QuickDraw works like a tape recorder, recording the
information from the drawing commands and putting that information in
a variable-sized data structure.

You reference each of these structures with a handle, but you use the
handle only to identify the data structure to QuickDraw. You never need
to directly reference one of these data structures. You use QuickDraw
routines for all of the manipulations that you must do to them.

A picture is a recording of QuickDraw drawing activity from the time
you open the picture until you close it. Instead of creating a bit image of
the drawing, QuickDraw records all of the calls you made to drawing
routines. By reading them back, it can recreate the image that you drew.
By recording the QuickDraw calls instead of the bit image, QuickDraw can
recreate the image on devices other than the Macintosh display. If you
send a QuickDraw picture to the printer, QuickDraw tailors the drawing
activities for the resolution of the printer instead of the Macintosh display.

QuickDraw pictures are used to transfer graphics from one program
to another via the clipboard and scrapbook. Some programs store graph­
ics data in files as QuickDraw pictures.

PICTURES, POLYGONS, AND REGIONS

111111111111111111111111111111111 Listing 5 .3 Grid

program Grid;
{Listing 5.3}

var
CrossHairs : cursor;
i, h, v, hbox, vbox : INTEGER;
done : BOOLEAN;
GridRect, BoxRect, DisplayRect : Rect;
MousePoint : point;
Box : array [0 .• 31, 0 .. 31) of BOOLEAN;

procedure InitGrid;
var

GridPat : Pattern;
i : INTEGER;

begin
GridPat [OJ := 255;
for i := 1 to 7 do
GridPat [i) := 1;

SetRect (GridRect, 8, 8, 264, 264);
FillRect(GridRect, GridPat);
SetRect (GridRect, 7, 8, 264, 265);
FrameRect(GridRect);
SetRect (DisplayRect, 319, 32, 353, 65);
FrameRect(DisplayRect);

end;

procedure DisplayBit (hbit, vbit
State : BOOLEAN) ;

begin

INTEGER;

81

MoveTo(DisplayRect.Left + hbit + 1, DisplayRect.top + vbit +
1) ;

if State then
PenPat(black)

else
PenPat(white);

LineTo(DisplayRect.left + hbit + 1, DisplayRect.top + vbit +
1);

end;

procedure InitDraw;
var

GraphRect : Rect;
begin

SetRect (GraphRect, 40, 40, 430, 330);
SetDrawingRect(GraphRect);
ShowDrawing;

end;

begin
CrossHairs.data[4) := 8176;
CrossHairs .data [12) := 8176;

Continued

82 MORE TOOLS FOR THE MAGICIAN

111111111111111111111111111111111 Listing 5. 3 Continued

for i := 5 to 11 do
begin
CrossHairs.data[i] := 4368;
CrossHairs.mask[i] := 256;

end;
CrossHairs.data[8] := 8176;
CrossHairs .mask [8] := 4064;
CrossHairs.hotspot.v .- 8;
CrossHairs.hotspot.h := 8;
InitDraw;
InitGrid;
InitCursor;
SetCursor(CrossHairs);

{Do this forever}
done : = FALSE;
repeat
begin

GetMouse(MousePoint.h, MousePoint.v);
{if the mouse is outside the grid, set cursor to arrow}

if PtinRect (mousePoint, GridRect) then
SetCursor(CrossHairs)

else
SetCursor(arrow);

end;
if Button then
if PtinRect (mousePoint, GridRect) then

{we got a mouse hit, invert a box}
begin

h := MousePoint .h - 8;
v : = MousePoint. v - 8;
hbox := h div 8;
vbox := v div 8;
Box [hbox, vbox] := not Box [hbox, vbox];
DisplayBit (hbox, vbox, Box [hbox, vbox]);
BoxRect.Left := (hbox * 8) + 9;
BoxRect. Right : = BoxRect. Left + 5;
BoxRect.Top := (vbox * 8) + 10;
BoxRect.Bottom := BoxRect.top + 5;
InvertRect(BoxRect);
repeat
until not Button

end;
until done = TRUE;

end.

Polygons are graphics elements (objects) that you use much the same
way you use a rectangle, rounded rectangle, or oval. A polygon is an object
made up of three or more line segments. You create a QuickDraw polygon
by drawing line segments while a polygon data structure is open. You can
do anything with the polygon that you can do with rectangles: fill, erase,
frame, and paint.

CREATING QUICKDRAW PICTURES 83

A region is an arbitrarily shaped area of the screen or other drawing
coordinate system. Regions are created the same way as polygons. The
difference is that a region can have any arbitrary structure. While a
polygon is composed of line segments, a region may be defined by line
segments or curves of any shape. The only restriction is that the lines and
curves that define the borders of a region must create a closed region. A
region can even consist of two or more discontiguous areas.

You can define pictures, polygons, and regions without drawing
them on the screen. You need to make the calls to QuickDraw drawing
routines, but the image can be created in an off-screen buffer and not
displayed. That way, your program can define the pictures, polygons, or
regions that it wants to use and then reference them later the same way it
references the other common QuickDraw objects.

CREATING QUICKDRAW
11111111111111111111111111111111 PICTURES

QuickDraw has an internal data structure for storing pictures, but you
don't have to know anything about it. In your programs, you will use a
handle to the picture data structure to identify it to QuickDraw. To start
recording a picture, you call the function OpenPicture. You pass Open­
Picture a rectangle that defines the limits of the drawing area for the
picture. OpenPicture allocates the space for the picture data structure,
returns a handle to it, and starts the process of recording calls to Quick­
Draw drawing routines. OpenPicture hides the pen, so if you want the
picture to appear on the screen as you record it, you will need to call
ShowPen after calling OpenPicture.

After you call OpenPicture, QuickDraw will record picture informa­
tion in the picture data structure until you call ClosePicture. ClosePicture
closes the picture data structure and makes it available for displaying the
recorded picture. It also calls ShowPen because OpenPicture hid the pen.

Every call to OpenPicture should be followed by a single call to
ClosePicture. You cannot have more than one picture open, nor can
you close a picture twice. Since only one picture can be open at any
given time, you do not need to identify the picture to ClosePicture. It
requires no parameters. QuickDraw already knows which picture you
opened. After all, it allocated the picture data structure and gave you the
handle to it.

After recording the picture, you can draw it by calling DrawPicture.
You pass the DrawPicture procedure a handle to identify the picture and
a rectangle that defines where you want the picture drawn. DrawPicture
will scale the picture to make it fit exactly inside the rectangle.

84 MORE TOOLS FOR THE MAGICIAN

When you have finished using a picture, you should call KillPicture to
deallocate the data structure and free its memory for other uses.

function OpenPicture(picFrame : Rect) : picHandle;

Allocate a picture data structure, start recording the picture, and
hide the pen.

procedure ClosePicture;

Stop recording the picture, and show the pen.

procedure DrawPicture(aPicture : picHandle; destination: Rect);

Draw the picture previously recorded in the picture data
structure identified by picHandle. Draw the picture in the
destination rectangle, and scale it to fit the rectangle.

procedure KillPicture(aPicture : picHandle);

Deallocate the picture data structure identified by picHandle.

Our picture demonstration program (listing 5.4) draws and records a
picture (figure 5.7) and then waits for you to press the mouse button. The
program erases the old copy of the picture from the screen and redraws it
at the mouse location. It redraws the picture from the picture data
structure instead of repeating the calls to the QuickDraw drawing routines
that drew it the first time.

If you run the program, you will see that the process of drawing a
recorded picture is very fast. Try moving the mouse around and pressing
the button.

The program uses the picture-recording and picture-drawing rou­
tines just the way we described. Before it does anything else, it initializes
the drawing window and draws a frame around the area where it will draw
the picture. The program opens the picture and puts the handle to it in a
variable called Snapshot. The routine that draws the picture (Drawlt) calls
ShowPen so that we can see the picture drawn on the screen as it is being
recorded in the picture data structure. After drawing the picture, the
program calls ClosePicture and enters an infinite loop, waiting for you to
press the mouse button.

When the program detects that the mouse button is being pressed, it
checks to see if the cursor is inside the drawing window. If it is, the
program erases the old image of the picture, sets the destination rectangle

CREATING QUICKDRAW PICTURES 85

111111111111111111111111111111111 Listing 5 .4 Pictures

program Pictures;
{Listing 5. 4}

uses
QuickDraw2;

var
Snapshot : PicHandle;
GraphRect, PicFrame, aRect : Rect;
h, v, height, width, FrameWidth, FrameHeight
done : BOOLEAN;
b : point;

procedure InitDraw;
begin

SetRect (GraphRect, 10, 40, 500, 335);
SetDrawingRect(GraphRect);
ShowDrawing;

{convert to drawing window coordinates}
OffsetRect(GraphRect, -10, -40);

end;

procedure Drawit;
begin

ShowPen;
Moveto (20, 20);
TextFont(2);
TextFace([bold]);
Drawstring ('Some Graphics for a Picture');
height := 30;
width := 30;
h := 75;
v := 65;
SetRect(aRect, h, v, h +width, v +height);
FillRect (arect, ltGray);
h := h + width + 10;
SetRect(aRect, h, v, h +width, v +height);
FillRect(aRect, dkGray);
h := 60;
v := 30;
height := 100;
width := 100;
SetRect(aRect, h, v, h +width, v +height);
FrameOval(aRect);

end;

procedure Frameit;
begin

FrameWidth := 220;
FrameHeight := 130;

INTEGER;

SetRect(PicFrame, 10, 5, 10 + FrameWidth, 5 + FrameHeight);
framerect(PicFrame);

end;

Continued

86 MORE TOOLS FOR THE MAGICIAN

111111111111111111111111111111111 Listing 5.4 Continued

begin
InitDraw;
Frame It;
Snapshot := OpenPicture (PicFrame);
Drawit;
ClosePicture ;
done := false;
repeat
repeat
until button;
GetMouse (b. h, b. v) ;

{mouse in the drawing window ?)
if PtinRect (b, GraphRect) then
begin

EraseRect(PicFrame);
SetRect(PicFrame, b.h, b.v, b.h + FrameWidth, b.v +

FrameHeight);
DrawPicture (Snapshot, PicFrame);

end;
repeat
until not button;

until done
end.

Drawing

Some Graphics for a Picture

111111111111111111111111111111111 Figure 5. 7 The result of the Pictures program

QUICKDRAW POLYGONS 87

for the new image, and draws the picture in the destination rectangle. In
this version, the destination rectangle is the same size as the original
picture rectangle (PicFrame). The program waits for you to release the
mouse button before testing again to see if it has been pressed.

The program stays in an infinite loop, so there is no way for it to stop
itself. When you are ready to exit the program, stop it by choosing Halt
from the Pause menu.

Looking at the beginning of listing 5.4, we see something new, the
statement:

uses QuickDraw2

That statement causes the interpreter to load the QuickDraw2 library.
The library contains the definitions of all of the data structures and
routines in QuickDraw for doing pictures, polygons, and regions as well as
more advanced QuickDraw routines. The routines and data structures that
we have used up until now are all in the QuickDrawl library. You don't
need the uses statement for the QuickDraw 1 library because Macintosh
Pascal automatically loads it.

I would also like to demonstrate the scaling that DrawPicture can do
when it draws the picture in the destination rectangle. In the next version
of the program (listing 5.5), we add two lines at the end of the infinite loop
to make the destination rectangle a little wider and shorter each time we
redraw the picture.

All we had to do to get DrawPicture to scale the picture was to specify
the size and location of the rectangle that we wanted it drawn in. We didn't
need to figure out any scale factors or do any coordinate conversion.
DrawPicture did all of that for us.

If you move the mouse around and press the button several times,
you will see the picture grow short and wide (figure 5.8).

11111111111111111111111111111111 QUICKDRAW POLYGONS

A picture contains an image that we draw with QuickDraw drawing
routines. A polygon is one of the objects that we draw with QuickDraw
routines, and we create it the same way we create a picture. You can use
it any time you want to create a specially shaped polygon for your own
application. For example, if you are defining specially shaped objects for
a CAD program, polygons would be just the thing to use.

A polygon is made up of line segments drawn with the LineTo
procedure. Like the picture, a polygon occupies a variable-sized data
structure that is maintained for us by QuickDraw. To create a polygon, you

88 MORE TOOLS FOR THE MAGICIAN

111111111111111111111111111111111 Listing 5.5 Pictures with Scaling

{listing 5.5}
{Pictures with Scaling}
repeat
repeat
until button;
GetMouse (h, v) ;
EraseRect(PicFrame);
SetRect(PicFrame, h, v, h + FrameWidth, v + FrameHeight);
DrawPicture(SnapShot, PicFrame);
repeat
until not button;
repeat
repeat
until button;
GetMouse (b.h, b.v);
if PtinRect (b, GraphRect) then
begin

EraseRect(PicFrame);
SetRect(PicFrame, b.h, b.v, b.h + FrameWidth, b.v +

FrameHeight);
DrawPicture(SnapShot, PicFrame);

end;
repeat
until not button;
FrameWidth := FrameWidth + 4;
FrameHeight .- FrameHeight - 4;

until done

open the polygon data structure and call the LineTo procedure to draw
each side. QuickDraw records the calls to LineTo in the polygon data
structure. When you have finished drawing the polygon, you call Close­
Poly to close the data structure and make it available for use with the
polygon routines.

Like the data structure of a picture, a polygon's data structure is
internal to QuickDraw. You identify it to QuickDraw with a handle but
never access it directly.

function OpenPoly : polyHandle;

OpenPoly allocates the polygon data structure and starts
recording calls to LineTo to define the polygon. OpenPoly hides
the pen.

procedure ClosePoly;

ClosePoly closes the polygon data structure and makes it
available for use by other QuickDraw procedures. ClosePoly
shows the pen.

QUICKDRAW POLYGONS 89

D Drawing

Som~ Graphics 'Lor a Pl.ctur~

111111111111111111111111111111111 Figure 5.8 A scaled picture

procedure KillPoly(aPolygon : polyHandle);

KillPoly deallocates the polygon data structure.

procedure OffsetPoly(aPolygon : polyHandle, deltaH, deltaV:
INTEGER);

OffsetPoly recalculates the locations of the sides of the polygon,
moving it horizontally by deltaH and vertically by deltaV.

OpenPoly hides the pen, and ClosePoly shows the pen. If you want
to display the polygon as you draw it, you must call ShowPen after calling
OpenPoly. You can have only one polygon open at a time. Each call to
OpenPoly must be balanced by one call to ClosePoly.

The OffsetPoly procedure works like the OffsetRect procedure. You
specify a polygon and the distance you want to move it. OffsetPoly doesn't
redraw the polygon; it just recalculates its position so that it will appear at
the new position the next time you draw it .

Once you have created a polygon, you can use it the same way you
would use a rectangle, oval, or rounded rectangle. QuickDraw has rou­
tines to frame a polygon, fill it, paint it , erase it, or invert it.

90 MORE TOOLS FOR THE MAGICIAN

procedure FramePoly(aPolygon : polyHandle);

FramePoly draws the outside edges of the polygon, using the
current pen size, pattern, and mode.

procedure PaintPoly(aPolygon : polyHandle);

PaintPoly draws the current pen pattern in the interior of
the polygon, using the current pen mode. It does not draw
the frame.

procedure ErasePoly(aPolygon : polyHandle);

ErasePoly draws the current background pattern in the
polygon interior, in effect erasing it.

procedure InvertPoly(aPolygon : polyHandle);

InvertPoly inverts all of the pixels inside the polygon, setting
formerly black pixels white and formerly white pixels black.

procedure FillPoly(aPolygon: polyHandle; pat : pattern);

FillPoly fills the interior of the polygon with the specified
pattern. The pattern overlays the pixels in the polygon (COPY
mode) and ignores the current pen mode and pattern.

That's quite a collection of routines. Let's see how to use some of
them. In our example, we will let the user draw a polygon with the mouse.
The program (listing 5 .6) will then let the user select any location on the
screen and redraw the polygon there. To do the redrawing, the program
doesn't draw every edge; it just calls one of the polygon-drawing routines.

The user first clicks the mouse at the point where he or she wants to
start the polygon and releases the button. The program leaves a dot at the
starting location. The user then clicks the mouse at the point where he or
she wants the first line to end, and the routine draws the first edge of the
polygon. Then the user clicks at the end point for the next edge, and the
program draws that edge. This process continues until the user clicks
the mouse at the starting point, closing the polygon. Not everyone
can locate the cursor exactly on a specific pixel, so the program assumes
that the polygon is closed if the cursor is clicked within 2 pixels of the
starting point.

While the user is creating the polygon (figure 5.9), the program just
draws lines 1 pixel wide for the edges. When it draws the completed

QUICKDRAW POLYGONS

111111111111111111111111111111111 Listing 5.6 Polygon

program Polygon;
{Listing 5. 6}

uses
QuickDraw2;

var
Poly : PolyHandle;
GraphRect : Rect;
done : BOOLEAN;
origin, ButtonPt : point;

procedure InitDraw;
begin

SetRect (GraphRect, 10, 40, 500, 335);
SetDrawingRect(GraphRect);
ShowDrawing;

{convert to drawing window coordinates}
OffsetRect(GraphRect, -10, -40);

end;

procedure MakePoly (var StartPt
var

Mouse : Point;
StartRect : Rect;
DrawDone : BOOLEAN;

begin
ShowPen;
repeat
until Button;
GetMouse(StartPt.h, StartPt.v);

point);

91

SetRect (St art Re ct, Start Pt. h - 2, Start Pt. v - 2, StartPt. h +
2, StartPt.v + 2);

MoveTo(StartPt.h, StartPt.v);
Line To (StartPt .h, Start Pt. v) ;
DrawDone : = FALSE;
repeat
until not Button;
repeat
repeat
until Button;
GetMouse(Mouse.h, Mouse.v);
if PtinRect (Mouse, StartRect) then
begin

DrawDone : = TRUE;
Mouse := StartPt;

end;
LineTo(Mouse.h, Mouse.v);
repeat
until not Button;

until DrawDone;
end;

Continued

92 MORE TOOLS FOR THE MAGICIAN

111111111111111111111111111111111 Listing 5.6 Continued

procedure DrawPoly (polyH, polyV INTEGER) ;
begin

OffSetPoly(poly, polyH, polyV);
FillPoly (Poly, Gray);
PenSize(3, 3);
FramePoly(Poly);

end;

begin
InitDraw;
Poly := OpenPoly;
MakePoly(origin);
ClosePoly;
DrawPoly(O, 0);
done := false;
repeat
repeat
until button;
GetMouse(ButtonPt.h, ButtonPt.v);

{mouse in drawing window?}
if PtinRect (ButtonPt, GraphRect) then
begin

ErasePoly(Poly);
PenPat(white);
FramePoly(Poly);
PenPat(black);
DrawPoly(ButtonPt.h - origin.h, ButtonPt.v - origin.v);
origin.h := ButtonPt.h;
origin.v := ButtonPt.v;

end;
repeat
until not button;

until done
end.

polygon, the program fills it with a pattern and frames it with a wide
border like the one in figure 5.10.

In the main part of the program, we initialize the drawing window,
open the polygon, and call the routine that allows the user to draw the
polygon with the mouse. The program then closes the polygon data
structure, draws the completed polygon, and enters an infinite loop,
waiting for the user to click the mouse again.

The next time the user clicks the mouse, the program checks to see
if the mouse is in the drawing window. If the mouse is in the window, the
program erases the existing image of the polygon and draws it again at the
mouse location.

QUICKDRAW POLYGONS 93

Drawing

111111111111111111111111111111111 Figure 5.9 A polygon being created

Drawing

111111111111111111111111111111111 Figure 5 .10 A framed and filled polygon

94 MORE TOOLS FOR THE MAGICIAN

The Draw Poly routine uses OffsetPoly to position the polygon at the
chosen spot before drawing it. The caller keeps track of the old location
of the polygon and the new location that the user has selected, and
computes the offset. It passes the offset to DrawPoly. The first time the
main program calls DrawPoly, it passes an offset of zero to make DrawPoly
put the polygon at the point where the user created it.

MakePoly is the procedure that uses the user's mouse movements to
create the polygon. The first time the user clicks the mouse, MakePoly
records the starting point and creates a 4-by-4 rectangle (StartRect) around
it. MakePoly checks StartRect each time the user clicks the mouse to see
if the mouse point is within 2 pixels of the starting point. If the mouse
point is within StartRect, the routine draws a line from the last point
clicked to the starting point, completing the rectangle. It then sets the
done flag, allowing the program to exit the MakePoly procedure.

llllllllllllllllllllllllllllllll USING REGIONS

A region is an arbitrary closed shape. It can be an object that you want to
draw or just a definition of an area of the screen. A region can be any shape
or a collection of shapes. It can even have a hole in the middle that is not
part of the region.

The window manager uses regions to keep track of what portions of
a window need to be updated. QuickDraw and the window manager
together use a region to define what portion of a window is visible.

Most of the Macintosh ROM routines use rectangles extensively, so
QuickDraw provides a lot of routines for doing calculations with rectan­
gles. Regions are not used as often as rectangles, but they are important for
defining nonrectangular shapes. Those same ROM routines need to do
many calculations with regions. For most of the rectangle calculation
routines, QuickDraw has equivalent routines for doing calculations with
regions. There are routines to find out if a point is in a region, detect
region intersections, join regions, offset regions, inset regions, and so on.

In addition to the region calculation routines, Quick.Draw has the
usual set of drawing routines for regions: Frame, Fill, Paint, Erase, and
Invert.

A region is defined in a variable-sized data structure. You create a
region by allocating the region, opening the data structure, calling Quick­
Draw drawing routines, and closing the data structure. QuickDraw
records the actions of the drawing routines and adds the areas that they
draw to the region definition. You can have only one region open at a time.

USING REGIONS 95

Unlike OpenPoly and OpenPicture, which allocate memory for their
own data structures, OpenRegion does not allocate any memory. You must
call NewRegion to allocate the space for the variable-sized data structure
before you call OpenRegion. If you try to use a region that has not been
allocated, the program will take a wild branch. The results of this crashing,
bombing, going into the ozone, running off into the weeds, or whatever
you choose to call it range from entertaining (strange things appear on the
display) to tragic (the system takes a wild branch into the disk driver code
and eats the directory on your last working copy of Macintosh Pascal). So
be careful, and call NewRegion for each region you define.

The routines listed below are just a sample of the region calculation
routines. You can find full definitions of all of the region procedures and
functions in the QuickDraw section of Inside Macintosh or the Macintosh
Pascal Technical Appendix.

function NewRgn : RgnHandle;

NewRgn allocates the data structure in which a region
definition will be stored and returns a handle to the region
data structure. You must call NewRgn to allocate a region
before using the region.

procedure OpenRgn;

OpenRgn tells QuickDraw to start recording a region definition.
The areas of the coordinate system that are affected by
subsequent calls to QuickDraw drawing routines are added to
the region. OpenRgn allocates a temporary space to record the
region definition. CloseRgn assigns the region definition to a
region allocated by NewRgn.

procedure CloseRgn(aRegion: RgnHandle);

CloseRgn stops the region-recording process and puts the region
definition in the region identified by aRegion, a handle to a
region defined by NewRgn.

procedure OffsetRgn(aRegion : RgnHandle; deltaH, deltaV :
INTEGER);

OffsetRgn recalculates the position of a region, moving it by an
amount specified by deltaH and deltaV.

96 MORE TOOLS FOR THE MAGICIAN

procedure DisposeRgn(aRegion: RgnHandle);

DisposeRgn releases the memory allocated to a region's data
structure. DisposeRgn destroys a region definition. Do not
reference a region that has been disposed.

function EmptyRgn(aRegion: RgnHandle): BOOLEAN;

EmptyRgn checks the region identified by the region handle
aRegion. It returns TRUE if the region is empty, that is, if the
region has not been recorded or consists of merely a point or
a line.

Our region program (listing 5. 7) is very similar to the polygon
program. It allows you to draw the outline of a region with the mouse and
then move the region to different locations by clicking the mouse in the
drawing window. A region has an arbitrary shape, so we don't use straight
lines to draw its outline. The region outline starts at the point where you
press the mouse button. You hold the button down and move the mouse
to draw the region's shape. When you release the mouse button, the
program draws a line from the point where you released the button to the
starting point.

Like the polygon program, the region program redraws the shape that
you drew with the mouse, using a wide border and filling it with a pattern
(figure 5.11).

The main part of the program is very similar to the polygon program.
It first allocates memory for a region data structure, opens the data
structure, starts recording, calls a procedure to let the user draw the region
outline, redraws the region, and enters the infinite loop. In the infinite
loop, the program waits for you to press the mouse button; then it erases
the old drawing of the region and redraws it at the mouse location.

The routine that allows the user to draw the outline of the region is
MakeRgn. It's much simpler than the equivalent routine in the polygon
program. It just waits for the first mouse button press and then follows the
mouse motion, drawing as it goes, until the button is released. When it
detects that the button has been released, MakeRgn draws a line to the
starting point. MakeRgn returns the starting point to the caller. The main
part of the program uses the starting point to calculate the offset to the
new location when redrawing the region.

The DrawRgn routine uses OffsetRgn to recalculate the region's
location. Like OffsetPoly, it needs to be passed the handle to the data
structure (aRegion) and the amount to move the region (the offset).

111111111111111111111111111111111 Listing 5. 7 Region

program Region;
{Listing 5. 7}

uses
QuickDraw2;

var
aRegion : RgnHandle;
GraphRect : Rect;
done : BOOLEAN;
origin, ButtonPt : point;

procedure InitDraw;
begin

USING REGIONS

SetRect(GraphRect, 20, 40, 500, 335);
SetDrawingRect(GraphRect);
ShowDrawing;

97

{convert to drawing window coo rd so we can check if mouse in
window}

OffSetRect(GraphRect, -20, -40);
end;

procedure MakeRgn (var StartPt
var

Mouse : Point;
begin

ShowPen;
repeat
until Button;
GetMouse (StartPt. h, Start Pt. v) ;
Move To (StartPt. h, Start Pt. v) ;
Line To (StartPt. h, Start Pt. v) ;
repeat

GetMouse(Mouse.h, Mouse.v);
LineTo(Mouse.h, Mouse.v);

until not Button;
Line To (StartPt. h, Start Pt. v) ;

end;

point);

procedure DrawRgn (RgnH, RgnV : INTEGER) ;
begin

OffSetRgn (aRegion, RgnH, RgnV);
FillRgn (aRegion, Gray);
PenSize (3, 3);
PenPat(Black);
FrameRgn(aRegion);

end;

begin
InitDraw;

{allocate region)
aRegion : = NewRgn;

{create a Region shape}

Continued

98 MORE TOOLS FOR THE MAGICIAN

111111111111111111111111111111111 Listing 5. 7 Continued

OpenRgn ;
MakeRgn(origin);
CloseRgn(aRegion);

{now erase the lines that created the region)
EraseRect(GraphRect);

{draw the region)
DrawRgn(O, 0);

{do an infinite loop}
done : = false;
repeat
repeat
until button;
GetMouse (ButtonPt .h , ButtonPt .v);
if PtlnRect (ButtonPt, GraphRect) then
begin

EraseRgn(aRegion);
DrawRgn(ButtonPt.h - origin.h, ButtonPt .v - origin.v);
origin.h := ButtonPt.h;
origin.v := ButtonPt.v;

end;
repeat
until not button;

until done
end.

~D

111111111111111111111111111111111 Figure 5.11 A region

Drowing

USING REGIONS 99

As you try the program, note how fast it redraws the region compared
to the redrawing speed of the polygon program. Also try some strange
region shapes. Try a figure eight. It works!

As it stands, the program has a bug. More correctly, it has at least one
bug. If you draw a region that is one point or just one line, the program
accepts that region definition but cannot really draw it because it isn't
really a region. In listing 5 .8, you can see the fix for that bug.

We put the section of the main program that creates the region and
calls MakeRgn in a loop. It repeatedly creates a region and tests it with the
EmptyRgn function until it has created one that is not empty.

111111111111111111111111111111111 Listing 5.8 Region Revised

(listing 5.8}
(revised region}
begin

InitDraw;
(allocate region}
aRegion : = NewRgn;

{create a Region shape}
repeat
EraseRect(GraphRect);
OpenRgn;
MakeRgn(origin);
CloseRgn(aRegion);

until not EmptyRgn (aRegion);
(now erase the lines that created the region}
EraseRect(GraphRect);

(draw the region}
DrawRgn(O, 0);

111

CHAPTER

6 QUICKDRAW
COORDINATES AND
DATA STRUC I URES

Coordinates and Data Structures

QuickDraw Coordinates

Pixels and Memory

The Graph Port

More on Coordinates

Translation and Scaling

111

101

102 QUICK.DRAW COORDINATES AND DATA STRUCTURES

COORDINATES AND DATA
11111111111111111111111111111111 STRUCTURES

The QuickDraw coordinate systems have very rigorous mathematical
definitions. For a mathematician, they are, no doubt, a thing of beauty. For
us, they have a more practical use. We need to be able to draw and relate
objects in various coordinate systems. As long as we are using just Macin­
tosh Pascal for our drawing programs, we can get by with a minimal
knowledge of QuickDraw coordinates and data structures. If you want to
use other compilers and languages, you will need a sound knowledge of
QuickDraw coordinates and data structures.

11111111111111111111111111111111 QUICKDRAW COORDINATES

The various coordinate systems that QuickDraw uses and the way they are
mapped to memory areas can be confusing. If you read the QuickDraw
manual several times and let things simmer between readings, you will
eventually figure it out. In this chapter I'll present some examples and, I
hope, make it easier.

Why do we need different coordinate systems, and how are they
different? We don't really need different coordinate systems, but it's very
convenient to have them. Sometimes it is easier to do certain calculations
on the objects (scaling and rotation) if we move the coordinate system.
Also, it's convenient for each window to have its own coordinate system
separate and distinct from the Macintosh screen. A graphics document
(file) might also have its own coordinate system. The only real difference
among these coordinate systems is in the locations of the origins. You will
find that most windows have the origin of the coordinate system in the
upper left corner, but this is not a requirement. The origin for a window's
coordinate system can be anywhere, at any convenient location.

Up until now, we haven't needed to deal with coordinate systems in
our drawing programs. In almost every program, though, we used two
coordinate systems. Each of our programs had a procedure called
InitDraw that sets the size of the drawing window and brings it to the front
of the stack of windows on the screen. The listing below shows the
InitDraw procedure from listing 5.7, the program that works with Quick­
Draw regions.

procedure InitDraw;
begin

SetRect(GraphRect, 20, 40, 500, 335);

QUICKDRAW COORDINATES 103

SetDrawingRect(GraphRect);
Show Drawing;
OffsetRect(GraphRect, -20, -40);

end;

The first thing that we did in that procedure was put some numbers
in a rectangle data structure. The numbers that we used for the rectangle's
coordinates are in the coordinate system of the desk top (the coordinate
system for the entire screen). The origin of that coordinate system is at the
upper left corner of the screen. We used the coordinates of that rectangle
as the coordinates of the drawing window when we used SetDrawingRect
to set that rectangle's size and location. The ShowDrawing procedure
makes the drawing window visible and brings it to the front of the stack
of windows on the screen; it becomes the frontmost window, overlaying
all of the others.

The last thing we did in the InitDrawing procedure was to offset
GraphRect. We wanted to use it to check the limits of drawing in the
drawing window. It had the right size, but the coordinates of its corners
were in the coordinate system of the screen, not the coordinate system of
the window.

The drawing window has its own coordinate system. The origin is the
upper left corner of the window. When our program draws in the drawing
window, it uses the coordinate system of the window, not the screen
coordinate system. If we want to be able to use the GraphRect rectangle
to find the edges of the window, we need to convert it to the coordinate
system of the window. That's what the OffsetRect procedure did.

This is only one example of different coordinate systems used in
QuickDraw and drawing programs. If we are drawing in several windows,
each will have its own coordinate system. If we want to move an object
from one window to another, we must convert its coordinates to coordi­
nates in the destination window's coordinate system.

In addition to the coordinate systems of the screen and windows, our
program may be creating a document larger than any of our windows or
even larger than the Macintosh screen. For instance, MacPaint documents
are 81/2 by 11 inches, but only a portion of that can be displayed on the
screen. A program that works with large documents stores the descrip­
tions of objects in the coordinate system of the document.

Let's take a look at the example in figure 6.1. The program draws
objects much as a CAD system does. It is used to create flowcharts and
other diagrams. Before we go any further with this example, let me use it
to define some terms that I will be using in this chapter. An object is a
single entity that is drawn on the screen on the basis of data in the
document file. Examples of objects are points, lines, rectangles, ovals, and

104 QUICKDRAW COORDINATES AND DATA STRUCTURES

~D Window t Window 2

Ports of the Document Disployed in Windows

The Document

111111111111111111111111111111111 Figure 6.1 A document and two windows

round rectangles. The term document refers to a complete drawing of all
of the objects described in the file. When we draw the objects on the
screen, we create an image of part of the document.

The document that we are working with is much larger than the
screen and is stored in a file. The document has its own coordinate system,
with the origin in the upper left corner of the document. There's nothing
magic about the location of the origin; it could have been in the middle of
the document, anywhere else in the document, or even outside of the
document. It can be anywhere as long as we have some way to relate the
coordinates of a point to their place in the document.

QUICKDRAW COORDINATES 105

Moving the origin changes the coordinates of every point in the
document. The relative positions of various parts of the document are not
changed.

In this example, the program draws images in two windows that can
be scrolled. The areas of the document shown in the two windows in
figure 6.1 are overlapped. A line leaving the central decision box (the
central diamond shape) and the box itself appear in both windows. The
coordinates are listed on the diagram for the starting point of the line in
each of the coordinate systems: the document coordinate system, the
window 1 coordinate system, and the window 2 coordinate system. Each
time we draw that line, we convert the line's coordinates from the
document coordinate system to the coordinate system of the window in
which we are drawing it.

We use the coordinates in the window coordinate system in the
parameters that we pass to the QuickDraw drawing procedures. Quick­
Draw converts the coordinates from the window's coordinate system to
the coordinate system of the screen. QuickDraw then relates the screen
coordinates to the memory addresses for the memory bits that correspond
to the pixels that will be changed on the screen.

When we draw on another device-the ImageWriter, for instance­
QuickDraw draws in a memory buffer instead of on the screen. It is then
up to the software that operates that device to convert the image in the
buffer to drawing commands for the device. If we had been drawing on the
ImageWriter instead of the screen, QuickDraw would have related the
coordinates' drawing procedure parameters to the memory addresses of
the bits in the print buffer.

Let's review what we know about QuickDraw coordinate systems and
coordinate transformations.

QuickDraw uses a Cartesian coordinate system. The lines of the
coordinate system pass between pixels. A coordinate system point exists
where two coordinate system lines intersect. Each point in the coordinate
system has a horizontal coordinate and a vertical coordinate. Each co­
ordinate is stored in an integer and can have a value between -32,767
and +32,767. A coordinate system point addresses the pixel to its lower
right.

QuickDraw can draw images on the screen or in a memory buffer that
can be used for storing the image in a file or printing on the ImageWriter.
In order to draw images, QuickDraw must also relate coordinates to the
memory locations of the screen or a memory buffer where the drawing
takes place. QuickDraw has the ability to deal with different coordinate
systems, convert from one coordinate system to another, and relate the
various coordinate systems to memory locations.

Reasons for converting to different coordinate systems are that:

108 QUICK.DRAW COORDINATES AND DATA STRUCTURES

1 A document, a window, and the screen each have their own
coordinate system. We must convert from one to another in order
to draw an image.

2 Some calculations are easier if we can put the origin of the
coordinate system where we want it. Scaling calculations are easier
if the origin is at the center of the object we are scaling. Rotation
calculations are easier if the origin of the coordinate system is at
the center point for the rotation.

Several coordinate system transformations are necessary to draw
parts of a document:

1 The application program reads a description of the image from the
document's file and converts from document coordinates to
coordinates in the coordinate system of the window.

2 The program calls QuickDraw drawing procedures, passing them
coordinates in the coordinate system of the window.

3 QuickDraw converts from coordinates in the window's coordinate
system to coordinates in the screen's coordinate system.

4 QuickDraw relates the pixels in the screen's coordinate system
to the memory addresses of the corresponding bits in the
display memory.

We used the flowchart application and its coordinate trans~ormations
to illustrate coordinate transformations between windows and between a
document and a window. It made a good example, but it is possible to
simplify the process. If we set the window coordinate system origins
properly, we don't need to convert from the document coordinate system
to the window coordinate system. We'll see how to do that later in this
chapter when we take a look at QuickOraw's SetOrigin procedure.

11111111111111111111111111111111 PIXELS AND MEMORY

If we are going to draw an image on the screen, we need to relate points
in the coordinate system to pixels on the screen and the memory address
of the memory bit assigned to each pixel. The QuickDraw construct that
does that is the bit image. Display memory bits correspond to pixels and
are arranged in bytes. If you start at the left corner of the screen and look
at the row of pixels across the top of the screen, grouping these pixels into
groups of 8, you will find that these groups correspond to bytes in the
display memory (figure 6.2). Also, each pixel in a group of 8 corresponds

PIXELS AND MEMORY 107

~:~~~,'~rt, rt 0

1·i·l·l·l·l·l·l·1·i·l·l·l·l·l·l·1·i·l·l·l·l·l·l·1·i·l·l·i·l·l·l·1·!·!·!·!·!·i·l·1·i·I·~
Byte O Byte 1 Byte 2 Byte 3 Byte 4

111111111111111111111111111111111 Figure 6.2 Display memory bits

to a bit in the same relative position in a byte of display memory. The
leftmost pixel on the screen corresponds to the high-order bit in the first
byte of the display memory (see figure 6.2).

Technically, the bit image is defined to be a set of bytes in memory
that correspond to pixels on the screen. It is a set of bytes in display
memory that corresponds to rows of 8-pixel groups on the display. The
number of bytes (or 8-pixel groups) in one row is called the row width.
The Macintosh screen is 512 pixels wide, so its row width is 64.

A set of pixels is on the screen; a bit image is in memory. A bit map
makes the connection between the two. A bit map is a data structure that
relates an area of memory defined by a bit image to an area of the screen.
It defines a QuickDraw coordinate system for the bit image. Let's see
what's in that data structure.

type
BitMap = record

baseAddr: QDPtr;
rowBytes: integer;
bounds: Rect;

end;

The first field in the data structure, baseAddr, is the memory address
of the bit image (a pointer to the first byte of the bit image). The next field,
rowBytes, is the row width of the bit image. The last field, bounds, is a
rectangle that defines the outside edges of the bit image and defines its
coordinate system. The bit image is an integral number of bytes, but the
bit map rectangle may limit the bit map to a smaller area. The bit map is
not restricted to an integral number of bytes, but it must fall inside the bit
image.

By defining a QuickDraw coordinate system for a bit image, the bit
map has established the relationship between memory bytes and Quick­
Draw coordinates. A bit map relates a memory area to a QuickDraw
coordinate system. It could be a memory area that is used to store an image
created by QuickDraw. That image could later be printed on the printer or
some other device or moved to the screen. The memory area that the bit

108 QUICKDRAW COORDINATES AND DATA STRUCTURES

map defines could be the display memory in the Macintosh. If it is,
everything that QuickDraw draws in that bit map appears on the screen.

When you call a QuickDraw drawing procedure, it uses the coordi­
nates that you give it, looks in the bit map for the drawing area to find the
right place in memory to do the drawing, and turns bits on and off in the
bit image in memory.

QuickDraw now has a lot of information to keep track of when it is
drawing an image: the bit image, the bit map, the origin of the coordinate
system, and the relationship between the local coordinate system of the
window in which it is drawing and the screen coordinate system. That's
only part of the data that QuickDraw must manage when drawing. Quick­
Draw keeps that data in a structure called the GrafFort.

11111111111111111111111111111111 THE GRAPH PORT

Conceptually, a GrafFort is a drawing area, but to the programmer, it is a
data structure that defines the drawing area and a set of drawing param­
eters. In previous chapters I talked about text-drawing parameters (font,
size, and style), the pen pattern, the pen location, the pen mode, the pen
size, the background pattern, and the fill pattern. QuickDraw keeps all of
that information in the GrafFort. That means that each drawing area
defined by a GrafFort has its own pen, patterns, and text parameters.

Each Macintosh window created by the window manager has its own
GrafFort, so each window has its own pen, patterns, and text parameters.
Almost every time you use a GrafFort, it will be a GrafFort assigned to a
specific window.

Let's take a closer look at what's in the GrafFort data structure.

type
GrafFort =record

device:
portBits:
portRect:
visRgn:
clipRgn:
bkPat:
fillPat:
pnLoc:
pnMode:
pnPat:
pnVis:
txFont:

integer;
BitMap;
Rect;
RgnHandle;
RgnHandle;
Pattern;
Pattern;
Point;
integer;
Pattern;
integer;
integer;

txFace:
txMode:
txSize:
spExtra:
fgColor:
bkColor:
colrBit:
patStretch:
picSave:
rgnSave:
polySave:
gratProcs:

end;

Style;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
QDHandle;
QDHandle;
QDHandle;
QDProcsPtr;

THE GRAPH PORT 109

That's quite a lot of stuff, but most of it looks familiar. We can see that
there are definitions for all of the patterns that we have discussed, the pen
parameters, the text parameters, and the recording areas for pictures,
polygons, and regions.

We do see a few new parameters, though: the background color, the
foreground color, and the color plane (colrBit). Future versions of the
Macintosh may be able to display images in color. The black-and-white
Macintosh cannot display color images, but it can create them and repro­
duce them on color devices (a plotter, for instance).

There are two regions defined in the GratPort. The visRgn is the
portion of the area defined by the BitMap that is visible on the screen. If
the window with which the GratPort is associated is overlaid by another
window, part of it may not be visible. The visRgn defines the part that is
visible (not overlaid).

The clipRgn is the GratPort's clipping region. It is an area of the
rectangle defined in the BitMap. QuickDraw will not draw outside of the
clipping region. You can call QuickDraw routines and specify drawing
both inside and outside the clipping region. The images will be drawn
only inside the clipping region, but if you attempt to draw outside the
region, QuickDraw will not take that as an error. The clipping region is
there as a convenience. It allows you to limit the size of your drawing area
without having to check each object or each call to a QuickDraw drawing
procedure to see if it falls within the drawing area. QuickDraw does all the
checking for you.

Let's go through each field in the GratPort record in detail and see
how each is used. ·

device The device field identifies the device for which the
drawing is intended. It's required because type fonts
are drawn differently for different devices.

110 QUICKDRAW COORDINATES AND DATA STRUCTURES

portBits

portRect

visRgn

clipRgn

bkPat

fillPat

pnLoc

pnSize

pnMode

pnPat

pnVis

txFont

txMode

txSize

spExtra

fgColor

bkColor

colrBit

patStretch

picSave

PortBits is the bit map for this GrafPort. It defines
the memory area for the bit image and its
coordinate system.

We have a rectangle in the BitMap that defines the
drawing area; why another? The portRect defines an
area of the BitMap that is wholly contained within the
BitMap. It limits drawing to that area of the BitMap.

The visRgn defines the area of the GrafPort drawing
area that is visible, the area not overlaid by another
window. It is a region and may have any shape.

The clipRgn limits the drawing area to the region
that it defines.

The background pattern is the pattern painted by
the QuickDraw erase procedures.

The fill pattern is used by the QuickDraw fill
procedures.

The current pen location.

The current pen size.

The current pen mode.

The current pen pattern.

The current pen visibility, 0 if the pen is visible,
negative if it is invisible. HidePen decrements pnVis.
ShowPen increments it.

The current text font.

The current text mode.

The current text size.

The current setting of extra space for justified text.

The current foreground color.

The current background color.

The current color plane.

Used by the printer software to expand patterns to
fit the printer's resolution and aspect ratio.

The area of memory in which the current picture
definition is being recorded.

rgnSave

polySave

gratProcs

MORE ON COORDINATES 111

The area of memory in which the current region
definition is being recorded.

The area of memory in which the current polygon
definition is being recorded.

A pointer that is used for defining custom
QuickDraw drawing procedures.

11111111111111111111111111111111 MORE ON COORDINATES

The portions of the GratPort data structure that relate to coordinates are
important and bear reviewing. Each GratPort has its own local coordinate
system. A GratPort is almost always associated with a window, so the
GratPort's coordinate system becomes the window's local coordinate
system. The bit image defines a memory area to be used for storing or
displaying graphics. The bit map relates the bit image to a drawing area and
establishes the coordinate system of the drawing area. More specifically,
the portBits.bounds field in the bit map defines the coordinate system.
The portRect field in the GratPort defines a part of the coordinate system
that will be used for drawing (a subset of the coordinate system).

The clipRgn and visRgn fields in the GratPort further limit the
drawing area. The clipRgn limits drawing in the portRect to an area that
you specify. The visRgn is the unobscured part of the portRect. Quick­
Draw sets and uses the visRgn. Your program may read the visRgn field but
should not alter it. QuickDraw limits drawing to areas that are in both
clipRgn and visRgn.

The table below describes typical uses of the GratPort fields that
relate to the coordinate system, but you are by no means limited to using
them this way. If you plan to deviate from these guidelines, however, you
should be thoroughly familiar with QuickDraw coordinates, data struc­
tures, and procedures.

Graf Port field Function Typically set to:

portBits. bounds Define coordinate The screen
system

portRect Define drawing area The window

clipRgn Limit drawing area The window's interior
(portRect - frame)

visRgn Limit drawing area The unobscured part of
the window

112 QUICKDRAW COORDINATES AND DATA STRUCTURES

When you have more than one window open, you may want to relate
or convert the coordinates of an object in one window to the coordinate
system in the other. Suppose that you have the two windows shown in
figure 6.1. The coordinate systems have different origins, so a point at the
same relative position in each window would have different coordinates.
The same would be true of the coordinates that define an object, for
example, the coordinates of the two points that define a rectangle. You
might have this situation if you were using the two windows to display
slightly different but overlapping portions of the document.

We would like to draw a line starting at the same point in both
windows, so we need to convert the coordinates of the point from one
window to the other. Assuming that we know the coordinates of the point
in the left window, we first convert its coordinates to a global coordinate
system and then convert to the local coordinate system of the window on
the right.

We use two QuickDraw procedures to do the conversion, LocalTo­
Global and GlobalToLocal. The global coordinate system is a coordinate
system with its origin at (0, 0). Local coordinate systems can have their
origin anywhere. We could convert the coordinates of the point from the
left window to the coordinate system of the right window with the
program below.

var
LeftPort, RightPort : Gra{Ptr;
thePoint : Point;

begin
SetPort(LeftPort);
LocalToGlobal(thePoint);
SetPort(RightPort);
GlobalToLocal(thePoint);

end.

LeftPort and RightPort are pointers to the Gra{Port data structures for
the two windows. The coordinates of the point are stored in a data
structure called thePoint. SetPort sets the current Gra{Port to the data
structure identified by the pointer (QuickDraw drawing occurs in the
current Gra{Port).

You can use GlobalToLocal to convert from document coordinates to
window coordinates if you are relating points in a window to points in a
document whose coordinate system's origin is at (0, 0).

Using the LocalToGlobal procedure is equivalent to subtracting the
local coordinate system's origin from the point's coordinates. The

MORE ON COORDINATES 113

GlobalToLocal procedure does just the opposite: it adds the local coor­
dinate system's origin to the point's coordinates. You could accomplish
the same conversion with simple addition, as in the following example.
The coordinates of the left window's origin are in the point LWOrigin. The
right window's origin is in RWOrigin.

var
thePoint, LWOrigin, RWOrigin : point;

begin
{convert thePoint from left window to right window coordinates}

thePoint.h : = thePoint.h + RWOrigin.h - LWOrigin.h;
thePoint.v : = thePoint.v + RWOrigin.v - LWOrigin.v;

end;

If you want to convert the coordinates of a rectangle, you can use the
GlobalToLocal and LocalToGlobal routines to convert both points that
define a rectangle (TopLeft and BotRight), or you can do the same thing by
using simple addition for each of the four coordinates. It's easier, however,
to use the OffsetRect routine. Let's see how OffsetRect could convert from
the left window coordinates to the right window coordinates.

OffsetRect(theRect, RWOrigin.h - LWOrigin.h, RWOrigin.v -
LWOrigin. v);

Most of the objects that you will want to draw can be described in
terms of points, lines, and rectangles, but for other objects, you can use
the appropriate Offset procedures. The table below lists graphic objects
and the routines that you can use to convert their coordinates.

Object Routine

Point GlobalToLocal, LocalToGlobal, addPt, subPt, addition

Line GlobalToLocal, LocalToGlobal, addPt, subPt,
OffsetRect

Rectangle OffsetRect

Region OffsetRgn

Polygon OffsetPoly

We could have listed the simple addition technique in the table for the
line and rectangle, but it's a little easier to use the routines indicated.

114 QUICKDRAW COORDINATES AND DATA STRUCTURES

That last entry for converting a line looks like a mistake. It isn't,
though. If you think about it, you will realize that a line is defined by two
points, just as a rectangle is. If you store the coordinates of a line's end
points in a rectangle data structure, you can use OffsetRect to convert its
coordinates. You could use the same technique if you just wanted to draw
a line in a different location in the same window.

We have been working with two windows with different coordinate
system origins but have not said how those origins came to be different,
how they were originally set. We know that when the windows were
opened, the origin in each window was set to (0, 0) by the system. We were
assuming that some time after opening the windows, the program set the
origins to other values. A program uses the SetOrigin procedure to set a
GrafPort's origin.

The SetOrigin procedure has to change the portBits.bounds field in
the GrafPort because it is this field that defines the origin. SetOrigin also
changes the portRect and visRgn fields. It does so to keep the various
parameters that describe the drawing area compatible.

SetOrigin does not change the clipping region (clipRgn) or the pen
location (pnLoc). The clipping region's position will be moved in the
window by the amount that the origin was offset by SetOrigin. Actually,
the coordinates of clipRgn do not change, but the coordinate system has
moved, so clipRgn moved with it. The same is true of the pen.

The things that SetOrigin changed are closely associated with the
definition of the window. The window did not move, so the portRect
should not move. Presumably, any windows overlaying our window did
not move, so the visRgn should not move either. We can see the logic in
that, but why should the clipping region and pen move? Why don't they
stay in the same place in the window? To understand the reason that the
clip region and pen move, we need to see why we would want to change
the origin to begin with.

If all we did was have our program synthesize images, building images
from QuickDraw objects like points, lines, rectangles, round rectangles,
ovals, wedges, polygons, and regions, we would never need to change the
origin. The real need to change the origin arises when we have an image
that is bigger than the window in which we display it. We want to be able
to move the image under the window so that we can look at various parts
of it. There are two ways we could approach that task:

1 Store the descriptions of the objects in a data structure and then,
when we want to scroll the image, recalculate the coordinates of
every object and redraw the image.

MORE ON COORDINATES 115

2 Change the origin of the window's coordinate system and then
redraw the image, using the original coordinates of all of its
objects.

You can see that the second method is much easier, particularly if the
image definition comes from a document file that contains a very large
data structure describing the image.

If we are changing a window's origin so that we can scroll the image
displayed in it, we want the pen to follow the document, not the window.
By not changing pnLoc, SetOrigin makes the pen remain at the same point
in the document but not the same point in the window.

ClipRgn is usually used to limit the drawing area to a portion of the
image that the program wants to change. The program can set the clipping
region and then execute a procedure that redraws the entire document.
Only the portion that falls inside the clipping region will change on the
screen. With that kind of function for the clipping region, it makes a lot of
sense to allow it to move with the document and not remain in the same
location in the window.

If you are dealing with a large document, you can use the SetOrigin
procedure very effectively to move around in the document and display
different parts of it. First, you need a procedure that, when called, redraws
the entire document in the coordinate system of the document. You set
the clipping region to something reasonable, usually the inside dimen­
sions of the window. You can now look at any portion of the document
by just making a call to SetOrigin followed by a call to the document­
drawing routine.

You set the origin of the window's coordinate system to the upper left
corner of the area of the document you want to display. The document­
drawing routine tries to draw the entire document, but QuickDraw actu­
ally draws in just the areas that are inside clipRgn and inside visRgn. The
big advantage of doing it this way is that your program doesn't have to
keep track of what portion of the document is displayed in the window.
It also doesn't have to check each object before drawing it to see if part of
the object will appear on the screen. If you have a large document that
takes a very long time to draw, it's a little bit wasteful to use this procedure
because it spends time calling QuickDraw routines that don't draw any­
thing on the screen.

116 QUICKDRAW COORDINATES AND DATA STRUCTURES

11111111111111111111111111111111 TRANSLATION AND SCALING

Up until now, we have talked about converting from one coordinate
system to another with the same scale. If we want to change the scale of
an object, stretching or shrinking it, we can use several QuickDraw
routines designed for that purpose. All of these routines do both transla­
tion (moving) and scaling (changing the size). They aren't designed spe­
cifically for converting between coordinate systems but could be used for
that purpose. They are more appropriate, however, for changing the
location and size of an object without moving to another coordinate
system.

You specify the amount to move and the scale factors by supplying a
source rectangle and a destination rectangle. The scaling routines figure
out the scale factors by comparing the dimensions of the source and
destination rectangles. A good way to think of what they do is to imagine
that they grasp the source rectangle, copy it to another location, and
stretch (or shrink) it to fit the destination rectangle. Back in chapter 5
when we took a look at the DrawPicture procedure, we saw how to scale
a picture. QuickDraw has other procedures that move and scale points,
rectangles, regions, and polygons.

ScalePt(var thePoint : Point; sourceRect, destRect : Rect);

ScalePt moves the point to the equivalent point in the
destination rectangle but only if the point is specified not in
the local coordinate system but relative to the upper left corner
of the source rectangle. ScalePt is also useful for scaling the
dimensions (height and width) of objects or the pen.

MapPt(var thePoint : Point; sourceRect, destRect : Rect);

MapPt calculates the position the point would occupy in the
destination rectangle if everything in the source rectangle were
scaled to fit in the destination rectangle.

MapRect(var theRect : Rect; sourceRect, destRect : Rect);

MapRect calculates the position the rectangle would occupy in
the destination rectangle if everything in the source rectangle
were scaled to fit in the destination rectangle.

TRANSLATION AND SCALING 117

MapRgn(region : rgnHandle; sourceRect, destRect : Rect);

MapRgn calculates the position that all of the points in
the region would occupy in the destination rectangle if
everything in the source rectangle were scaled to fit in
the destination rectangle.

MapPoly(polygon : polyHandle; sourceRect, destRect : Rect);

MapPoly calculates the position that all of the points in
the polygon would occupy in the destination rectangle if
everything in the source rectangle were scaled to fit in
the destination rectangle.

111

CHAPTER

7 DRAWING OBJEC IS

What's an Object?

Using Data Structures to Define Objects

An Object as a Collection of Shapes

Basic Trigonometry

Rotation

Rotation about an Arbitrary Point

Scaling an Object

A Program with Objects

Modifying the Object-Drawing Program

111

119

120 DRAWING OBJECTS

11111111111111111111111111111111 WHAT'S AN OBJEcn

Computer graphics programs store information about their images in
radically different ways. In this book, we deal with two types of graphics
programs, those that store their images as a collection of pixel values and
those that store images as a set of object descriptions. Programs of the
first type are called paint programs. The others are usually called CAD
(computer-aided design) programs.

MacPaint is a paint program. It stores an image as a set of pixel values.
Once you draw an object with MacPaint, you cannot separate that object
from its background. If you drew a picture of a bolt against a grid
background, you could not then move the bolt to another location
without moving part of the background with it. MacPaint doesn't know
anything about your bolt. It just knows that you turned some pixels on and
turned others off. The fact that paint programs do not store object
descriptions somewhat limits their utility but makes them much simpler
and faster.

MacDraw is a CAD program. It stores graphic data as a collection of
object descriptions. When you draw an object, MacDraw creates a de­
scription of the object and adds it to the data structure describing the
drawing. MacDraw draws the drawing by going through the collection of
object descriptions and drawing each object on the screen. If you move an
object, MacDraw just changes the location of the object in the object's
description and redraws the picture.

Defining an image as a collection of objects enables us to manipulate
the objects in powerful ways. We can group a set of objects and then treat
the group as one object. We can move an object, replicate it, rotate it, or
change its size. Our ability to change an object's size lets us display our
drawing in different scales.

Our object descriptions are not related to the resolution of the
display. A square is a square whether you display it on a 50-pixel-per-inch
display or a 300-pixel-per-inch display. If we want to draw our picture on
paper, we can use the maximum resolution of the drawing device. The
drawing will come out on the ImageWriter printer at the maximum
resolution that the printer can handle. If we produce the same drawing on
a plotter that has three times the resolution of the Image Writer, it will be
drawn with the full resolution of the plotter. You can verify this for
yourself by drawing two identical pictures, one in MacPaint and the other
in MacDraw, and printing both on the Image Writer. The MacPaint drawing
will be printed with the resolution of the Macintosh screen (about 72 dots
per inch). The MacDraw drawing will be printed with the full resolution
of the ImageWriter (about 150 dots per inch).

USING DATA STRUCTURES TO DEFINE OBJECTS 121

USING DATA STRUCTURES TO
11111111111111111111111111111111 DERNE OBJECTS

The data structure that describes an object will contain all of the infor­
mation that we need to draw the object at the proper location and
orientation. Let's make a list of the kinds of information that we will want
to store for an object. We want to draw the object at a particular location,
so we will need to store its x-y coordinates. We will probably want to
define the object's location in the document, not where it falls on the
screen. The object's screen location will change as we scroll the window
or change the scale of the drawing. We will have two coordinate systems,
one defining the coordinates in the document, the other defining
the coordinates in the display window. An object's data structure will
contain the document coordinates of the object. When the program
draws the object, it will convert the document coordinates to window
coordinates.

We may also want to store the orientation of the object. For this
discussion, we will assume that we are representing two-dimensional
objects, so we need to store just an angle that describes how much the
object is rotated.

In some types of drawing programs, we will want to draw the same
object with different sizes. We may want the object's data structure to also
contain its size. Depending on what kind of application program we are
writing, we may want to store other information about the object, a fill
pattern to use when drawing the object, or the object's plane. (A CAD
system used for drawing printed circuit board layouts will need to repre­
sent objects in several planes. Even the simplest printed circuit board can
have three layers: the component side, the opposite side of the board, and
possibly a silk-screen layer used for making the board.) Specialized CAD
applications may store other information about the object.

Let's see what we have so far.

Object Definition:
Location in document coordinates
Rotation angle
Size
Fill pattern or plane
Shape

The last item in the list is the object's shape. The program must
eventually draw the object and must have some way to find out what shape
to draw.

122 DRAWING OBJECTS

AN OBJECT AS A COLI.ECTION
11111111111111111111111111111111 OF SHAPES

Our program will need to draw the object, so we somehow need to
describe the shape of the object. Most CAD programs describe an object's
shape in terms of predefined graphics elements: line segments, circles,
rectangles, arcs. These graphics elements represent the object as a collec­
tion of predefined shapes.

Our first inclination would probably be to define objects in terms of
the predefined QuickDraw shapes: rectangle, rounded rectangle, oval, arc,
and line. That would work, but if we want to be able to rotate objects, we
can't use the QuickDraw oval, rectangle, or rounded rectangle shapes. An
alternative would be to define every shape in terms of line segments and
arcs. This would take more processing at run time and more memory to
store the object definitions but would allow us to do rotation.

We can see already that the best method to use for representing
shapes in our data structure depends a lot on our application program and
what we expect it to do. Some of the things that we want to consider in
making a decision about how to represent shapes are whether we need to
rotate the object, how much memory it takes to store the object, how long
it takes the program to draw the object, and whether we need to represent
any arbitrary shape or just a small set of shapes. Let's take a look at some
of the methods that we can use to represent shapes.

We've already discussed representing objects as a collection of shapes
we can draw with QuickDraw. Another method would be to assign a
QuickDraw picture data structure for each type of object. We could define
and fill each picture data structure at initialization time, or we could allow
the user to define the shape of each object with the mouse, much as we
did in chapter 5.

If you are working with a limited set of objects and do not allow the
user to define new objects, you can simplify the shape definition. One
method of doing that is to provide a subroutine to draw each type of
object that you define for your program. The object's data structure could
contain an integer that represents the object type. The drawing section of
the program uses that integer as the control variable of a Case statement
and executes the proper drawing routine.

Another method that is a little faster and takes even less storage is to
define a type font, similar to the Cairo font, that consists of pictures of the
objects that you will be drawing. Your object definition then consists of
just a single byte, indicating which of the 256 possible characters you will
draw. This method is sometimes used in animation because it is faster than
drawing with QuickDraw. It is faster because the type font is loaded into

AN OBJECT AS A COLLECTION OF SHAPES 123

memory at initialization time, and QuickDraw merely copies the object's
bit pattern from the font definition to the screen.

Let's look at an example of an application that uses a limited set of
objects to create a useful drawing. Suppose that you are writing a CAD
program to be used by office designers. You want to make a drawing of an
office area showing the walls and doors and then place drawings of
furniture or other fixtures on the drawing. Each object in the drawing will
be represented by an object record.

type
Object = record

position: Point;
type: CHAR;

end;

Line = record
start:
stop:
width:

end;

Point;
Point;
INTEGER;

This looks pretty good. We will end up with two major data struc­
tures in our program. One consists of line records that define the walls,
doors, and the like in our drawing. The other consists of object records
that define the objects in the drawing. Each object record takes only 3
bytes of storage, and each line takes only 6 bytes. On a 512K Macintosh,
if we assume that only 128K is used for storing variables, we could store
43,690 objects or 21,845 lines or some combination of the two. In
practice, we might require additional storage to differentiate between lines
and objects, or we could extend the range of objects by using an additional
3 bytes and make the line and object records the same size. Our definition
would then look something like this:

type
{Picture element definition}
Element = record

ElementType: BOOLEAN;
Case isLine: BOOLEAN of

TRUE: (start, stop: Point, width: INTEGER);
FALSE: (Location: Point, ObjectType: CHAR, Set: INTEGER)

end;

124 DRAWING OBJECTS

We defined something new, a picture element. Each element is either
a line or an object, so we added a Boolean variable to each record to tell
us whether the record contains a line or an object.

We could put all of the elements of a drawing in a large array. When
we want to draw the picture, we would cycle through the array, drawing
each element in turn. We would want to have some means of identifying
elements that should no longer be drawn (elements cut or deleted from the
drawing). One way would be to make ElementType an enumerated data
type with three possible values: Line, Object, and Null (for deleted
elements).

There are more elaborate methods of storing and keeping track of our
element or object records. The usual one is to set up a singly linked list of
element records, each record containing a pointer to the next record.
Using such an approach adds another field to the element record and
greatly increases its size (from 8 bytes to 12 bytes) but is sometimes worth
the extra memory because it gives you more flexibility in allocating
memory and keeping track of deleted elements.

type
ElementPtr = "Element;
Element = record

nextElement: ElementPtr;
ElementType: BOOLEAN;
Case isLine: BOOLEAN of

TRUE: (start, stop: Point, width: INTEGER);
FALSE: (Location: Point, ObjectType: CHAR, Set: INTEGER)

end;

This method of storing object descriptions (characters in a custom
type font) lacks flexibility, but its advantage is its low cost. We are talking
cheap. You can store an object in a very small space, and that lets you do
something useful on a small machine. And the program is going to be
simple, too. Once you have the program working, you can take the same
program, supply a font with trees and shrubs instead of office furniture,
and have a custom CAD program for doing landscape layouts. Create a font
consisting of circuit symbols, and you have a program for drawing sche­
matic diagrams.

Now let's look at a more flexible method of storing objects. Assume
that we want to create a general-purpose CAD program that will store
objects made up of line segments and arcs. We will not be using fill
patterns. Our element record could look like this:

AN OBJECT AS A COLLECTION OF SHAPES 125

type
Object = (Line, Arc);
Element = record

nextElement: INTEGER;
location : point;
ElementType : Object;
Case Object of

Line (stop : Point, width : INTEGER);
Arc (radius, startAngle, stopAngle : INTEGER)

end;

var
Drawing: ARRAY [0 .. 999] of Element;
Free : INTEGER; {index of first free element}
Drawn : INTEGER; {index of first drawing element}
Selected : INTEGER; {index of first selected element}
Cut : INTEGER {index of first cut or copied element}

Note that we are not using the standard QuickDraw method of
defining an arc. We want to be able to rotate our objects, so we are limiting
arcs to being portions of circles, not portions of ovals. When we call the
QuickDraw routine that draws an arc, we must supply the rectangle that
encloses the oval that defines the shape of our arc. We limit that oval to
being a circle; hence the two sides of the enclosing rectangle are of equal
length. We have enough information to calculate the rectangle and the
QuickDraw arc angles.

We are defining an integer in the element record that identifies the
next element in the list. Our data structure will consist of a linked list of
elements. The link to the next element is not a pointer; it is an integer that
is used as an index into the drawing data structure. It identifies another
element record.

We will keep track of these element records by maintaining four
linked lists: a list of free elements, a list of elements that are part of the
drawing, a list of selected elements, and a list of elements cut or copied
from the drawing (figure 7 .1). All of the members of all of the lists come
from the drawing array.

We can draw almost any kind of object that we want by using just
lines and arcs. We can even draw arbitrarily shaped curves by making a
curve out of a large number of short line segments or arcs.

One more thing we would like to do is to group a number of elements
together and treat them as a single object. We do this by making use of our
linked list of elements. We define a new object type that is simply an index

126 DRAWING OBJECTS

.-------t- Selected
....-----+- Cut

Drawn
Free

111111111111111111111111111111111 Figure 7 .1 Linked lists

that identifies another linked list, the list of elements that contain our
group of elements.

type
Object = (Line, Arc, Group);
Element = record

nextElement: INTEGER;
location : point;
ElementType : Object;
Case Object of

Line (stop : Point, width : INTEGER);
Arc (radius, startAngle, stopAngle : INTEGER);
Group (INTEGER);

end;

AN OBJECT AS A COLLECTION OF SHAPES 127

Our variables would be the same as before, the array of elements and
a set of indexes, one for the start of each linked list. Our linked lists would
look a little different, though. Now we have the capability of creating a
branch in a list that points to a group of elements, actually another linked
list (figure 7 .2).

It takes several steps to create a group of objects. First the user must
select each of the objects that will be in the group. The program should
allow the user to do that by clicking the mouse on an object, much the
same way you select an icon on the desk top. The program should identify
each of the selected objects in some way: blinking them, drawing them in
a lighter shade of gray, drawing a dotted box around them, or the like. As
each object is selected, it is moved from the Drawn linked list to the
Selected linked list. The program should provide a menu item that the user

....----+- Selected
~-~Cut

Drawn
Free

111111111111111111111111111111111 Figure 7 .2 Linked lists with a branch

128 DRAWING OBJECTS

can select to group all of the currently selected objects. When the user
selects the Group item from the menu, the program moves the selected
linked list, converts it to a branch, and puts an element in the Drawn list
that points to the grouped list. The program's last duty is to redraw the
grouped objects so that they no longer appear to be selected.

Note that when we talk about moving an element, a group of
elements, or an entire linked list, we don't really mean that they get moved
around in memory. We just change the element indexes to point to
different elements.

11111111111111111111111111111111 BASIC TRIGONOMETRY

This is where you might get a cold feeling in your stomach ... at the sight
of equations and Greek letters. Don't freak out! If you had algebra and
trigonometry in high school, it will all come back quickly, particularly
when you see some of the neat things we can do with trigonometry in
computer graphics. If you haven't had trigonometry yet, pick up a trig
textbook, and read up on the basics. If you understand programming
enough to get this far, trig will be no sweat.

Before we can rotate objects, we need to review some basic high
school trigonometry. The remainder of this chapter will use trigonometric
functions to perform rotation in two dimensions. If your mathematical
background is skimpy, you may want to skip these sections. You can pick
up the discussion again with chapter 8. If you want to skip this material,
you don't need to feel left out. You can still do interesting things with
Macintosh graphics. Virtually all of the commercial applications for the
Macintosh rely heavily on QuickDraw, and it is unusual to find one that
supports rotation.

Take a look at figure 7.3. It shows how the sine (sin) of an angle is
calculated. Notice that the triangle shown is a right triangle, one with a
90-degree angle. All trigonometric functions are based on right triangles.

The sine of an angle is the ratio of the side of the triangle opposite
the angle to the hypotenuse (the long side of the triangle). It is useful
in calculating the new coordinates of a rotated object because it relates
the dimensions of two sides of a triangle to the angle. Note that the size of
the triangle has no effect on the value of the sine function. For a given
angle, the ratio of the sides b and c is always the same, regardless of how
large or small the triangle. (In all of my discussions of trigonometric
functions, I abide by the convention used in most trigonometry text­
books: angles are represented by Greek letters, and linear measure (dis­
tance) by Roman letters.)

BASIC TRIGONOMETRY 129

si,n(e) = b/c

a

111111111111111111111111111111111 Figure 7 .3 The sine function

The trigonometric equations for cosine (cos), tangent (tan), and
cotangent (cot) are also useful. Using these four trigonometric equations,
if we know any two of the four parameters that define a triangle (one angle
and three sides), we can calculate the other two.

sin(<fl) = blc
cos(<fl) = ale
tan(cfl) = bla
cot(<fl) = alb

If we look at our box before and after rotation, we can see how the
sine and the triangle come into play.

In figure 7.4, we see a triangle formed by one side of the box
(formerly the bottom side), the x axis, and they axis. If we know the angle
of rotation and the length of any one side of the triangle, we can find the
length of any other side of the triangle. If we are rotating a box, we already
know the length of the side of the box (c) and the angle (<fl). We use the sine
formula to find a and b. Since we know the coordinates of the bottom left
corner of the box before rotation, we can use those coordinates and the
values of a and b to calculate the new coordinates of the other four
corners.

111111111111111111111111111111111 Figure 7.4 The angle of a box's rotation

130 DRAWING OBJECTS

When we are rotating objects, we will make extensive use of these
trigonometric functions to calculate new coordinates. How do we calcu­
late the sine of an angle? We don't have to. Most compilers have built-in
trigonometric functions.

We may also use some of the following trigonometric identities. We
won't go into a lengthy explanation of how these identities are derived.
You can find that in any trigonometry book. We'll just take them on faith
and use them to calculate coordinates. (Note that sin2(c/>) means the square
of the sine, that is, (sin(cf>))2 .)

sin2(cf>) + cos2(cf>) = 1
tan(cf>) = sin(cf>)/cos(cf>)
cot(cf>) = cos(cf>)/sin(cf>)
sin(a + /3) = sin(a)cos(/3) + cos(a)sin(/3)
sin(a - {3) = sin(a)cos(/3) - cos(a)sin(/3)
cos(a + {3) = cos(a)cos(/3) - sin(a)sin(/3)
cos(a - {3) = cos(a)cos(/3) + sin(a)sin(/3)
tan(a + {3) = (tan(a) + tan(/3))/(1 - tan(a)tan(/3))
tan(a - {3) = (tan(a) - tan(/3))/(1 + tan(a)tan(/3))

11111111111111111111111111111111 ROTATION

When we rotate an object, we calculate the new coordinates of all of the
points in the object and then redraw it. In most cases, we don't have to
recalculate every point, just the ones that we need in order to draw the
object. If the object is a box, we could just recalculate the four corners and
connect them with straight lines. If it is a circle, we could get away with
recalculating just the center of the circle. The radius and shape of a circle
are unaffected by rotation. I usually make it a point to design my objects
so that they are easy to rotate. If we can compose an object from a set of
line segments and arcs, rotation becomes simply the task of recalculating
the points that define all of the line segments (their end points) and the
arcs (their radii, center points, and start and stop angles).

When we rotate an object, we must know not only the angle of
rotation but also the axis of rotation. In two-dimensional images, the axis
of rotation is the point about which we rotate the object (figure 7.5).

In figure 7.5, we see the same box rotated about several different axes.
If we rotate the box about its own center, it stays in the same location, but
if we rotate it about any other point, its x and y coordinates change. We
can come up with a separate formula for rotating the box about each of
these axes, but what we would really prefer is one formula that handles the
general case, rotation about an arbitrary point (figure 7 .6).

D
Before

Rotation

......... !

I
i
i,

Rotated About
Bottom Left Corner

0 . . .
Rotated About
Object Center

111111111111111111111111111111111 Figure 7 .5 Axes of rotation

0
+

f l . '
f I
i I "'' ;

D
M I I ;

ROTATION 131

Rotated About
Top Left Corner

111111111111111111111111111111111 Figure 7 .6 Rotation about an arbitrary point

The calculations for rotation about an arbitrary point are more
complex than those for rotating about the origin. Let's look at the simple
case before going to the more complex calculations.

We know that to rotate an object about a point, we must rotate each
point in the object that defines the object's shape. In figure 7.7, we see an
object rotated about a point and can see that each point in the object is
now in a new location. What was originally the bottom left corner is no
longer the leftmost corner, but it still has the same relationship to the other
points.

Let's see how to rotate a point about the origin. We will start with the
point p and rotate it through an angle 8 (figure 7 .8).

Note that our coordinate system looks a little different from the
Cartesian coordinate system that we usually see. This coordinate system

132 DRAWING OBJECTS

.•... /

/·<· r~
+··:~::_ ~ .. -.. 1-·---·-·-.. ···-·--·-·-·--· l?_ ~J

111111111111111111111111111111111 • Figure 7. 7 Rotation of the points that define an object

•
'.P'

• '.P

111111111111111111111111111111111 Figure 7 .8 A point rotated about the origin

has they axis inverted. They values increase as you go down, not up. This
is the coordinate system used by the Macintosh display. The origin (the
point 0, 0) is at the upper left corner.

We rotated the point p through the angle 8 about the origin and gave
it a new name at its new location, p' . The point p' is the same distance
from the origin as p.

We would like to come up with a formula that will convert the
coordinates of p to the coordinates of p' if we know the angle 8. In order
to develop that formula, we will temporarily use another angle, </>. When
we are finished, </> will not appear in the formula. Let's see what the
situation looks like with both angles in the diagram as well as the radius of
the points (the distance to the origin) and the coordinates of the points
(figure 7 .9).

ROTATION 133

11. 11.'

111111111111111111111111111111111 Figure 7 .9 Measuring the rotation of a point about the origin

The vertical coordinate of p is v, and the horizontal coordinate is h.
The coordinates of p' are v' and h' . The radius is the same for both
points, r. Now that we have all of the necessary variables, we can derive
the formula that we need.

The definitions of the sine and cosine functions tell us that:

v = r cos(c/>)
h = r sin(c/>)

We can use the same definitions to relate the coordinates of p' to an
angle, but in this case, the angle is the sum of 8 and c/>.

v' = r cos(8 + c/>)
h' = r sin(8 + cl>)

If we use the identity for the sum of two angles (see page 130), we get
two new formulas for v' and b'.

v' = r cos(c/>)cos(8) - r sin(c/>)sin(8)
b' = r cos(c/>)sin(8) + r sin(c/>)cos(8)

Now we get rid of all instances of q, by substituting the formulas for
v and b wherever we see r cos(c/>) or r sin(c/>). The result is the pair of
formulas that we wanted.

v' = v cos(8) - h sin(8)
b' = v sin(8) + b cos(8)

134 DRAWING OBJECTS

Now to rotate the box in figure 7.7, we just do the transformation
defined by the formulas on each of the four corners of the box and then
draw lines connecting the corners.

Pretty neat, you say. But wait-there's more.

ROTATION ABOUT AN
llllllllllllllllllllllllllllllll ARBITRARY POINT

Now we can gleefully spin our picture around the origin, but what if we
want to rotate an object about its own center or some other point? We can
use the formulas we've developed so far to derive a pair of formulas for
rotating about an arbitrary point. We know how to rotate about the origin,
so we can cheat and move the origin to the rotation point, rotate the
object, and then move the origin back. In figure 7 .10, we see the point p
rotated to point p' about the point q.

The horizontal coordinate of point q is hq; the vertical coordinate is
v q. Moving the origin is the same as a coordinate system translation, so our
formula will do a coordinate system translation and then rotate the point
and do another coordinate system translation. The resulting formulas are:

v' = (v - vq)cos(O) - (h - hq)sin(O) + vq
h' = (v - vq)sin(O) + (h - hq)cos(O) + hq

Looking at the formulas, we see that for the rotation point at the
origin(vq = Oandhq = 0), theformulasbecomethesameoneswehadbefore.

!

I
vq

lq

•
P'

•p

111111111111111111111111111111111 Figure 7 .10 Rotation of a point about an arbitrary point

SCALING AN OBJECT 135

Now that we've got some rotation formulas, we could go and write
some programs to use them, but we have just a few more things to deal
with before we do that. We still need to be able to scale an object.

11111111111111111111111111111111 SCALING AN OBJECT

Scaling an object is changing its size. Sometimes scaling is used to change
the shape of an object by stretching or squeezing it in one direction. Our
first attempt at scaling an object would be to multiply the coordinates of
its points by a scale factor. Let's see what happens when we do that. We
start with the box in figure 7 .11. It's a 20-by-20 square with the upper left
corner at the coordinates (20, 20).

We multiply the horizontal and vertical coordinates of each corner by
the scale factor 0.50. The results are in figure 7.12. We accomplished our
objective; the box is half the size that it was before. We got an undesirable
side effect, though. The box's location changed by the same factor. Its
upper left corner is now at (10, 10). We would like to scale an object
without moving it, so we obviously must do something else.

It turns out that scaling is much like rotation: it must be done at the
origin. In order to scale an object, we must mathematically move it to the
origin (centering the object on the origin), perform the scaling calculation,
and move it back. The scaling calculation is just multiplication by a scaling
factor, so the whole set of calculations consists of a translation (to the
origin), multiplication by the scaling factor, and another translation (back
to the original point).

(20,20)

D
(40,40)

111111111111111111111111111111111 Figure 7 .11 A box before scaling

138 DRAWING OBJECTS

(10,10)

D
(20,20)

111111111111111111111111111111111 Figure 7 .12 The scaled box

To scale an object, we scale each point that defines the shape of the
object. We are working with a box in our examples, so we need to scale
each corner of the box. We will start with the box in figure 7 .13. To make
sure that we don't design this calculation for the special case of a box
aligned with the horizontal and vertical axes, we use a box rotated to a
30-degree angle.

We want to end up with the box centered on the origin, so we must
subtract the horizontal coordinate of the center of the box from the
horizontal coordinate of each corner. The equations for the coordinates of
the center of the box are:

he = b 1 + (b2 - b1)/2
Ve = V1 + (v2 - Vi)/2

(150,100)
h1

(190,180)
v2

(230,60)
v1

(270,140)
h2

111111111111111111111111111111111 Figure 7 .13 A box before translation and scaling

SCALING AN OBJECT 137

where be and v e are the horizontal and vertical coordinates of the center
of the box.

Subtracting the box center coordinates from the point that we are
scaling, we get the equations for the coordinates of the point with the box
moved to the origin.

b' = b - he
v' = v - Ve

or, using the formulas for the box center coordinates:

b' = b - (h1 + (h2 - h1)12)
v' = v - (v1 + (v2 - v1)/2)

Remember, we have to do this for each corner of the box.
If we draw the box at the origin, it looks like figure 7 .14.
In practice, we don't draw the box at this time but wait until we've

moved it back to its original location. Once the box is at the origin, we
multiply the coordinates of the box corner points by the scale factor. Note
that we could have used different scale factors for the horizontal and
vertical coordinates if we wanted to stretch or squeeze the box. The
formulas for the new corner coordinates are:

b I = Sb(b - (b1 + (b2 - h1)12))
v' = sJ..v - (v1 + (v2 - v1)/2))

where sb and sv are the horizontal and vertical scale factors.

111111111111111111111111111111111 Figure 7 .14 The box at the origin

138 DRAWING OBJECTS

We used a scale factor of 0. 5 for both the horizontal and vertical
scaling, and the resulting box is half the size of the original. If we drew the
box at this point, it would look like the one shown in figure 7.15.

If we had wanted to make the box larger, we would have used a scale
factor greater than 1.

Now we need to move the box back to its original position. We move
it by adding the distance by which we moved the box to get it to the origin.

b I = Sb(b - (b1 + (b2 - h1)/2)) + h1 + (b2 - h1)/2
v' = sJ.v - (v1 + (v2 - v1)/2)) + v1 + (v2 - v1)/2

The scaled box looks like the one shown in figure 7 .16.

111111111111111111111111111111111 Figure 7 .15 The scaled box at the origin

(210,120)

(220,90) .. ··········

(180,110)0
+

(240,130)

(200,150)

111111111111111111111111111111111 Figure 7 .16 The scaled box back in position

A PROGRAM WITH OBJECTS 139

We can use this method for scaling any object. We just run every point
used in defining the object through the formula to get the new coordinates
of the point and draw the object with its new coordinates. For a box, we
need to perform the scaling calculations on each of the four corners and
then draw lines between the corners. If the object were a line, we'd do the
calculations on just the end points. For a hexagon, we'd have to calculate
new coordinates for each of the six corners. If the object has an irregular
shape, we will need to calculate every point in the object.

We could clean up our formula a little for use with objects other than
boxes. The expression (h2 - h1)/2 is the horizontal coordinate of the
center of the object. If we replace the box's calculated center point with
the coordinates for any object's center point, we have a general-purpose
scaling formula.

h' = sb(h - he) + he
V' = Sv(V - Ve} + Ve

To review, the variables are:

h the horizontal coordinate of the point to be scaled
v the vertical coordinate of the point to be scaled
h' the horizontal coordinate of the scaled point
v' the vertical coordinate of the scaled point
sh the horizontal scale factor
Sv the vertical scale factor
he the horizontal coordinate of the object's center
Ve the vertical coordinate of the object's center

11111111111111111111111111111111 A PROGRAM Wmt OBJEClS

The program at the end of this chapter has some examples of how to
manipulate and draw objects in a way that would be useful in a CAD
program. It's a large program, but don't let its size put you off. It's really
not very complicated.

There are as many methods of storing information about objects as
there are programmers. The method that you choose depends on the
purpose of your program and a lot of design trade-offs. Some object
storage formats take less memory than others but require longer to draw
the object. Others are more suited to moving, rotating, and scaling
objects.

In the program in this chapter, we chose a compromise that illustrates
several methods. It requires calling a different routine to draw each object

140 DRAWING OBJECTS

type but allows the moving, rotating, and scaling of the objects. It
combines QuickDraw's method of·dimensioning. objects (by rectangles)
with our need to know the center, angle, and scale factors of the object.

Let's take a look at the object description record (listing 7.1).
We have six types of object in the program: line, rectangle, triangle,

circle, half circle, and quarter circle. In the program, we have an array
whose elements are object records. Each array element describes one
object. The ObjectType field identifies the type of object. The Center field
defines the center of the object. The XLength and YLength fields define
the dimensions of the object, and the Angle field defines the object's angle
relative to the horizontal axis.

After investigating how to operate the program, we'll look at its
internals and see how it works. The program gives us a drawing area, a
palette at the right edge of the window, and a palette along the bottom
edge of the window (figure 7 .17).

The palette at the right shows the objects that the program can draw.
We select an object by clicking in that object's palette box. The box
changes to white on black to indicate selection. You use the mouse to
draw the selected object in the window much as in MacPaint: you click the
mouse in the drawing window, and the program draws the object as you
drag the mouse. You can determine the shape of the object by the way you
drag the mouse. The circle object may actually be an ellipse if you drag
more along one axis than the other. For example, in figure 7.18, the
triangle is elongated in the horizontal direction, and the ellipse is longer
in the vertical direction. Once you set the shape of the figure in this way,
it stays that shape. You can rotate it, move it, or change its size, but the
shape and aspect ratio remain the same.

The top box in the palette of objects doesn't contain an object. It's
the selection box. If you select the selection box, clicking the mouse near
the center of an object on the screen will select that object. The program
redraws the selected object in gray instead of black. In figure 7.19, the
rectangle near the center of the screen is selected.

111111111111111111111111111111111 Listing 7 .1 The Object Description Record

{listing 7. 1}
type

Object = record
ObjectType : Integer;
Center : point;
XLength : Integer;
YLength : Integer;
Angle : Integer;

end;

CUT ROT MOUE

111111111111111111111111111111111 Figure 7 .1 7 Palettes

D

[

CUT l ROT l MOUE

111111111111111111111111111111111 Figure 7 .18 Objects

A PROGRAM WITH OBJECTS 141

Drnwlng

SCALE

Drowing

0
l SCALE l

Sel

C>

•)

Sel

i---

" i---

D
i---

C>

• ,=,

)
t--

' t-----

'2l

142 DRAWING OBJECTS

~D Drawing

D
CUT ROT MOUE SCALE

" D
C>
0

)

111111111111111111111111111111111 Figure 7 .19 A selected object

Once you have selected an object, you can use the control palette
boxes along the bottom of the screen to manipulate the object. To
manipulate an object, just click in one of the four control palette boxes.
Clicking in the CUT box erases the object and removes it from the
program's object list. Clicking the SCALE box increases the size of the
object by 1 pixel in the horizontal direction and 1 pixel vertically. In figure
7.20, the box we selected in the previous diagram has been enlarged with
the SCALE control.

Clicking the ROT box rotates the object 1 degree counterclockwise.
In figure 7 .21 , that same object has been rotated by the repeated clicking
of the ROT control.

Rotating a circle has no effect, even if the circle is elliptically shaped.
Rotating a half or quarter circle doesn't have the effect you would expect.
The arc retains its elliptical shape, and the orientation of the ellipse is the
same. The program just draws a different portion of the ellipse. In figure
7.22, the upper portion of an ellipse was rotated through 90 degrees to
form the lower portion of an ellipse.

When you click in the MOVE box, the program erases the object.
Then when you next click in the drawing area, the program redraws the
object with its center at the spot you clicked.

A PROGRAM WITH OBJECTS 143

~D Drowing

CUT ROT MOUE SCRLE

111111111111111111111111111111111 Figure 7.20 A scaled object

Drowing

CUT ROT MOUE SCRLE

111111111111111111111111111111111 Figure 7 .21 The scaled object rotated

" D
l>
0

)

" D
l>
0

)

144 DRAWING OBJECTS

~D

CUT ROT MOUE

111111111111111111111111111111111 Figure 7 .22 A rotated arc

Drawing

SCRLE

" D
C>
0

)

The program effectively demonstrates one method of dealing with
objects but is far from being a complete CAD program. If you are inclined
to experiment, you can improve it by making some of the suggested
modifications listed toward the end of this chapter.

The program begins by initializing some variables, setting the draw­
ing window size, drawing the palettes, and setting the cursor shape. In the
program, boxes in the bottom palette are called controls. I will generally
use the term palette to refer to the palette on the right side. The dimen­
sions of the palettes and their boxes are determined by constants. It's easy
to change the size of the palette boxes or to add new ones.

The main loop of the program is shown in listing 7.2. It consists of
an endless repeat-until loop. Inside the loop, the program gets the mouse
location and sets the cursor to the appropriate shape. It continues that
activity until the user presses the mouse button.

When the user presses the mouse button, the program checks the
mouse location and calls the proper routine to handle the mouse event,
depending on whether the mouse was in the control area, the palette area,
or the drawing area. The DoControl and DoPalette routines are similar.
They determine which control or palette block the cursor was in when the
user pressed the button and call the appropriate routine.

A PROGRAM WITH OBJECTS 145

111111111111111111111111111111111 Listing 7 .2 The Main Loop of CheapCAD

{listing 7. 2}
begin

init;
repeat
repeat

GetMouse(mousePt.h, MousePt.v);
if Ptinrect(MousePt, DrawRect) than

SetCursor(CrossHairs)
else

SetCursor(arrow);
until button;
GetMouse(MousePt.h, MousePt.v);
if PtinRect(MousePt, PalRect) than

DoPalette
else if PtinRect(MousePt, ControlRect) than

DoControl
else if PtinRect(MousePt, DrawRect) than

DoDraw;
until Done;

and.

Let's see how the palette box routines work by looking at an example.
Listing 7 .3 shows the DoRect routine. It is called when the user clicks the
mouse in the rectangle palette.

The DoRect routine calls PalOff to deselect the formerly selected
palette box. Then it sets the Palette variable to indicate that the rectangle
palette box is selected and inverts the palette box (called RectRect) to
indicate selection. Nothing else happens until the user presses the mouse
button in the drawing area and drags the mouse to create a rectangle.

111111111111111111111111111111111 Listing 7 .3 The DoRect Routine

{listing 7.3}
procedure DoRect;
begin

PalOff;
Palette := Rectangle;
InvertRect(RectRect);

and;

1A8 DRAWING OBJECTS

When the program detects the mouse button down in the drawing
area, it calls DoDraw, which checks the Palette variable and calls a routine
to make an object. If the rectangle palette box is selected, DoDraw calls
MakeRect.

Note the first branch of the case statement in DoDraw (listing 7.4). If
the SEL palette box is currently selected, it doesn't call a make-object
routine; it calls DoSelect to select an object.

MakeRect is a good example of a routine to make an object, so let's
see how it works (listing 7 .S). MakeRect and all of the other make-object
routines draw the object in gray as you drag the mouse.

The first thing the routine does is set the pen mode and pen pattern.
It then waits in a repeat-until loop until the user moves the mouse or
releases the mouse button. If the user released the button without moving
the mouse, the routine does nothing else. If the user moved the mouse
with the button down, the routine calls FRect to draw the rectangle and
enters a loop in which it continually checks to see if the mouse has moved.
If the mouse has moved, the routine erases the old rectangle and redraws
it. The first call to FRect erases the old rectangle; the second call redraws
it with the new mouse coordinates.

111111111111111111111111111111111 Listing 7.4 The DoDraw Routine

{listing 7. 4}
procedure DoDraw;
begin

StartPt := MousePt;
case Palette of

NotDraw :
DoSelect;

Line :
MakeLine;

Rectangle :
MakeRect;

Triangle :
MakeTri;

Circle :
MakeCirc;

Circle2 :
MakeCirc2;

Circle4 :
MakeCirc4;

end;
end;

A PROGRAM WITH OBJECTS 147

111111111111111111111111111111111 Listing 7 .5 The MakeRect Routine

{listing 7. 5}
procedure MakeRect;
var

OldPoint, tempPt : point;
XLen, YLen : integer;

begin
PenMode(patXor);
PenPat(dkGray);
repeat

GetMouse(MousePt.h, MousePt.v);
until (MousePt.h <> StartPt.h) or (MousePt.v <> StartPt.v)

or not Button;
if Button then
begin

FRect(StartPt, MousePt);
OldPoint := MousePt;
repeat
begin

GetMouse(MousePt.h, MousePt.v);
if (MousePt. h <> OldPoint. h) or (MousePt. v <>

OldPoint.v) then
begin

FRect (StartPt, OldPoint);
FRect(StartPt, MousePt);
OldPoint : = MousePt;

end;
end

until not Button;
begin
end;
SortRect (StartPt .h, StartPt. v, OldPoint .h, OldPoint. v);
Objects[NextObject].ObjectType :=Rectangle;
Xlen := (OldPoint .h - StartPt .h);
YLen := (OldPoint.v - StartPt.v);
Objects[NextObject] .Center.h := Xlen div 2 + StartPt.h;
Objects[NextObject] .Center.v := Ylen div 2 + StartPt.v;
Objects[NextObject].Xlength := Xlen;
Objects[NextObject].YLength := YLen;
Objects[NextObject] .Angle := O;
FRect (StartPt, OldPoint);
PenPat(Black);
PenMode(patCopy);
DrawRObject(NextObject);
if NextObject <> MaxObjects then

NextObject := NextObject + l;
end;

end;

When the user releases the mouse button, the routine calculates the
center of the rectangle and its dimensions and adds it to the object list. It
then erases the rectangle and calls DrawRObject to draw it in black.
DrawRObject is the routine that draws a rectangle object after moving,

148 DRAWING OBJECTS

scaling, or rotating it. We use it here because a rounding error causes it to
draw the rectangle 1 pixel smaller than FRect draws it.

Now that we know how objects are created, it's time to see how the
program manipulates them. The first step in manipulating an object is to
select it. If the SEL box in the palette is selected and the program detects
a mouse button event in the drawing area, it calls DoSelect to select an
object (listing 7 .6).

DoSelect first checks to see if an object is selected. If there is already
an object selected, it deselects that object and calls the DrawObject
routine to redraw it in black. DoSelect then scans all of the objects in the
object list to find the one whose center is closest to the mouse point. It

111111111111111111111111111111111 Listing 7 .6 The DoSelect Routine

{listing 7. 6}
procedure DoSelect;
var
r, BestR, i, BestObject Integer;

begin
repeat
until not button;
if SelectedObject <> 0 then
begin
PenPat(black);
DrawObject(SelectedObject);
SelectedObject := O;

end;
BestObject := O;
BestR := 724;
if NextObject > 1 then
begin
for i := 1 to NextObject - 1 do
begin

r := Length(MousePt, Objects[i].Center);
if r < bestR then
begin

bestR := r;
bestObject := i;

end;
end;

end;
if BestR > 50 then
BestObject := O;

if BestObject <> 0 then
begin

PenPat(dkGray);
DrawObject(BestObject);
SelectedObject := BestObject;
PenPat(Black);

end;
end;

A PROGRAM WITH OBJECTS 149

selects that object and draws it in gray. If no object is closer than 50 pixels
to the selection point, DoSelect doesn't select an object.

When you click the mouse in one of the control boxes in the bottom
palette, the program calls DoControl, and DoControl calls one of the
following procedures to take action: DoCut, DoRot, DoMove, or DoScale.
These four routines manipulate the selected object, so if no object is
selected, they don't do anything.

The DoCut routine erases the object and removes it from the object
list. DoRot erases the object, increments its Angle parameter by 1 degree,
and redraws it. DoScale works the same way except that it increments the
object's XLength and YLength parameters. DoMove erases the object and
waits for a mouse click in the drawing area. When it detects that mouse
event, it sets the object's center to the mouse coordinates and redraws the
object.

All of the routines that we've looked at so far have been routines that
set up the user interface and change the object's parameters. Now it's time
to get to the heart of the program, the routines that draw the objects
and do the scaling and rotation. In listing 7. 7 we see the DrawObject
routine. When any routine needs to draw an object and doesn't know
what type of object it is drawing, it calls DrawObject. All of the control
routines, DoCut, DoRot, DoMove, and DoScale, use DrawObject to do
their drawing.

111111111111111111111111111111111 Listing 7. 7 The DrawObject Routine

(listing 7.7}
procedure DrawObject (Object : Integer);
var

OType : Integer;
begin

OType := Objects[Object].ObjectType;
case OType of

Line :
DrawLObject(Object);

Rectangle :
DrawRObject(Object);

Triangle :
DrawTObject(Object);

Circle :
DrawCObject(Object);

Circle2 :
DrawArcObject (Object, 180);

Circle4 :
DrawArcObject (Object, 90);

end;
end;

150 DRAWING OBJECTS

DrawObject just finds out what kind of object is to be drawn and calls
a specialized drawing routine to handle it. DrawRObject (listing 7 .8) is a
good example. It draws a rectangle object.

It is the task of DrawRObject to calculate the points of the rectangle
given the center, width, height, and angle relative to the x axis. Calculating
the corners of the unrotated rectangle is a simple task. The routine just
adds and subtracts half of the length of each side from the rectangle's
center. It then calls the Rotate routine for each corner to calculate the
corner's position after rotating the rectangle through the angle specified in
the object record.

Note that the routine doesn't actually draw the rectangle until it has
rotated it. The user never sees the unrotated rectangle. The actual drawing
is done by DrawARect. It moves the pen to the upper left corner and then
draws a line between each pair of corners in succession.

The scaling of objects in this program is almost transparent. It is done
when the user selects the SCALE control, not when the object is drawn.
Instead of scaling each object at drawing time, the program stores the
scaling information in the XLength and YLength fields in the object
record.

111111111111111111111111111111111 Listing 7 .8 The DrawRObject Routine

{listing 7.8)
procedure DrawRObject (Object : integer) ;
var

UpperLeft, UpperRight, LowerLeft, LowerRight point;
begin

with Objects [Object] do
begin

UpperLeft.h := center.h - (XLength div 2);
UpperLeft.v := center.v - (YLength div 2);
LowerRight.h := center.h + (XLength div 2);
LowerRight.v := center.v + (YLength div 2);
UpperRight.h := LowerRight.h;
UpperRight.v := UpperLeft.v;
LowerLeft.h := UpperLeft.h;
LowerLeft.v := LowerRight.v;
if Angle <> 0 then
begin

Rotate (UpperLeft, Center, Angle);
Rotate(UpperRight, Center, Angle);
Rotate(LowerLeft, Center, Angle);
Rotate(LowerRight, Center, Angle);

end;
DrawARect (UpperLeft, UpperRight, LowerLeft, LowerRight);

end;
end;

A PROGRAM WITH OBJECTS 151

The rotation is done exactly as described earlier in the chapter. The
Rotate routine (listing 7 .9) first translates a point to the origin and then
rotates it through the specified angle and translates it back. In this program
we always rotate an object about its own center, so the axis of rotation
passed to Rotate is the center of the object.

Note that the angle is stored in the object record in degrees but is
converted to radians before the rotation calculations. While the Quick­
Draw arc-drawing routines specify angles in degrees in the clockwise
direction, the Sin and Cos functions require angles in radians in the
counterclockwise direction. The program stores angles as degrees in the
counterclockwise direction.

The line and triangle object-drawing routines, DrawLObject and
DrawTObject, are very similar to DrawRObject-in fact, almost identical
to it. The circle-drawing routine, DrawCObject, is just like DrawRObject
except that it doesn't do rotation. Draw ArcObject (listing 7 .10) is similar,
but it doesn't use the Rotate routine to rotate the corners that define the
object. It uses the QuickDraw routine FrameArc to draw a half or quarter
circle. It passes FrameArc the object angle from the object record to use
as the starting point for drawing the arc. It passes FrameArc either 90
degrees or 180 degrees as the length of the arc.

111111111111111111111111111111111 Listing 7 .9 The Rotate Routine

{listing 7. 9}
procedure Rotate (var thePoint

axis : point;
angle : integer) ;

var
temp : point;
theta : real;

begin

point;

theta := 2 * 3.1415926 * angle I 360;
temp.v := round((thePoint.v - axis.v) * cos(theta) -

(thePoint.h - axis.h) * sin(theta) + axis.v);
temp.h := round((thePoint.v - axis.v) * sin(theta) +

(thePoint.h - axis.h) * cos(theta) + axis.h);
thePoint.v := temp.v;
thePoint.h := temp.h;

end;

152 DRAWING OBJECTS

111111111111111111111111111111111 Listing 7 .10 The Draw ArcObject Routine

{listing 7 .10}
procedure DrawArcObject (Object, Arc : integer};
var

UpperLeft, LowercRight point;
OvalRect : Rect;

begin
with Objects [Object] do
begin

UpperLeft .h := center.h - (XLength div 2);
UpperLeft.v := center.v - (YLength div 2);
LowerRight .h := center.h + (XLength div 2);
LowerRight.v := center.v + (YLength div 2);
SetRect(OvalRect, UpperLeft.h, UpperLeft.v, LowerRight.h,

LowerRight.v);
FrameArc(OvalRect, -Angle, Arc);

end;
end;

MODIFYING THE OBJECT-
11111111111111111111111111111111 DRAWING PROGRAM

There's room for improvement in this program, but there are limitations
on what you can do with Macintosh Pascal. We didn't create any menus
because we didn't want to use the InLine routine to call toolbox proce­
dures (InLine turns off all error checking in the Pascal interpreter). Instead
of menus, we used the control boxes in the bottom palette. They are not
elegant but are adequate for an example program.

In modifying the program, you will quickly run up against another
Macintosh Pascal limitation. The program is very near the limit of the size
that Macintosh Pascal can handle. Adding more text, even comments, will
cause the interpreter to crash with a system error.

You can get around the problem by reorganizing part of the program.
Much of the code in the palette initialization section could be put into one
subroutine. There are several other areas where something similar could
be done to cut down on program size. Once you are over the program size
hurdle, there are several interesting things you might want to do:

1 Have two rotate controls, one for each direction.

2 Instead of incrementing the angle of rotation every time the user
clicks in the ROT box, continue to increment it as long as the
mouse button is down in the ROT box.

MODIFYING THE OBJECT-DRAWING PROGRAM 153

3 Add more scale controls so the user can scale up or down in either
the horizontal or vertical direction.

4 When the user cuts an object, store a copy of the object record
and have a paste control that lets the user paste it back later.

5 For the really ambitious: provide a method of grouping objects so
that they can be treated as one object for moving, scaling, and
rotation. Hint: define an object type called Group. The Group
object record must identify a linked list that has the object
numbers of members of the group.

If you are interested in finding out more about how CAD programs
draw objects, a good place to start is the book Fundamentals of Interac­
tive Computer Graphics by J. D. Folley and A. Van Dam, particularly·
chapter 9.

The entire CheapCAD program is shown in listing 7 .11.

154 DRAWING OBJECTS

111111111111111111111111111111111 Listing 7 .11 CheapCAD

program CheapCAD;
{Listing 7 .11 }
con st

NotDraw = l;
PSelect = l;
Line = 2;
Rectangle = 3;
Triangle = 4;
Circle = 5;
Circle2 = 6;
Circle4 = 8;
Draw = l;
Stop = 2;
MaxLength = 512;
MaxObjects = 50;

type
Object = record

ObjectType : Integer;
Center : point;
XLength : Integer;
YLength : Integer;
Angle

end;

var

Integer;

controlrect, palrect, DrawRect : rect;
CutRect, MoveRect, ScaleRect, RotRect rect;
TempRect, CancelRect : rect;
PSelRect, RectRect, TriRect, LineRect Rect;
CircRect, Circ2Rect, Circ4Rect : Rect;
CrossHairs : cursor;
done : BOOLEAN;
MousePt, StartPt : point;
Palette, Control : Integer;
Objects : array[l •• MaxObjects] of Object;
NextObject, SelectedObject : Integer;

procedure SortRect (var UpperLeftH, UpperLeftV, LowerRightH,
LowerRightV: Integer);

var

Continued

THE OBJECT-DRAWING PROGRAM

lllllllllllllllllllllllllllllllll Listing 7 .11 Continued

Temp : Integer;
begin
if UpperLeftH > LowerRightH then
begin

Temp := UpperLeftH;
UpperleftH := LowerRightH;
LowerRightH := Temp;

end;
if UpperLeftV > LowerRightV then
begin

Temp := UpperLeftV;
UpperLeftV := LowerRightV;
LowerRightV := Temp;

end;
end;

procedure Rotate (var thePoint
axis : point;
angle : integer);

var
temp point;
theta : real;

begin

point;

theta := 2 * 3.1415926 * angle I 360;

155

temp.v := round((thePoint.v - axis.v) * cos(theta) - (thePoint.h -
axis.h) * sin(theta) + axis.v);

temp.h := round((thePoint.v - axis.v) * sin(theta) + (thePoint.h -
axis.h) * cos(theta) + axis.h);

thePoint.v := temp.v;
thePoint.h := temp.h;

end;

procedure DrawLine (StartPoint, EndPoint
begin

MoveTo(StartPoint.h, StartPoint.v);
LineTo(EndPoint.h, EndPoint.v);

end;

procedure DrawLObject (Object
var
startPt, EndPt : point;

integer);

point);

Continued

156 DRAWING OBJECTS

111111111111111111111111111111111 Listing 7 .11 Continued

begin
with Objects[object] do
begin

StartPt.h := center.h - (XLength div 2);
StartPt.v := center.v - (YLength div 2);
EndPt.h := center.h + (XLength div 2);
EndPt.v := center.v + (YLength div 2);
if angle <> 0 than
begin

rotate(StartPt, center, angle);
rotate(EndPt, center, angle);

end;
DrawLine(StartPt, EndPt);

end;
and;

procedure DrawARect (UpperLeft, UpperRight, LowerLeft, LowerRight
point);

begin
MoveTo(UpperLeft.h, UpperLeft.v);
LineTo(UpperRight.h, UpperRight.v);
LineTo(LowerRight.h, LowerRight.v);
LineTo(LowerLeft.h, LowerLeft.v);
LineTo(UpperLeft.h, UpperLeft.v);

end;

procedure DrawRObject (Object : integer);
var

Uppe.rLeft, UpperRight, LowerLeft, LowerRight point;
begin

with Objects[Object] do
begin

UpperLeft.h := center.h - (XLength div 2);
UpperLeft.v := center.v - (YLength div 2);
LowerRight.h := center.h + (XLength div 2);
LowerRight.v := center.v + (YLength div 2);
UpperRight.h := LowerRight.h;
UpperRight.v := UpperLeft.v;
LowerLeft.h := UpperLeft.h;
LowerLeft.v := LowerRight.v;
if Angle <> O than

Continued

THE OBJECT-DRAWING PROGRAM 157

111111111111111111111111111111111 Listing 7 .11 Continued

bag in
Rotate(UpperLeft, Center, Angle);
Rotate(UpperRight, Center, Angle);
Rotate(LowerLeft, Center, Angle);
Rotate(LowerRight, Center, Angle);

and;
DrawARect(UpperLeft, UpperRight, LowerLeft, LowerRight);

and;
and;

procedure DrawTri (one, two, three Point);
bag in

MoveTo(One.h, One.v);
LineTo(Two.h, Two.v);
LineTo(Three.h, Three.v);
LineTo(One.h, One.v);

and;

procedure DrawTObject (Object : integer);
var

UpperLeft, Apex, LowerLeft point;
bag in

with Objects[Object] do
bag in

UpperLeft.h := center.h - (XLength div 2);
UpperLeft.v := center.v - (YLength div 2);
LowerLeft.h := UpperLeft.h;
LowerLeft.v := center.v + (YLength div 2);
Apex.h := center.h + (XLength div 2);
Apex.v := center.v;
if Angle <> O than
bag in

Rotate(UpperLeft, Center, Angle);
Rotate(LowerLeft, Center, Angle);
Rotate(Apex, Center, Angle);

and;
DrawTri(UpperLeft, Apex, LowerLeft);

and;
and;

procedure DrawCObject (Object integer);

Continued

158 DRAWING OBJECTS

111111111111111111111111111111111 Listing 7 .11 Continued

var
UpperLeft, LowerRight point;
OvalRect : Rect;

begin
with Objects[Object] do
begin

UpperLeft.h := center.h - (XLength div 2);
UpperLeft.v := center.v - (YLength div 2);
LowerRight.h := center.h + (XLength div 2);
LowerRight.v := center.v + (YLength div 2);
SetRect(OvalRect, UpperLeft.h, UpperLeft.v, LowerRight.h,

LowerRight • v) ;
FrameOval(OvalRect);

end;
end;

procedure DrawArcObject (Object, Arc
var

UpperLeft, LowerRight : point;
OvalRect : Rect;

begin
with Objects[Object] do
begin

integer);

UpperLeft.h := center.h - (XLength div 2);
UpperLeft.v := center.v - (YLength div 2);
LowerRight.h := center.h + (XLength div 2);
LowerRight.v := center.v + (YLength div 2);
SetRect(OvalRect, UpperLeft.h, UpperLeft.v, LowerRight.h,

LowerRight • v) ;
FrameArc(OvalRect, -Angle, Arc);

end;
end;

procedure DrawObject (Object
var

OType : Integer;
begin

Integer);

OType := Objects[Object] .ObjectType;
case OType of

Line :
DrawLObject(Object);

Continued

THE OBJECT-DRAWING PROGRAM 159

111111111111111111111111111111111 Listing 7 .11 Continued

Rectangle
DrawRObject(Object);

Triangle :
DrawTObject(Object);

Circle :
DrawCObject(Object);

Circle2 :
DrawArcObject(Object, 180);

Circle4 :
DrawArcObject(Object, 90);

end;
end;

procedure DoCut;
var

i : Integer;
begin

InvertRect(CutRect);
repeat
until not button;
if SelectedObject <> 0 then
begin

{"undraw" the object}
PenPat(white);
DrawObject(SelectedObject);
PenPat(Black);

{delete the object from the object list}
for i := SelectedObject to NextObject - 2 do
begin

Objects[i) .ObjectType := Objects[i + 11 .ObjectType;
Objects[iJ.Center := Objects[i + lJ.Center;
Objects[i) .XLength := Objects[i + 1].XLength;
Objects[i) .YLength := Objects[i + 1) .YLength;
Objects(iJ .Angle := Objects[i + 11 .Angle;

end;
NextObject := NextObject - 1;
SelectedObject := O;

end;
InvertRect(CutRect);

end;

Continued

180 DRAWING OBJECTS

111111111111111111111111111111111 Listing 7 .11 Continued

procedure DoRot;
begin
if SelectedObject <> 0 then
with Objects[SelectedObjectJ do
begin

InvertRect{RotRect);
repeat
until not button;
PenPat{white);
DraWObject{SelectedObject);
Angle := Angle + 1;
if Angle >= 360 then

Angle := O;
PenPat{dkGray);
DrawObject(SelectedObject);
InvertRect{RotRect);

end;
end;

procedure DoMove;
begin
if SelectedObject <> 0 then
begin

InvertRect(MoveRect);
repeat
until not button;
PenPat(White);
DraWObject(SelectedObject);
repeat
until button;
repeat
until not button;
GetMouse(MousePt.h, MousePt.v);
with Objects[SelectedObject] do

Center := MousePt;
PenPat(dkGray);
DraWObject(SelectedObject);
InvertRect(MoveRect);

end;
end;

Continued

THE OBJECT-DRAWING PROGRAM 161

111111111111111111111111111111111 Listing 7 .11 Continued

procedure DoScale;
begin
if SelectedObject <> 0 then
begin

InvertRect(ScaleRect);
repeat
until not button;
PenPat(white);
DrawObject(SelectedObject);
with objects[SelectedObject) do
begin

Xlength := XLength + 1;
Ylength := YLength + 1;

end;
PenPat(dkGray);
DrawObject(SelectedObject);
InvertRect(ScaleRect);

and;
end;

procedure DoControl;
{Handle a mouse click in the control palette}
begin
if PtinRect(MousePt, CutRect) then

Do Cut
else if PtinRect(MousePt, RotRect) then

Do Rot
else if PtinRect(MousePt, MoveRect) then

Do Move
else if PtinRect(MousePt, ScaleRect) then

DOScale
else
repeat
until not button;

end;

function Length (Pointl, Point2
{Calculate the length of a line}
begin

point) Integer;

SortRect(Pointl.h, Pointl.v, Point2.h, Point2.v);
length := round(sqrt(sqr(point2.h - pointl.h) + sqr(point2.v -

Continued

182 DRAWING OBJECTS

111111111111111111111111111111111 Listing 7 .11 Continued

pointl. v)));
end;

procedure DoSelect;
var

r, BestR, i, BestObject Integer;
begin

repeat
until not button;
if SelectedObject <> 0 then

bag in
PenPat(black);
DrawObject(SelectedObject);
SelectedObject := O;

end;
BestObject := O;
BestR := 724;
if NextObject > 1 then
begin

for i := 1 to NextObject - 1 do
begin

r := Length(MousePt, Objects[i] .Center);
if r < bestR than

bag in
bestR := r;
bestObject := i;

end;
end;

end;
if BestR > 50 then

BestObject := O;
if BestObject <> 0 then
begin

PenPat(dkGray);
DrawObject(BestObject);
SelectedObject := BestObject;
PenPat(Black);

end;
end;

procedure DrawCirc (UpperLeft, LowerRight point);

Continued

THE OBJECT-DRAWING PROGRAM

111111111111111111111111111111111 Listing 7 .11 Continued

{Frame a circle}
var

theRect : rect;
begin

SortRect(UpperLeft.h, UpperLeft.v, LowerRight.h, LowerRight.v);
SetRect(theRect, UpperLeft.h, UpperLeft.v, LowerRight.h,

LowerRight. v) ;
FrameOval(theRect);

end;

procedure FCirc2 (UpperLeft, LowerRight
var

theRect : rect;
begin

point);

SortRect(UpperLeft.h, UpperLeft.v, LowerRight.h, LowerRight.v);
SetRect(theRect, UpperLeft.h, UpperLeft.v, LowerRight.h,

LowerRight. v) ;
FrameArc(theRect, 0, 180);

end;

procedure FCirc4 (UpperLeft, LowerRight
var

theRect : rect;
beqin

point);

SortRect(UpperLeft.h, UpperLeft.v, LowerRight.h, LowerRight.v);
SetRect(theRect, UpperLeft.h, UpperLeft.v, LowerRight.h,

LowerRight. v) ;
FrameArc(theRect, O, 90);

end;

procedure FTri (UpperLeft, LowerRight
var

two, three : point;
begin

point);

SortRect(UpperLeft.h, Upperleft.v, LowerRight.h, LowerRight.v);
Two.h := LowerRight.h;
Two.v := (LowerRight.v - UpperLeft.v) div 2 + UpperLeft.v;
Three.h := UpperLeft.h;
Three.v := LowerRight.v;
DrawTri(UpperLeft, Two, Three);

end;

163

Continued

114 DRAWING OBJECTS

111111111111111111111111111111111 Listing 7 .11 Continued

procedure SortLine (pointl, point2 point);

procedure swappoints;
var

temp : point;
begin

temp := pointl;
pointl := point2;
point2 := temp;

end;

begin
if pointl.h = point2.h then
begin
if pointl.v > point2.v then

swapPoints;
end

else if pointl.h > point2.h then
swappoints;

end;

procedure MakeLine;
var

OldPoint : point;
XLen, YLen : Integer;

begin
PenMode(patXor);
PenPat(dkGray);
repeat

GetMouse(MousePt.h, MousePt.v);
until (MousePt.h <> StartPt.h) or (MousePt.v <> StartPt.v) or not

Button;
if Button then
begin

DrawLine(StartPt, MousePt);
OldPoint := MousePt;
repeat
begin

GetMouse(MousePt.h, MousePt.v);
if (MousePt.h <> OldPoint.h) or (MousePt.v <> OldPoint.v)

Continued

THE OBJECT-DRAWING PROGRAM 165

lllllllllllllllllllllllllllllllll Listing 7 .11 Continued

than
begin

DrawLine(StartPt, OldPoint);
DrawLine(StartPt, MousePt);
OldPoint := MousePt;

and;
and

until not Button;
SortLine(StartPt, OldPoint);
Objects[NextObject].ObjectType :=Line;
Xlen := (OldPoint.h - StartPt.h);
YLen := (OldPoint.v - StartPt.v);
Objects[NextObject].Center.h := Xlen div 2 + StartPt.h;
Objects[NextObject].Center.v := Ylen div 2 + StartPt.v;
Objects[NextObject].Xlength := Xlen;
Objects[NextObject].YLength := YLen;
Objects[NextObject].Angle := O;
DrawLine(StartPt, MousePt);
PenPat(Black);
PenMode(patCopy);
DrawLObject(NextObject);
if NextObject <> MaxObjects than

NextObject := NextObject + l;
and;

and;

procedure FRect (UpperLeft, LowerRight
var

theRect : rect;
begin

Point);

SortRect(UpperLeft.h, UpperLeft.v, LowerRight.h, LowerRight.v);
SetRect(theRect, UpperLeft.h, UpperLeft.v, LowerRight.h,

LowerRight . v) ;
FrameRect(theRect);

end;

procedure MakeRect;
var

OldPoint, tempPt : point;
XLen, YLen : integer;

begin

Continued

166 DRAWING OBJECTS

111111111111111111111111111111111 Listing 7 .11 Continued

PenMode(patXor);
PenPat(dkGray);
repeat

GetMouse(MousePt.h, MousePt.v);
until (MousePt.h <> StartPt.h) or (MousePt.v <> StartPt.v) or not

Button;
if Button then
begin

FRect(StartPt, MousePt);
OldPoint .- MousePt;
repeat
begin

GetMouse(MousePt.h, MousePt.v);
if (MousePt.h <> OldPoint.h) or (MousePt.v <> OldPoint.v)

then
begin

FRect(StartPt, OldPoint);
FRect(StartPt, MousePt);
OldPoint := MousePt;

end;
end

until not Button;
begin
end;
SortRect(StartPt.h, StartPt.v, OldPoint.h, OldPoint.v);
Objects[NextObject] .ObjectType :=Rectangle;
Xlen := (OldPoint.h - StartPt.h);
YLen := (OldPoint.v - StartPt.v);
Objects[NextObject] .Center.h := Xlen div 2 + StartPt.h;
Objects[NextObject] .Center.v := Ylen div 2 + StartPt.v;
Objects[NextObject] .Xlength := Xlen;
Objects[NextObject] .YLength := YLen;
Objects[NextObject] .Angle := O;
FRect(StartPt, OldPoint);
PenPat(Black);
PenMode(patCopy);
DrawRObject(NextObject);
if N~xtObject <> MaxObjects then

NextObject := NextObject + 1;
end;

end;

Continued

THE OBJECT-DRAWING PROGRAM 167

111111111111111111111111111111111 Listing 7 .11 Continued

procedure MakeTri;
var

OldPoint : point;
XLen, YLen : Integer;

bag in
PenMode(patXor);
PenPat(dkGray);
repeat

GetMouse(MousePt.h, MousePt.v);
until (MousePt.h <> StartPt.h) or (MousePt.v <> StartPt.v) or not

Button;
i:t Button then
bag in

FTri(StartPt, MousePt);
OldPoint := MousePt;
repeat
begin

GetMouse(MousePt.h, MousePt.v);
i:t (MousePt.h <> OldPoint.h) or (MousePt.v <> OldPoint.v)

than
bag in

FTri(StartPt, OldPoint);
FTri(StartPt, MousePt);
OldPoint := MousePt;

and;
end

until not Button;
FTri(StartPt, OldPoint);
PenPat(Black);
PenMode(patCopy);
SortRect(StartPt.h, StartPt.v, OldPoint.h, OldPoint.v);
Objects[NextObject].ObjectType :=Triangle;
Xlen := (OldPoint.h - StartPt.h);
YLen := (OldPoint.v - StartPt.v);
Objects[NextObjectJ.Center.h := Xlen div 2 + StartPt.h;
Objects[NextObject].Center.v := Ylen div 2 + StartPt.v;
Objects[NextObjectJ.Xlength := Xlen;
Objects[NextObject].YLength := YLen;
Objects[NextObjectJ.Angle := O;
DrawTObject(NextObject);

Continued

168 DRAWING OBJECTS

111111111111111111111111111111111 Listing 7 .11 Continued

if NextObject <> MaxObjects then
NextObject := NextObject + 1;

end;
end;

procedure MakeCirc;
var

OldPoint : point;
XLen, YLen : Integer;

begin
PenMode(patXor);
PenPat(dkGray);
repeat

GetMouse(MousePt.h, MousePt.v);
until (MousePt.h <> StartPt.h) or (MousePt.v <> StartPt.v) or not

Button;
if Button then
begin

DraWCirc(StartPt, MousePt);
OldPoint := MousePt;
repeat
begin

GetMouse(MousePt.h, MousePt.v);
if (MousePt.h <> OldPoint.h) or (MousePt.v <> OldPoint.v)

then
begin

DrawCirc(StartPt, OldPoint);
DraWCirc(StartPt, MousePt);
OldPoint := MousePt;

end;
end

until not Button;
DraWCirc(StartPt, OldPoint);
PenPat(Black);
PenMode(patCopy);
SortRect(StartPt.h, StartPt.v, OldPoint.h, OldPoint.v);
Objects[NextObject].ObjectType :=Circle;
Xlen := (OldPoint.h - StartPt.h);
YLen := (OldPoint.v - StartPt.v);
Objects [NextObject] • Center. h : = Xle.n div 2 + StartPt. h;
Objects[NextObject).Center.v := Ylen div 2 + StartPt.v;

Continued

THE OBJECT-DRAWING PROGRAM 169

111111111111111111111111111111111 Listing 7 .11 Continued

Objects[NextObject].Xlength := Xlen;
Objects[NextObject].YLength := YLen;
Objects[NextObject].Angle := O;
DrawCObject(NextObject);
if NextObject <> MaxObjects then

NextObject := NextObject + 1;
end;

end;

procedure MakeCirc2;
var

OldPoint : point;
XLen, YLen : Integer;

begin
PenMode(patXor);
PenPat(dkGray);
repeat

GetMouse(MousePt.h, MousePt.v);
until (MousePt.h <> StartPt.h) or (MousePt.v <> StartPt.v) or not

Button;
if Button then
begin

FCirc2(StartPt, MousePt);
OldPoint := MousePt;
repeat
begin

GetMouse(MousePt.h, MousePt.v);
if (MousePt.h <> OldPoint.h) or (MousePt.v <> OldPoint.v)

then
begin

FCirc2(StartPt, OldPoint);
FCirc2(StartPt, MousePt);
OldPoint := MousePt;

end;
end

until not Button;
FCirc2(StartPt, OldPoint);
PenPat(Black);
PenMode(patCopy);
SortRect(StartPt.h, StartPt.v, OldPoint.h, OldPoint.v);
Objects[NextObject].ObjectType := Circle2;

Continued

170 DRAWING OBJECTS

111111111111111111111111111111111 Listing 7 .11 Continued

Xlen := (OldPoint.h - StartPt.h);
YLen := (OldPoint.v - StartPt.v);
Objects[NextObject].Center.h := Xlen div 2 + StartPt.h;
Objects[NextObject].Center.v := Ylen div 2 + StartPt.v;
Objects[NextObject].Xlength := Xlen;
Objects[NextObject].YLength := YLen;
Objects[NextObject].Angle := O;
DrawArcObject(NextObject, 180);
if NextObject <> MaxObjects then

NextObject := NextObject + 1;
end;

end;

procedure MakeCirc4;
var

OldPoint : point;
XLen, YLen : Integer;

begin
PenMode (patXor) ;
PenPat (dkGray);
repeat

GetMouse(MousePt.h, MousePt.v);
until (MousePt.h <> StartPt.h) or (MousePt.v <> StartPt.v) or not

Button;
if Button then
begin

FCirc4(StartPt, MousePt);
OldPoint := MousePt;
repeat
begin

GetMouse(MousePt.h, MousePt.v);
if (MousePt.h <> OldPoint.h) or (MousePt.v <> OldPoint.v)

then
begin

FCirc4(StartPt, OldPoint);
FCirc4(StartPt, MousePt);
OldPoint := MousePt;

end;
end

until not Button;
FCirc4(StartPt, OldPoint);

Continued

THE OBJECT-DRAWING PROGRAM 171

111111111111111111111111111111111 Listing 7 .11 Continued

PenPat(Black);
PenMode(patCopy);
SortRect(StartPt.h, StartPt.v, OldPoint.h, OldPoint.v);
Objects[NextObject].ObjectType := Circle4;
Xlen := (OldPoint.h - StartPt.h);
YLen := (OldPoint.v - StartPt.v);
Objects[NextObject].Center.h := Xlen div 2 + StartPt.h;
Objects[NextObjectJ.Center.v := Ylen div 2 + StartPt.v;
Objects[NextObjectJ.Xlength := Xlen;
Objects[NextObject].YLength := YLen;
Objects[NextObject].Angle := O;
DrawArcObject(NextObject, 90);
if NextObject <> MaxObjects than

NextObject := NextObject + 1;
end;

end;

procedure DoDraw;
begin

StartPt := MousePt;
case Palette of

NotDraw :
DoSelect;

Line :
MakeLine;

Rectangle :
MakeRect;

Triangle :
MakeTri;

Circle :
MakeCirc;

Circle2 :
MakeCirc2;

Circle4 :
MakeCirc4;

and;
and;

procedure PalOff;
begin
if SelectedObject <> 0 than

Continued

172 DRAWING OBJECTS

111111111111111111111111111111111 Listing 7 .11 Continued

begin
PenPat(black);
DrawObject(SelectedObject);
SelectedObject := O;

end;
case Palette of

PSelect :
InvertRect(PselRect);

Line :
InvertRect(LineRect);

Rectangle :
InvertRect(RectRect);

Triangle :
InvertRect(TriRect);

Circle :
InvertRect(CircRect);

Circle2 :
InvertRect(Circ2Rect);

Circle4 :
InvertRect(Circ4Rect);

end;
end;

procedure DoPSelect;
begin

PalOff;
Palette := PSelect;
InvertRect(PSelRect);

end;

procedure DoLine;
begin

PalOff;
Palette := Line;
InvertRect(LineRect);

end;

procedure DoRect;
begin

PalOff;
Palette := Rectangle;

Continued

THE OBJECT-DRAWING PROGRAM 173

111111111111111111111111111111111 Listing 7 .11 Continued

InvertRect(RectRect);
end;

procedure DoTriangle;
begin

PalOff;
Palette := Triangle;
InvertRect(TriRect);

and;

procedure DoCirc;
begin

PalOff;
Palette := Circle;
InvertRect(CircRect);

and;

procedure DoCirc2;
begin

PalOff;
Palette := Circle2;
InvertRect(Circ2Rect);

end;

procedure DoCirc4;
begin

PalOff;
Palette := Circle4;
InvertRect(Circ4Rect);

and;

procedure DoPalette;
{handle mouse click in palette}
begin

repeat
until not button;
if PtinRect(MousePt, PSelRect) than

DoPSelect;
if PtinRect(MousePt, LineRect) than

Do Line
else if PtinRect(MousePt, RectRect) than

Continued

174 DRAWING OBJECTS

111111111111111111111111111111111 Listing 7 .11 Continued

Do Re ct
else if PtinRect(MousePt, TriRect) then

DoTriangle
else if PtinRect(MousePt, CircRect) then

DoCirc
else if PtinRect(MousePt, Circ2Rect) then

DoCirc2
else if PtinRect(MousePt, Circ4Rect) then

DoCirc4
end;

procedure init;
con st

Dv = 40;
Dh = 10;
DWidth = 490;
DHeight = 310;
palwidth = 40;
ctrlHeight = 30;
barWidth = 15;
barHeight = 15;
CutWidth = 80;
MoveWidth = 80;
Scalewidth = 80;
RotWidth = 80;
PSelHeight 40;
LineHeight = 40;
RectHeight = 40;
TriHeight = 40;
CircHeight = 40;
Circ2Height 40;
Circ4Height = 40;

var
graphRect : rect;
i : integer;

begin
{initialize variables}

TextFont(O);
TextSize(l2);
PenPat(black);
PenMode(patcopy);

Continued

THE OBJECT-DRAWING PROGRAM 175

111111111111111111111111111111111 Listing 7 .11 Continued

Done := FALSE;
NextObject := 1;
SelectedObject := O;

{set up drawing rect, object palette and control palette}
setRect(graphRect, Oh, Dv, Oh+ DWidth, Dv + DHeight);
SetDrawingRect(graphRect);
ShowDrawing;
setRect(controlRect, -1, Dheight - CtrlHeight - barHeight, DWidth -

palWidth - barwidth + 1, DHeight - barHeight);
setRect(palRect, DWidth - palwidth - barWidth, -1, DWidth -

barWidth, DHeight - barHeight);
setRect(DrawRect, O, O, DWidth - palwidth - barWidth, Dheight -

CtrlHeight - barHeight);
frameRect(controlRect);
frameRect(PalRect);
SetRect(CutRect, controlRect.left, controlRect.top,

controlrect.left + CutWidth, controlRect.bottom);
FrameRect(CutRect);
MoveTo(((Cutrect.right - CutRect.left) div 2) - 10, CutRect.top +

20);
DrawString('CUT');
SetRect(RotRect, CutRect.right, controlRect.top, CutRect.right +

RotWidth, ControlRect.bottom);
FrameRect(RotRect);
MoveTo(RotRect.left + 15, RotRect.top + 20);
DrawString('ROT');
SetRect(MoveRect, RotRect.right, controlrect.top, RotRect.right +

MoveWidth, ControlRect.bottom);
FrameRect(MoveRect);
MoveTo(MoveRect.left + 15, Moverect.top + 20);
DrawString('MOVE');
SetRect(ScaleRect, MoveRect.right, controlrect.top, moverect.right

+ ScaleWidth, controlrect.bottom);
FrameRect(ScaleRect);
MoveTo(ScaleRect.left + 15, ScaleRect.top + 20);
DrawString('SCALE');
SetRect(PSelRect, PalRect.left, palrect.top, palrect.right,

PalRect.Top + PSe1Height);
FrameRect(PSelRect);
MoveTo(PselRect.left + 10, PSelRect.top + 25);
DrawString('Sel');

Continued

176 DRAWING OBJECTS

111111111111111111111111111111111 Listing 7 .11 Continued

SetRect(LineRect, PalRect.left, PSelRect.bottom, PalRect.right,
PSelRect.bottom + LineHeight);

FrameRect(LineRect);
SetRect(RectRect, PalRect.left, LineRect.bottom, Palrect.right,

LineRect.bottom + RectHeight);
FrameRect(RectRect);
SetRect(TriRect, Palrect.left, RectRect.bottom, PalRect.right,

rectRect.bottom + TriHeight);
FrameRect(TriRect);
SetRect(CircRect, PalRect.Left, TriRect.bottom, PalRect.right,

TriRect.bottom + CircHeight);
FrameRect(CircRect);
SetRect(Circ2Rect, PalRect.left, CircRect.bottom, PalRect.right,

CircRect.bottom + Circ2Height);
FrameRect(Circ2Rect);
SetRect(Circ4Rect, PalRect.left, Circ2Rect.bottom, PalRect.right,

Circ2Rect.bottom + Circ4Height);
FrameRect(Circ4Rect);
PenSize(2, 2);

{draw objects in palette}
TempRect := LineRect;
InsetRect(TempRect, 8, 8);
MoveTo(tempRect.left, Temprect.top);
LineTo(TempRect.right, TempRect.Bottom);
TempRect := RectRect;
InsetRect(TempRect, 8, 8);
FrameRect(TempRect);
TempRect := TriRect;
InsetRect(TempRect, 8, 8);
MoveTo(TempRect.left, TempRect.top);
LineTo(TempRect.right, TempRect.top + ((TempRect.bottom -

TempRect.top) div 2));
LineTo(TempRect.left, TempRect.bottom);
LineTo(TempRect.left, TempRect.top);
TempRect := CircRect;
InsetRect(TempRect, 4, 4);
FrameOval(TempRect);
TempRect := Circ2Rect;
InsetRect(Temprect, 8, 8);
FrameArc(TempRect, O, 180);
TempRect := Circ4Rect;

Continued

THE OBJECT-DRAWING PROGRAM 177

111111111111111111111111111111111 Listing 7 .11 Continued

InsetRect(Temprect, 8, 8);
FrameArc(TempRect, 0, 90);
Palette := Line;
InvertRect(LineRect);

{initialize cursor}
for i := 4 to 12 do
begin

CrossHairs.data[i] := 256;
CrossHairs.mask[i] := 256;

end;
CrossHairs.data[8) := 8176;
CrossHairs.mask[8J := 4064;
CrossHairs.hotspot.v := 8;
CrossHairs.hotspot.h := 8;
InitCursor;
SetCursor(CrossHairs);

end;

begin
init;
repeat
repeat

GetMouse(mousePt.h, MousePt.v);
if Ptinrect(MousePt, DrawRect) than

SetCursor(CrossHairs)
else

SetCursor(arrow);
until button;
GetMouse(MousePt.h, MousePt.v);
if PtinRect(MousePt, PalRect) than

DoPalette
else if PtinRect(MousePt, ControlRect) than

DoControl
else if PtinRect(MousePt, DrawRect) then

DoDraw;
until Done;

end.

111

CHAPTER

B SPLINES AND FRACTALS

Drawing Smooth Curves

Spline Curves

The Spline Program

Drawing Jagged Curves

Drawing Fractals

Simulating Nature

lll

171

180 SPLINES AND FRACTALS

This chapter could just as well have been called "Smoothies andJaggies."
It's about two of the more exotic branches of computer graphics, spline
functions that draw smooth curves and fractal algorithms that draw jagged
curves.

11111111111111111111111111111111 DRAWING SMOOTH CURVES

A draftsperson who wants to draw a smooth curve pulls out a template
called afrench curve. It is a flat piece of plastic cut in a curved shape. Just
as the draftsperson uses a straightedge to draw a straight line, he or she
uses a french curve to draw curves. The draftsperson usually has a set of
templates with all types of curves: french curves of various sizes and
shapes, ellipses, circles, and parabolas.

Computer graphics programmers can't use french curves; instead
they reach into their bag of curve-drawing algorithms to pick one that
seems appropriate. For most of the curves that a draftsperson uses, there's
an algorithm that a computer programmer can use to draw the same thing.
Sometimes you will want to draw a curve with the computer that doesn't
look exactly like one of the standard curves. If you look at car bodies, boat
hulls, or aircraft, you'll see that they are composed of many complex
curves, not just sections of simple curves like ellipses or parabolas.

Over the past 20 years, computer scientists and mathematicians have
developed many techniques for drawing complex curves with a computer.
They usually require that you specify some of the points that you want the
curve to pass through. The algorithms then draw curves that approximate
the shape needed to pass through those points. It's possible, though, to
specify points that cannot be easily fitted with a smooth curve. The next
best thing that you can do in that case is to use several different curves and
connect them. Let's look at several examples.

In figure 8.1, you see a series of points, indicated by small crosses. I
wanted to construct a smooth curve that passes through these points. In
this case, that turned out to be pretty easy. Some experimentation showed
that the points are very close to being on part of an ellipse, and I used the
formula for an ellipse to generate the curve shown directly below the
points.

How did I know the curve would be part of an ellipse? It was just a
lucky guess based on experience and an eye for curves. We'd like to be able
to do better than guess, though. Perhaps if we look at what a draftsperson
does when he or she wants to draw a curve, we'll get a clue as to how we
might make our curve fitting more rigorous.

A draftsperson, seeing those points, would probably get out the
supply of curve templates and start trying them to see what fits. We could

+ + +

DRAWING SMOOTH CURVES 181

+
+

111111111111111111111111111111111 Figure 8.1 A simple curve

do the same thing, trying different algorithms to see which one comes
closest to what we want. If we examine the mathematics behind those
algorithms, we may be able to come up with a methodical way of choosing
just the right formula to fit a curve to our set of points. Let's look at some
formulas for common curves.

Circle
Ellipse
Parabola
Cubic curve

x2 + y2 = r2
ax2 + by2 = r2
y = ax2 +bx+ c
y = ax3 + bx2 + ex + d

About the only similarity we see is that the formulas all have some
number of components that are powers of x. That's not much to go on,
but mathematicians like to play with equations, so they played around and
noticed that if you express the equations in parametric form, you start to
see a relationship.

The parametric form is a way of expressing the same mathematical
relationship that we see in the formulas above but with an additional
variable introduced, the parameter. Instead of showing the relationship of
x and y in one equation, we use two equations. One gives the value of x
in terms of the parameter, and the other gives the value of y in terms of the
parameter.

X = Cx/2 + Cx1t + Cxo

y = Cy/2 + Cy/ + Cy0

182 SPLINES AND FRACTALS

The Cx and cy represent constants. The parameter is t. It is sometimes
useful to think of t as the distance that you are traveling along the curve
with the formulas giving the values of x and y. The values of the constants
determine the shape of the curve. It turns out that a great many varieties
of smooth curves can be drawn with a pair of parametric equations. If you
generalize the set of equations to express x or y as a power series in t,
you've got our generalized tool for drawing curves. You would express the
equations as follows:

X = Cx/n + CXn-ln-1 + ... + Cxl3 + Cx/2 + Cx,t + Cxo

y = Cy/n + CYn-ln-1 + ... + Cy3t3 + Cy/2 +Cy/+ Cyo

Are you tired of math yet? That's about all we're going to see for a
while. But now that we have these neat equations, the real trick is to pick
the values of the constants to produce a curve that goes through our
points.

We can place a few restrictions on the type of curve that we want, and
that will help us choose the constants. We know that we don't want a
curve like the one in figure 8.2. It goes through the control points, but it
goes a lot of other places, too. We'd like it to be better behaved: to stick
close to the control points and be smooth without wandering off in
random directions.

Figure 8.3 shows us something else that we don't want, a curve with
a sharp peak in the middle. We call the mathematicians over and point out
these deficiencies in the formulas; they go off and mutter mathematics to
themselves for a while and come back with a solution of sorts: a set of

111111111111111111111111111111111 Figure 8.2 A curve through points

DRAWING SMOOTH CURVES 183

111111111111111111111111111111111 Figure 8.3 A curve with discontinuity

mathematical restrictions that limit our choices of the constants that
determine the shapes of the curves. If we are going to develop a computer
program that uses those restrictions with the parametric equations, the
program will still have to go through some sort of trial-and-error process
to select the constants.

It's still possible for us to specify a series of points that no parametric
equation can draw a smooth curve through. In this case, we go back to the
draftsperson to see what to do. Faced with a complex curve that no
templates fit, the draftsperson makes the curve by using different tem­
plates for different pieces of the curve. We can do the same. We use
different equations or just the same parametric equations with different
sets of constants for various sections of the curve. The trick here is to make
these different curve sections fit together smoothly (figure 8.4).

In the end, we make a series of compromises between how close the
curve comes to the control points, how smooth it is, and how much
compute time it takes to generate the curve. A method commonly used
involves what are called Bezier curves. The Bezier method joins curves
generated by different parametric equations. The curves are modified near
their ends by blending functions that attempt to make them join smoothly.
Bezier curves are a good compromise for many applications, but they have
two significant drawbacks: the curve does not pass through all of the
control points {it does pass near all of them), and the joints between
curves are not always smooth.

184 SPLINES AND FRACTALS

111111111111111111111111111111111 Figure 8.4 Fitting curves together

11111111111111111111111111111111 SPLINE CURVES

If our most important requirement is smooth curves, we use the B-Spline
method of generating complex curves. The term spline comes from
another tool that draftspersons have used to draw complex smooth curves.
A spline is a metal strip with slots cut into one side. The slots allow the
strip to be flexible but also restrict the radius of curvature.

The B-Spline technique, like the Bezier technique, uses a blending
function to join curves, but it does a better job of it than the Bezier
method. You do have to give up something to get that smoothness and
continuity: the curve passes through fewer control points than the Bezier
curve. With the smoothness comes another factor. The placement of a
control point near a B-Spline curve affects not just the area around that
point; it affects the shape of the entire curve. Let's take a look at the
B-Spline curve in figure 8.5 to see what that means.

You can see that the placement of the conrol points exerts an
influence on the curve even though the curve does not pass through the
points. If you can imagine an elastic string or rubber band that has
magnetic properties (in other words, is attracted by magnets), you can get
a better idea of how the control points affect the shape of the curve.

Imagine that you lay the magnetic rubber band on the surface of a
drawing table and pin down its ends. You then place magnets on the
drawing board at points corresponding to the control points of a B-Spline
curve. The magnets pull the rubber band into a curved shape. Each
magnet's influence on the shape depends on how close it is to the curve

SPLINE CURVES 185

Drowing

+

+ +

111111111111111111111111111111111 Figure 8. 5 A B-Spline curve

and how close other magnets are. The B-Spline algorithm reacts to control
points in much the same way. You can get a curve to come closer to
control points if you place several control points close together. Figures
8.6 and 8 . 7 were generated with a B-Spline algorithm. The principal
difference is that , in figure 8. 7, the first peak of the curve has two control
points. Notice how close the curve comes to the control points and how
they affect its shape.

In figure 8.8, we've increased the number of control points. Notice
how much closer the curve is to the control points. It actually passes
through many of them.

Let's see what kind of program generated these curves. We won't go
into the detailed mathematics behind the algorithm. For readers with a
mathematical bent, there are references that show you where to find that
kind of information. You can use this program to draw curves or take the
spline algorithm and use it in other programs, all without becoming a
mathematician. If you want to draw very smooth curves for professional
applications by using these techniques , you should look up some of the
references (see the bibliography at the end of this book). This spline
algorithm is a reasonable compromise between simplicity and smooth
curves, but there are better algorithms. This one suffers from a 1-bit
rounding error when converting from real coordinates to the Macintosh's

186 SPLINES AND FRACTALS

D Dr11wing

+
~

+

l2J

111111111111111111111111111111111 Figure 8.6 A curve with four control points

Drnwing

+

111111111111111111111111111111111 Figure 8. 7 The effect of adding a fifth control point

SPLINE CURVES 187

Drawing

+

1111111111 11 111111111111111111111 Figure 8.8 A curve with many control points

integer coordinates. It shows a slight tendency to do a 1- or 2-pixel
oscillation where different sections of the curve blend together.

First, type in the program and try it. You set control points (figure 8.9)
by clicking the mouse button in the drawing window.

When you have established all of your control points, click the mouse
anywhere outside of the drawing window, and the program begins calcu­
lating and drawing the curve. It starts at the first control point and usually
ends up on or extremely close to the last control point (figure 8.10).

It 's slow, isn't it? It takes a lot of iterations to calculate all of the points
of the curve and the influence of nearby curve points and control points .
This is one of the reasons why really sophisticated image synthesis
programs are usually run on a Cray instead of a Macintosh.

When you have a specific shape in mind that you want the curve to
match, putting in lots of control points will make the curve come out very
close to the shape you want (figure 8.11).

You can even make curves that close on themselves or curve inside of
themselves like a spiral (figure 8.12).

188 SPLINES AND FRACTALS

-D Drawing

+

+
+

+ +

Q:]

111111111111111111111111111111111 Figure 8.9 Control points

D Drawing

+

+
) +

Q:]

111111111111111111111111111111111 Figure 8.10 The curve

SPLINE CURVES 189

Drawing __

+
+

+

111111111111111111111111111111111 Figure 8.11 A curve with many control points

Drawing

+
+

+

+

+
+

111111111111111111111111111111111 Figure 8.12 A spiral curve

190 SPLINES AND FRACTALS

11111111111111111111111111111111 THE SPLINE PROGRAM

The main loop of the program has two tasks. First it must allow the user
to enter the control points and identify them in the drawing window.
Then it must calculate and draw a curve determined by those control
points. The main loop of the program is shown in listing 8.1.

The init procedure initializes the drawing window, the cursor shape,
and some variables. Two variables that affect the curve calculations are
initialized in the main loop. They are the curve order and the number of
iterations for the spline algorithm. The order is a parameter in the spline
algorithm that influences the shape of the curve. The higher the number,
the closer the curve comes to the control points. A reasonable value for
order is 3, 4, or 5. The number of iterations affects the smoothness of the
curve and the length of time it takes the program to calculate the curve. A
higher number (within limits) creates a smoother curve; a lower number
shortens the calculation time.

The getpoints function is the routine that allows the user to select
control points by clicking the mouse in the drawing window. It returns the
number of control points to the main loop. Getpoints executes until the
user clicks the mouse outside of the drawing window. It then returns to
the main loop.

The spline function returns a point that is a function of the parameter
t, the number of control points, and the order of the curve. It is based on
a spline algorithm described in Principles of Interactive Computer Graph­
ics by William M. Newman and Robert F. Sproull. We will take a brief and

111111111111111111111111111111111 Listing 8.1 The Main Loop of BSplines

(listing 8 .1, BSpline program main loop}

begin
in it;
order : = 3;
iterations := 200;
npoints := getpoints - 1;
MaxT := npoints - order + 2;
CurvePt := spline (0, npoints, order);
MoveTo(CurvePt.h, CurvePt.v);
for j := 1 to iterations do
begin

t := (j * MaxT) I (iterations + 1);
CurvePt := Spline (t, npoints, order);
LineTo(CurvePt.h, CurvePt.v);

end;
end.

DRAWING JAGGED CURVES 191

superficial look at the spline algorithm. If you are interested in more
details or the mathematical basis for the spline function, you can find it in
chapter 21 of Newman and Sproull's book.

The first time the main loop calls the spline function, it uses the
function to calculate the first point on the curve. After moving the pen to
the first point on the curve, the program enters a loop to calculate the rest
of the points on the curve. The control variable for the loop is iterations.
It determines the number of points that the program calculates for the
curve. The range of values that the parameter t can assume is divided into
a number of increments equal to the number of iterations. Each time
through the loop, the program calculates the value of the parameter t for
the current iteration, uses the spline function to calculate the point on the
curve, and draws a line from the previous point to the new curve point.

In listing 8.2, we see the spline function. It calculates a curve point by
adding the influences of the control points. The influence of a control
point is determined by the blending function. The order of the curve has
an influence by determining the number of control points used to calcu­
late a point on the curve. The blend function uses the joint function to
locate the joining points for the various sections of the curve. It smoothly
blends the sections of the curve by applying blending functions to the
influence of nearby control points.

The entire spline program listing is at the end of this chapter. The
blend and joint functions are in that listing.

11111111111111111111111111111111 DRAWING JAGGED CURVES

Smooth curves are almost always a human product; nature seems to prefer
jagged lines. If you look at the outline of a mountain range or a coastline
on a map, you will see what I mean. A new branch of mathematics has
been developed just to describe the types of shapes that nature normally
produces, fractional geometry. The functions that determine that geom­
etry are called fractals.

Have you noticed that when you look at some things in nature, the
closer you look the more detail you see? Even something that looks
perfectly flat, a highly machined metal part, shows surface roughness
when you look closer. Look at it with a microscope, and you will no longer
see even a clue that it has a flat surface. You can find other examples
wherever you look in nature. If you examine a snowflake with your naked
eye, you see its crystalline pattern. If you use a magnifying glass, you see
that what appeared to be straight lines composing the pattern of the
structure are really more detailed structures.

192 SPLINES AND FRACTALS

111111111111111111111111111111111 Listing 8.2 The Spline Function

{listing 8.2}
function Spline (st : real;

n, k : integer) : point;
{n -- number of control points}
{st -- curve generating parameter, 0 < st < n-k+2}
{k -- curve's order of continuity}
type

RPoint = record
x : real;
y : real;

end;
var
i, TLim : integer;
x, y : real;
result : point;
P : RPoint;

{other routines go here, see listing 8. 9}

begin
x : = 0;
y := O;
Tlim := n - k + 2; {also used by Joint function}
if st > TLim then
st := TLim;

for i : = 0 to n do {n = number of control points -1}
begin

P.x := P.x + CtlX[i + l] * Blend(i, k, st);
P.y := P.y + CtlY[i + l] * Blend(i, k, st);

end;
result. v : = round (P .y);
result.h := round(P.x);
Spline := result;

end;

If you use the map of a coastline to measure its length, you arrive at
a number that you think is reasonable. Suppose that the scale of the map
is such that the smallest increment that you can measure is 1 mile. If you
use a map with a larger scale-say one that allows you to measure tenths
of a mile-and remeasure the coastline, it will appear to be longer. If you
could measure the real coastline (not a map) with a yardstick, you'd get a
still larger number. The smaller the increments of measurement, the longer
the coastline appears. That's one of the properties of fractional geometry.

DRAWING FRACTALS 193

11111111111111111111111111111111 DRAWING FRACTALS

We can use the principles of fractional geometry to create drawings that
simulate nature. There are algorithms that produce detailed snowflakelike
drawings. There are others that can be used for modeling coastlines or
mountain ranges. The best way to describe how to draw fractals is to
examine some programs that do just that.

In this chapter, we'll look at three programs for drawing fractals. All
of the programs start with an initial pattern defined by the user. They add
more detail to the pattern in successive iterations, redrawing the pattern
each time.

The first successively adds more detail to a shape that we define at the
start of the program. It redraws the design at each level of detail. The
second uses the same approach but adds a random factor that simulates
the irregular outlines found in nature. The third program successively
divides a line segment into smaller parts, perturbing the connecting points
at each iteration. It draws a good outline of a mountain range.

The user controls the first two programs in the same way. When the
program starts, it draws the end points of a pattern that will be the start of
the fractal. The user clicks the mouse on the other points that will define
the pattern. The program draws a line from the previous point to each new
point as the user clicks the mouse in the drawing window. After defining
the initial pattern, the user clicks the mouse outside of the drawing
window, and the program completes the pattern by drawing a line to the
end point.

In figure 8.13 we see the screen before the user has defined the initial
pattern. In figure 8.14 the user has defined three line segments. The user
then clicks outside of the drawing window, and the program completes
the pattern (figure 8.15).

The user controls the iteration process by clicking the mouse button.
The first time the user clicks the button outside of the drawing window
(to complete the initial pattern), the program draws a line from the last
point the user defined to the end point defined by the program and
removes the crosses from the screen. The next time the user clicks the
mouse, the program does the first iteration. It replaces each line segment
in the pattern with a scaled-down copy of the entire pattern; then it draws
the new pattern. Figure 8.16 shows the first iteration for the pattern in
figure 8.15.

Each time the user clicks the mouse, the program does another
iteration, replacing each existing line segment with the entire pattern.
The third and fourth iterations for our pattern are shown in figures 8.17
and 8.18.

194 SPLINES AND FRACTALS

_o Drowing

+ +

'2J

111111111111111111111111111111111 Figure 8.13 End points

Drowing

+

111111111111111111111111111111111 Figure 8.14 The partially drawn pattern

DRAWING FRACTALS 195

Orowing

111111111111111111111111111111111 Figure 8.15 The completed initial pattern

Orowing

111111111111111111111111111111111 Figure 8.16 The first iteration

196 SPLINES AND FRACTALS

Drawing

111111111111111111111111111111111 Figure 8.1 7 The third iteration

Drawing

111111111111111111111111111111111 Figure 8.18 The fourth iteration

DRAWING FRACTALS 197

Of course, the pattern that you end up with depends a great deal on
what you started with . Figure 8.19 shows a different starting pattern, and
figure 8.20 shows the fourth iteration. Try some patterns yourself, and see
what kinds of results you can get.

The program itself is not complex, and bears a resemblance to the
spline program. In listing 8 .3, we see the main loop of the program. It calls
an initialization routine that sets up variables, the cursor, and the drawing
window. The getpoints routine looks familiar: it allows the user to enter
the points that define the initial pattern and stores those points in the
arrays CtlX and CtlY. The main loop also calls InitPts to initialize the arrays
that hold the points of the patterns. OriginCtl recalculates all of the points
in the initial pattern to give them a zero offset from the origin. These
points constitute the pattern that is used to replace line segments during
the iteration process .

Getpoints retains control until the user clicks the mouse outside of
the drawing window to complete the initial pattern. After getpoints
returns to the main loop, the last thing executed is the iterate procedure.
It sits in an endless loop waiting for a mouse click. When it gets a mouse
click, iterate calculates a new pattern by replacing each line segment with
a scaled copy of the initial pattern. It scales the initial pattern and rotates
it to make it fit exactly in the place of the line segment it replaces .

Drawing

111111111111111111111111111111111 Figure 8.19 Another initial pattern

198 SPLINES AND FRACTALS

Drawing

111111111111111111111111111111111 Figure 8.20 The fourth iteration of the pattern shown in figure 8.19

111111111111111111111111111111111 Listing 8.3 The Main Loop of the Fractal Programs

{listing 8.3)
begin

in it;
npoints : = getpoints;
length := CtlX[np o intsJ - CtlX[l);
InitPts;
OriginCtl;
iterate;

end.

Iterate (listing 8.4) does its job in three steps. When it detects a mouse
click, it erases the drawing window (eraseRect), calculates the new pattern
(calcpts), and draws the new pattern (drawpts). Calcpts is really the heart
of the program (listing 8 .5).

Calcpts works with two lists of points. One list is contained in the
arrays oldPtsH and oldPtsV; the other is in newPtsH and newPtsV. The
pattern is always drawn on the basis of the points in newPts. OldPts is used
to calculate new points when an iteration is being performed. The new

111111111111111111111111111111111 Listing 8.4 The Iterate Routine

{listing 8. 4}
procedure iterate;
var

i : integer;
done : BOOLEAN;

begin
eraseRect(DrawRect);
drawpts;
done := false;
repeat
repeat
until button;
repeat
until not button;
eraseRect(DrawRect);
calcpts;
drawpts

until done;
end;

111111111111111111111111111111111 Listing 8.5 The Calcpts Routine

{listing 8. 5}
procedure calcpts;
var

i : integer;
begin

nextNew : = 1;
for i : = 2 to nOldPts do

DRAWING FRACTALS 199

CalcNew(oldPtsH[i - 1], oldPtsV[i - 1], oldPtsH[i],
oldPtsV[i]);

NewPtsH [nextNew] : = oldPtsH [nOldPts];
NewPtsV[nextNew] := oldPtsV[nOldPts];
nNewPts := nextNew;
for i : = 1 to nNewPts do
begin

oldPtsH[i] := newPtsH[i];
oldPtsV[i] := newPtsV[ij;

end;
nOldpts : = nNewPts;

end;

point values are put in newPts, but when the calculation is complete, the
data in newPts is copied to oldPts.

Calcpts calculates the points for a new pattern by executing a loop
that steps through the set of old points. For each pair of old points, calcpts

200 SPLINES AND FRACTALS

calls a routine that calculates new points. Calcpts passes that routine,
CalcNew, a pair of points. CalcNew (listing 8.6) must figure out the
distance between the points and calculate the sine and cosine of the angle
that a line between those points makes with the horizontal axis. It uses
those numbers to convert the description of the initial pattern (in CtlX and
CtlY) to a scaled-down copy of that pattern between the two old points.

If the initial pattern has four line segments, it takes five points to
describe it. CalcNew is passed two points for every line segment in oldPts
and generates five points for newPts; that is, CalcNew generates five points
for each pair passed to it.

11111111111111111111111111111111 SIMULATING NATURE

If we want to draw something that looks more like a natural phenomenon
such as a mountain or a coastline, we need to introduce an element of
randomness into the pattern. The second fractal program does that by
adding a random offset to the y value (vertical coordinate) of the new
points calculated every iteration. Except for that random offset, the pro­
gram is identical to the first. The CalcNew routine (listing 8. 7) calculates
a new offset every time it is called and adds that offset to every y value that

111111111111111111111111111111111 Listing 8.6 The CalcNew Routine

{listing 8.6)
procedure CalcNew (hl, vl, h2, v2 : integer);
var

scale, seglen, SegCos, SegSin : real;
i : integer;

begin
seglen := sqrt(sqr(h2 - hl) + sqr(v2 - vl));
scale := seglen I length;
SegSin := (vl - v2) I seglen;
SegCos := (h2 - hl) I seglen;

{we want to rotate & scale the figure in Ctl then move it to
(hl,vl)}

{take each point from ctl, rotate it, scale it and offset by
(hl,vl)}

for i := 1 to npoints - 1 do
begin

newPtsV[nextNewJ := round(scale * (SegCos * CtlY[i] -
SegSin * CtlX(i])) + vl;

newPtsH[nextNew) := round(scale * (SegSin * CtlY[i] +
SegCos * CtlX[i])) + hl;

nextNew := nextNew + l;
end;

end;

SIMULATING NATURE 201

111111111111111111111111111111111 Listing 8. 7 The CalcNew Routine with Offset

{listing 8.7)
procedure CalcNew (hl, vl, h2, v2 : integer);
var
offset, scale, seglen, SegCos, SegSin : real;
i : integer;

begin
seglen := sqrt(sqr(h2 - hl) + sqr(v2 - vl));
scale : = seglen I length;
SegSin := (vl - v2) I seglen;
SegCos := (h2 - hl) I seglen;
offset := random I (32767);

{we want to rotate & scale the figure in Ctl then move it to
(hl,vl))

{take each point from ctl, rotate it, scale it and offset by
(hl,vl))

for i := 1 to npoints - 1 do
begin

newPtsV[nextNew] := round(offset * scale * (SegCos *
CtlY[i] - SegSin * CtlX[i])) + vl;

newPtsH[nextNew] := round(scale * (SegSin * CtlY[i) +
SegCos * CtlX[i])) + hl;

next New : = nextNew + 1;
end;

end;

it puts in newPtsV. Every iteration, the program places a scaled and rotated
copy of the initial pattern in place of each line segment in the old pattern.

The effect of the changes to CalcNew is to offset the points of the
scaled and rotated initial pattern. Each time the initial pattern replaces a
line segment, the routine calculates a new offset; that is, there is a new
offset for every pair of points in oldPts.

Figures 8.21 through 8.25 show the sequence of patterns generated
by the Fractal2 program. This set of patterns was started with the same
initial pattern that we used with the first fractal program. Comparing figure
8.25 to figure 8.20, you can see that the random offset made quite a
difference. Instead of the filigree in figure 8.20, we get a pattern that looks
more like a coastline.

Our last fractal program does not allow the user to specify the initial
pattern. It starts by assuming that a line between the two end points is the
initial pattern. At each iteration, the program divides each line segment
into two line segments. The point where the two new line segments join
is offset vertically from the old line segment by a random amount.

At the start of the program, the user specifies where the division point
for the initial line segment will be. The user clicks the mouse somewhere
in the window, and that point determines the initial offset value. At each

202 SPLINES AND FRACTALS

Drowing

111111111111111111111111111111111 Figure 8.21 The Fractal2 initial pattern

Drowing

111111111111111111111111111111111 Figure 8.22 The Fracta12 first iteration

SIMULATING NATURE 203

Dr11wing

111111111111111111111111111111111 Figure 8.23 The Fractal2 second iteration

Drnwing

111111111111111111111111111111111 Figure 8.24 The Fractal2 third iteration

204 SPLINES AND FRACTALS

§0 Drowing

111111111111111111111111111111111 Figure 8.2 5 The Fractal2 fourth iteration

iteration, that offset value is modified by a fudge factor (amp) and a random
number to calculate the vertical offset of each new pattern.

In listing 8.8, we see the CalcNew procedure for the Fractal3 pro­
gram. Every time it is passed a pair of points from the old pattern, it
calculates three new points, replacing the old line segment with two new

111111111111111111111111111111111 Listing 8.8 The Fractal3 CalcNew Routine

{listing 8.8)
procedure CalcNew (hl, vl, h2, v2 : integer);
var

seglen, SegCos, SegSin, ran : real;
i : integer;

begin
seglen := sqrt(sqr(h2 - hl) + sqr(v2 - vl));
ran := random I 32767;
newPtsV [nextNew] : = vl;
newPtsH [nextNew] := hl;
nextNew := nextNew + l;
offset : = ran * seglen * amp * scale;
newPtsV[nextNew] := -round((vl - v2) / 2 + offset) + vl;
newPtsH [nextNew] := ((h2 - hl) div 2) + hl;
nextNew := nextNew + l;

end;

SIMULATING NATURE 205

line segments. The old line segment is divided at its center, and the joining
point of the new line segments is offset vertically by the value of the offset
variable. That variable is calculated by multiplying the original offset
entered by the user (scale) by the segment length (seglen), the fudge factor
(amp), and the random number (ran).

The effect is to offset the center of each line segment. vertically by a
random amount at each iteration. The random number is different for each
line segment. Note that when the user enters the point used to calculate
the offset, the program does not use the horizontal component of that
point; only the vertical component is used. The complete listing for
Fractal3 is at the end of this chapter.

Figures 8.26 through 8.29 show a set of patterns generated by
Fractal3. Figures 8.26 through 8.28 show the initial pattern and the first
two iterations; figure 8.29 is the eighth iteration. We are making fewer
changes at each iteration than we did in the Fractal 1 and Fractal2 pro­
grams, so it takes more iterations to produce a detailed pattern with
Fractal3.

Drawing

111111111111111111111111111111111 Figure 8.26 The Fractal3 initial pattern

206 SPLINES AND FRACTALS

ornwing

111111111111111111111111111111111 Figure 8.27 The Fractal3 first iteration

Drawing

111111111111111111111111111111111 Figure 8.28 The Fractal3 second iteration

SIMULATING NATURE 207

Drawing

111111111111111111111111111111111 Figure 8.29 The Fractal3 eighth iteration

The program makes a nice mountain range, with the mountains
becoming more rugged with each iteration. Fractal3 can be modified to
produce a good imitation of a coastline if you also offset the horizontal
cooordinate of the joint between the new line segments.

Listings 8 .9, 8.10, 8.11, and 8.12 show the BSplines, Fractall, Frac­
tal2, and Fractal3 programs in their entirety.

208 SPLINES AND FRACTALS

111111111111111111111111111111111 Listing 8.9 BSplines

program BSplines;
{Listing 8. 9}
con st

MaxPoints = 100;
Oh = 40;
Dv = 40;
DWidth = 390;
DHeight = 2 90;

var
iterations, npoints, MaxT, k, j, order : Integer;
t : real;
CtlX, CtlY : array[l . . MaxPoints) of real;
DrawRect, graphRect : Rect;
CrossHairs : cursor;
CurvePt : Point;

function Spline (st : real;
n, k : integer) : point;

{n -- number of control points}
{st -- curve generating parameter, 0 < ·St < n-k+2}
{k -- curve's order of continuity}

type
RPoint = record

x : real;
y : real;

end;
var
i, TLim : integer;
x, y : real;
result : point;
P : RPoint;

function Joint (m integer) integer;
begin
if (m >= k) and (m <= n) then
Joint := m - k + 1

else if m < k then
Joint .- 0

else
Joint : = TLim

end;

function Blend (bi, bk : integer;
bt : real) real;

var
I temp : integer;
Rtemp : real;

{this routine recurses}
begin
if bk = 1 then
if (Joint (bi) <= bt) and (bt < Joint (bi + 1)) then

Continued

THE SPLINE PROGRAM 209

111111111111111111111111111111111 Listing 8.9 Continued

Rtemp := 1
else

Rtemp := 0
else
begin

!temp := Joint(bi +bk - 1) - Joint(bi);
if !temp <> 0 then

Rtemp := (bt - Joint (bi)) * Blend(bi, bk - 1, bt) I
I temp

else
Rtemp := O;

!temp := Joint(bi +bk) - Joint(bi + 1);
if !temp <> 0 then

Rtemp := Rtemp + (Joint(bi + bk) - bt) * Blend(bi + 1,
bk - 1, bt) I !temp

end;
Blend : = Rtemp

end;

begin
x := 0;
y := O;
Tlim := n - k + 2; {also used by Joint function}
if st > TLim then
st : = TLim;

for i := 0 to n do {n = number of control points -1}
begin

P.x := P.x + CtlX[i + 1) * Blend(i, k, st);
P.y := P.y + CtlY[i + 1) * Blend(i, k, st);

end;
result.v := round(P.y);
result.h := round(P.x);
Spline := result;

end;

procedure init;
var
i, j : integer;

begin
for j : = 1 to MaxPoints do
begin

CtlX [j) : = 0;
Ct 1 Y [j) : = 0;

end;
SetRect(graphRect, Dh, Dv, Dh + DWidth, Dv + DHeight);
SetDrawingRect(graphRect);
SetRect (DrawRect, 0, 0, DWidth, DHeight);
ShowDrawing;
CrossHairs.data[4] := 8176;
CrossHairs.data[12J := 8176;
for i := 5 to 11 do

Continued

210 SPLINES AND FRACTALS

111111111111111111111111111111111 Listing 8.9 Continued

begin
CrossHairs.data[i) .- 4368;
CrossHairs .mask [i] .- 256;

end;
CrossHairs.data[8) := 8176;
CrossHairs.mask[8) := 4064;
CrossHairs.hotspot.v := 8;
CrossHairs.hotspot.h := 8;
InitCursor;
SetCursor(CrossHairs);

end;

function getpoints
var

i : integer;
MousePt : Point;
Done : BOOLEAN;

begin
i := 1;
repeat
begin

integer;

GetMouse(MousePt.h, MousePt.vl;
if PtinRect (mousePt, DrawRect) then
setCursor(crosshairs)

else
SetCursor(arrow);

if Button then
begin
if PtinRect (mousePt, DrawRect) then
begin
repeat
until not button;
moveto(mousePt.h - 4, mousept.v);
lineTo(mousept.h + 4, mousePt.v);
moveto(mousePt.h, mousePt.v - 4);
lineTo (MousePt. h, mousePt. v + 4) ;
CtlX[iJ := mousePt.h;
CtlY[i) := mousept.v;
i := i + 1;
if i > MaxPoints then

Done . - TRUE;
end

else
Done . - TRUE;

end;
end;

until Done;
getPoints : = i - 1;

end;

begin

Continued

111111111111111111111111111111111 Listing 8.9 Continued

in it;
order := 3;
iterations := 200;
npoints : = getpoints - 1;
MaxT := npoints - order + 2;

THE SPLINE PROGRAM 211

CurvePt := spline (0, npoints, order);
MoveTo(CurvePt.h, CurvePt.v);
for j := 1 to iterations do
begin

t := (j * MaxT) I (iterations + 1);
CurvePt : = Spline (t, npoints, order) ;
LineTo(CurvePt.h, CurvePt.v);

end;
end.

212 SPLINES AND FRACTALS

111111111111111111111111111111111 Listing 8.1 O Fractal 1

program Fractal!;
{listing 8.10}

{input points to define initial pattern}
{then iterate}
con st

MaxCtl = 10;
MaxPts = 600;
Dh = 40;
Dv = 40;
DWidth = 390;
DHeight = 2 90;

var
startPt, stopPt : point;
CtlX, CtlY : array[l. .MaxCtl] of integer;
oldPtsH, oldPtsV, NewPtsH, NewPtsV : array[l. .MaxPts] of

integer;
npoints, nOldPts, nNewPts, length, NextNew : integer;
DrawRect, graphRect : Rect;
CrossHairs : cursor;

procedure CalcNew (hl, vl, h2, v2 : integer);
var

scale, seglen, SegCos, SegSin : real;
i : integer;

begin
seglen := sqrt(sqr(h2 - hl) + sqr(v2 - vl));
scale := seglen I length;
SegSin := (vl - v2) I seglen;
SegCos := (h2 - hl) I seglen;

{we want to rotate & scale the figure in Ctl then move it to
(hl, vl)}

{take each point from ctl, rotate it, scale it and offset by
(hl,vl)}

for i := 1 to npoints - 1 do
begin

newPtsV[nextNew] := round(scale * (SegCos * CtlY[i] -
SegSin * CtlX[i])) + vl;

newPtsH[nextNew] := round(scale * (SegSin * CtlY[i] +
SegCos * Ct lX [i l)) + hl;

nextNew := nextNew + 1;
end;

end;

procedure calcpts;
var

i : integer;
begin

nextNew : = 1;
for i := 2 to nOldPts do

CalcNew(oldPtsH[i - 1], oldPtsV[i - 1], oldPtsH[i],

Continued

THEFRACTALlPROGRAM 213

111111111111111111111111111111111 Listing 8.1 O Continued

oldPtsV[i]);
NewPtsH[nextNew] := oldPtsH[nOldPts];
NewPtsV[nextNew] := oldPtsV[nOldPts];
nNewPts := nextNew;
for i : = 1 to nNewPts do
begin

oldPtsH[i] := newPtsH[i];
oldPtsV [i J : = newPtsV [i] ;

and;
nOldpts := nNewPts;

end;

procedure drawpts;
var

i : integer;
begin

moveto(newPtsH[l], newPtsV[lJ);
for i : = 2 to nNewPts do
lineto(newPtsH[i], newPtsV[i]);

end;

procedure OriginCtl;
var

i : integer;
begin

for i := 1 to NPoints do
begin

CtlX[i] .- CtlX[i] - StartPt.h;
CtlY[i] .- CtlY[i] - StartPt.v;

end;
end;

procedure InitPts;
var

i : integer;
begin

nOldPts := npoints;
nNewPts : = npoints;
for i := 1 to nOldPts do
begin

oldPtsH[i] := CtlX[i];
oldPtsV[i] := CtlY[i];
newPtsH[i] .- CtlX[i];
newPtsV[i] := CtlY[i];

end;
end;

procedure iterate;
var

i : integer;
done : BOOLEAN;

Continued

214 SPLINES AND FRACTALS

111111111111111111111111111111111 Listing 8.10 Continued

begin
eraseRect(DrawRect);
drawpts;
done := false;
repeat
repeat
until button;
repeat
until not button;
eraseRect(DrawRect);
calcpts;
drawpts

until done;
end;

procedure Cross (pt : point);
begin

moveto(pt.h - 4, pt.v);
lineTo(pt.h + 4, pt.v);
moveto(pt.h, pt.v - 4);
lineTo(pt.h, pt.v + 4);

end;

procedure init;
var
i, j : integer;

begin
for j : = 1 to MaxCtl do
begin

CtlX [j) : = 0;
Ctl Y [j) : = 0;

end;
for j : = 1 to MaxPts do
begin

NewPtsH[j) .- O;
NewPtsV[j) .- O;
o 1 dP t s H [j) . - 0 ;
01 dP t s V [j) . - 0 ;

end;
SetRect(graphRect, Oh, Dv, Dh + DWidth, Dv + DHeight);
SetDrawingRect(graphRect);
SetRect (DrawRect, O, 0, DWidth, DHeight);
ShowDrawing;
CrossHairs.data[4J := 8176;
CrossHairs.data[12J .- 8176;
for i := 5 to 11 do
begin

CrossHairs.data[i) := 4368;
CrossHairs.mask[i) := 256;

end;
CrossHairs .data[8) := 8176;

Continued

111111111111111111111111111111111 Listing 8.10 Continued

CrossHairs.mask[8] := 4064;
CrossHairs.hotspot.v := 8;
CrossHairs.hotspot.h := 8;
InitCursor;
SetCursor(CrossHairs);
startPt.v := Dheight div 2;
startPt .h := 30;
stopPt. v : = startPt. v;
stopPt.h := DWidth - 30;
Cross(startPt);
Cross(stopPt);

end;

function getpoints integer;
var

i : integer;
lastPT, MousePt Point;
Done : BOOLEAN;

begin
i := 1;
CtlX[i] := StartPt.h;
CtlY[i] := StartPt.v;
moveTo(CtlX[i], CtlY[i]);
i := i + 1;
repeat
begin

THEFRACTALlPROGRAM

GetMouse(MousePt.h, MousePt.v);
if Pt InRect (mousePt, DrawRect) then
setCursor(crosshairs)

else
SetCursor(arrow);

if Button then
begin
repeat
until not button;
if PtinRect (MousePt, drawRect) then
begin

1 ineTo (mousePt. h, mousePt. v) ;
CtlX[i] := rnousePt.h;
CtlY[il := rnousept.v;
i := i + 1;
if i > MaxCt 1 then·

Done : = TRUE;
end

else
Done . - TRUE i

end;
end;

until Done;
CtlX [i] : = StopPt .h;
CtlY[i] .- StopPt.v;

215

Continued

211 SPLINES AND FRACTALS

111111111111111111111111111111111 Listing 8.10 Continued

lineTo(CtlX[i], CtlY[i]);
getPoints : = i;

end;

begin
init;
npoints : = getpoints;
length := CtlX[npoints] - CtlX[l];
InitPts;
OriginCtl;
iterate;

end.

111111111111111111111111111111111 Listing 8.11 Fractal2

program Fractal2;
{listing 8 .11}

THEFRACTAL2PROGRAM

{Like Fractal 1 but adds a random factor}
const

MaxCtl = 10;
MaxPts = 60 0;
Dh = 40;
Dv = 40;
DWidth = 390;
DHeight = 2 90;

var
startPt, stopPt : point;
CtlX, CtlY : array[l. .MaxCtl) of integer;

217

oldPtsH, oldPtsV, NewPtsH, NewPtsV : array[l. .MaxPts) of
integer;

npoints, nOldPts, nNewPts, length, NextNew : integer;
DrawRect, graphRect Rect;
CrossHairs : cursor;

procedure CalcNew (hl, vl, h2, v2 : integer);
var
offset, scale, seglen, SegCos, SegSin : real;
i : integer;

begin
seglen := sqrt(sqr(h2 - hl) + sqr(v2 - vl));
scale := seglen I length;
SegSin := (vl - v2) I seglen;
SegCos := (h2 - hl) I seglen;
offset := random I (32767);

{we want to rotate & scale the figure in Ctl then move it to
(hl,vl)}

{take each point from ctl, rotate it, scale it and offset by
(hl,vl)}

for i := 1 to npoints - 1 do
begin

newPtsV [nextNew) : = round (offset * scale * (SegCos *
CtlY[i) - SegSin * CtlX[i))) + vl;

newPtsH[nextNew) := round(scale * (SegSin * CtlY[i) +
SegCos * CtlX[i))) + hl;

nextNew := nextNew + 1;
end;

end;

procedure calcpts;
var

i : integer;
begin

nextNew : = 1;
for i : = 2 to nOldPts do

CalcNew(oldPtsH[i - 1), oldPtsV[i - 1), oldPtsH[i),
oldPtsV[i));

Continued

218 SPLINES AND FRACTALS

111111111111111111111111111111111 Listing 8.11 Continued

NewPtsH [nextNew] := oldPtsH [nOldPts];
NewPtsV[nextNew] := oldPtsV[nOldPts];
nNewPts : = nextNew;
for i := 1 to nNewPts do
begin

oldPtsH[i] := newPtsH[i];
oldPtsV[i] := newPtsV[i];

end;
nOldpts := nNewPts;

end;

procedure drawpts;
var

i : integer;
begin

moveto (newPtsH [1], newPtsV [1]);
for i := 2 to nNewPts do
lineto (newPtsH[i], newPtsV[i));

end;

procedure OriginCtl;
var

i : integer;
begin
for i := 1 to NPoints do
begin

CtlX[i] .- CtlX[i] - StartPt.h;
CtlY[i] .- CtlY[i] - StartPt.v;

end;
end;

procedure InitPts;
var

i : integer;
begin

nOldPts : = npoints;
nNewPts := npoints;
for i : = 1 to nOldPts do
begin

oldPtsH[i] := CtlX[i] i

oldPtsV[i] .- CtlY[i] i
newPtsH[i] := CtlX[i];
newPtsV[i] .- CtlY[i];

end;
end;

procedure iterate;
var

i : integer;
done : BOOLEAN i

begin

Continued

111111111111111111111111111111111 Listing 8.11 Continued

eraseRect(DrawRect);
drawpts;
done := false;
repeat
repeat
until button;
repeat
until not button;
eraseRect(DrawRect);
calcpts;
drawpts

until done;
end;

procedure Cross (pt : point);
begin

moveto(pt.h - 4, pt.v);
lineTo(pt.h + 4, pt.v);
moveto(pt.h, pt.v - 4);
lineTo(pt.h, pt.v + 4);

end;

procedure init;
var
i, j : integer;

begin
for j : = 1 to MaxCtl do
begin

Ct lX [j] : = 0;
Ctl Y [j] : = 0 ;

end;
for j : = 1 to MaxPts do
begin

NewPtsH[j] := O;
NewPtsV[j] := O;
o 1 dP ts H [j] : = 0;
OldPtsV[j] := O;

end;

THE FRACTAL2 PROGRAM 219

SetRect(graphRect, Oh, Dv, Dh + DWidth, Dv + DHeight);
SetDrawingRect(graphRect);
SetRect(DrawRect, O, O, DWidth, DHeight);
ShowDrawing;
CrossHairs.data[4] := 8176;
CrossHairs.data[12] .- 8176;
for i := 5 to 11 do
begin

CrossHairs.data[i] := 4368;
CrossHairs .mask (i] := 256;

end;
CrossHairs.data[8] := 8176;
CrossHairs.mask[8] := 4064;

Continued

220 SPLINES AND FRACTALS

111111111111111111111111111111111 Listing 8.11 Continued

CrossHairs.hotspot.v := 8;
CrossHairs.hotspot.h := 8;
InitCursor;
SetCursor(CrossHairs);
startPt. v : = Dheight div 2;
startPt .h := 3.0;
stopPt. v : = startPt. v;
stopPt.h := DWidth - 30;
Cross(startPt);
Cross(stopPt);

end;

function getpoints : integer;
var

i : integer;
lastPT, MousePt Point;
Done : BOOLEAN;

begin
i := 1;
CtlX[i] := StartPt.h;
CtlY[i] := StartPt.v;
moveTo(CtlX[i], CtlY[i]);
i := i + l;
repeat
begin

GetMouse(MousePt.h, MousePt.v);
if PtinRect (mousePt, DrawRect) then
setCursor(crosshairs)

else
SetCursor(arrow);

if Button then
begin
repeat
until not button;
if PtinRect (MousePt, drawRect) then
begin

lineTo(mousePt.h, mousePt.v);
CtlX [i] : = mousePt. h;
CtlY[i] := mousept.v;
i := i + 1;
if i > MaxCtl then

Done : = TRUE;
end

else
Done : = TRUE;

end;
end;

until Done;
CtlX[i] := StopPt.h;
CtlY[i] := StopPt.v;
lineTo (CtlX[i], CtlY[i]);

Continued

111111111111111111111111111111111 Listing 8.11 Continued

getPoints := i;
end;

begin
in it;
npoints := getpoints;

THEFRACTAL2PROGRAM 221

length := CtlX[npoints] - CtlX[l];
InitPts;
OriginCtl;
iterate;

end.

222 SPLINES AND FRACTALS

111111111111111111111111111111111 Listing 8.12 Fractal3

program Fractal3;
(listing 8 .12}
{random curve}
(one input point for initial displacement}
I makes good mountains}
con st

MaxCtl = 10;
MaxPts = 300;
Oh = 40;
Dv = 40;
DWidth = 390;
DHeight = 2 90;
amp= 0.01;

var
startPt, stopPt : point;
CtlX, CtlY : array[l .. MaxCtl] of integer;
oldPtsH, oldPtsV, NewPtsH, NewPtsV : array[l. .MaxPts] of

integer;
npoints, nOldPts, nNewPts, length, NextNew : integer;
DrawRect, graphRect : Rect;
CrossHairs : cursor;
offset, scale : real;

procedure CalcNew (hl, vl, h2, v2 : integer);
var

seglen, SegCos, SegSin, ran real;
i : integer;

begin
seglen := sqrt(sqr(h2 - hl) + sqr(v2 - vl));
ran := random I 32767;
newPtsV[nextNew] := vl;
newPtsH [nextNew] : = hl;
nextNew : = nextNew + 1;
offset : = ran * seglen * amp * scale;
newPtsV[nextNew] := -round((vl - v2) I 2 +offset) + vl;
newPtsH [nextNew] := ((h2 - hl) div 2) + hl;
nextNew := nextNew + 1;

end;

procedure calcpts;
var

i : integer;
begin

nextNew : = 1;
for i := 2 to nOldPts do

CalcNew(oldPtsH[i - 1], oldPtsV[i - 1], oldPtsH[i],
oldPtsV[i]);

NewPtsH[nextNew] := oldPtsH[nOldPts];
NewPtsV[nextNew] := oldPtsV[nOldPts];
nNewPts := nextNew;
for i := 1 to nNewPts do

Continued

THE FRACTAL3 PROGRAM 223

lllllllllllllllllllllllllllllllll Listing 8.12 Continued

begin
oldPtsH[i] := newPtsH[i];
oldPtsV[i] := newPtsV[i];

end;
nOldpts := nNewPts;

end;

procedure drawpts;
var

i : integer;
begin

move to (newPtsH [1], newPtsV [11) ;
for i := 2 to nNewPts do
lineto (newPtsH[i], newPtsV[i]);

end;

procedure OriginCtl;
var

i : integer;
begin

for i := 1 to NPoints do
begin

CtlX[i] := CtlX[i] - StartPt.h;
CtlY[i] := CtlY[i] - StartPt.v;

end;
end;

procedure InitPts;
var

i : integer;
begin

nOldPts : = npoints;
nNewPts := npoints;
for i : = 1 to nOldPts do
begin

oldPtsH[i] := CtlX[i];
oldPtsV[i] := CtlY[i];
newPtsH[i] := CtlX[i];
newPtsV[i] := CtlY[i];

end;
end;

procedure iterate;
var

i : integer;
done : BOOLEAN;

begin
eraseRect(DrawRect);
drawpts;
done := false;
repeat

Continued

224 SPLINES AND FRACTALS

lllllllmlllllllllllllllllllllll Listing s.12 Continued

repeat
until button;
repeat
until not button;
eraseRect(DrawRect);
calcpts;
drawpts

until done;
end;

procedure Cross (pt : point) ;
beqin

moveto(pt.h - 4, pt.v);
lineTo(pt.h + 4, pt.v);
moveto(pt.h, pt.v - 4);
lineTo(pt.h, pt.v + 4);

end;

procedure init;
var
i, j : integer;

begin
for j : = 1 to MaxCtl do
beqin

CtlX[j] := O;
Ctl Y [j] : = 0;

end;
for j := 1 to MaxPts do
beqin

NewPtsH[j] := 0;
NewPtsV[j] := 0;
o 1 dP ts H [j] : = 0 ;
OldPtsV[j] := O;

end;
SetRect(graphRect, Dh, Dv, Dh + DWidth, Dv + DHeight);
SetDrawingRect(graphRect);
SetRect (DrawRect, O, O, DWidth, DHeight);
ShowDrawing;
CrossHairs.data[4] := 8176;
CrossHairs.data[12] := 8176;
for i := 5 to 11 do
begin

CrossHairs.data[i] := 4368;
CrossHairs .mask [i] := 256;

end;
CrossHairs.data[8] := 8176;
CrossHairs.mask[8] := 4064;
CrossHairs.hotspot.v := 8;
CrossHairs.hotspot.h := 8;
InitCursor;
SetCursor(CrossHairs);

Continued

111111111111111111111111111111111 Listing 8.12 Continued

startPt.v := Dheight div 2;
startPt.h := 30;
stopPt. v : = startPt. v;
stopPt.h := DWidth - 30;
Cross(startPt);
Cross(stopPt);

end;

THE FRACTAL3 PROGRAM 225

function getpoints : integer;
var

i : integer;
lastPT, MousePt : Point;
Done : BOOLEAN;

begin
CtlX[l] := StartPt.h;
CtlY[l] := StartPt.v;
moveTo(CtlX[l], CtlY[l]);
repeat
begin

GetMouse(MousePt.h, MousePt.v);
if PtinRect (mousePt, DrawRect) then
setCursor(crosshairs)

else
SetCursor(arrow);

if Button then
begin

repeat
until not button;
if PtinRect (MousePt, drawRect) then
begin

lineTo(mousePt.h, mousePt.v);
CtlX[2] := mousePt.h;
CtlY[2] := mousept.v;
Done : = TRUE;

end
end;

end;
until done;
CtlX[3] := StopPt.h;
CtlY [3] := StopPt .v;
lineTo (CtlX[3], CtlY[3]);
scale := CtlY[l] - CtlY[2];
getPoints := 3;

end;

begin
init;
npoints : = getpoints;
length := CtlX[npoints] - CtlX[l];
InitPts;
iterate;

end.

111

CHAPTER

9 SOUND MAGIC

Sound Basics

Making Music with the Macintosh

SysBeep and Note

Controlling the Volume

The Sound Synthesizers

Generating Square-Wave Tones

Sound from Free-Form Waves

Using the Four-Voice Synthesizer

111

227

228 SOUND MAGIC

11111111111111111111111111111111 SOUND BASICS

A door slamming, a radio blasting rock music, or a string quartet playing
Eine Kleine Nacbtmusik: all of the sounds that you hear come to your ear
as vibrations in the air. Musical instruments, radios, stereos, and the
carpenter's hammer hitting a nail all produce sounds by causing air
vibrations. The Macintosh is no different. It has a small speaker like the
one in a radio. The Macintosh hardware, controlled by your program,
makes the speaker vibrate to produce sounds.

We won't need to worry about the speaker itself or the hardware that
drives it. All we're concerned with is how to write a program that makes
sounds. The Macintosh can produce quite a variety of sounds, and in
order to understand how to control the type of sound the Mac produces,
we need to know something about sound.

Musical notes consist of a vibration with a particular waveshape that
is repeated very rapidly. If we were to make a graph of the vibration that
produces a tone that sounds pure, it would look like the one shown in
figure 9.1. The vertical axis represents the vibration's amplitude, and the
horizontal axis represents time. The amplitude can be the amount that a
speaker moves to produce the sound, air pressure, the amount that your
eardrum moves when it receives the sound, or any other measure of sound
that makes sense. In this case, it represents the electrical current that the
Macintosh sound hardware sends to the speaker.

The shape of the sound wave might seem an unnecessary detail, but
it is important. It's the shape that determines the character of the sound.
The length of the sound waveform determines how often it is repeated and
hence the pitch. The height determines the volume of the sound. You

Amplitude

111111111111111111111111111111111 Figure 9.1 A sine wave

SOUND BASICS 229

could have two tones, one produced by plucking the string of a harp and
another produced by an oboe. They could both have the same pitch and
volume but would still sound different. The difference is in the shape of
the sound wave.

The wave in figure 9 .1 is shaped like the graph of the trigonometric
sine function. It's a common sound waveshape. It's even more common
to find sound waves that are combinations of several sine waves of
different amplitude, frequency, and phase. Let's see what these terms­
amplitude, frequency, and phase-really mean.

In figure 9.2 we see another sine wave, with a particular point on the
wave marked. The amplitude at that point is the distance from the x axis
to the sine curve. The amplitude of the wave is the amplitude of the
highest point on the curve. The period of the wave is the amount of time
that it takes for the wave (or the hardware that generates it) to make one
complete cycle and start to produce the same waveshape again. The
frequency of the wave is the number of waves that can be generated in 1
second and is the inverse of the period. The period is measured in seconds
or fractions of a second. The frequency is measured in units of cycles per
second called hertz.

Frequency is just another word for pitch, and the period can also be
used to represent the same information. The amplitude of the sound wave
is the same as the volume. The higher the amplitude, the louder the sound.
Our ears are more sensitive to weak sounds than to loud sounds, and as a
result, the relationship between the amplitude of a sound and how loud
we perceive it to be is not a linear one. It is, in fact, logarithmic. If we
increase the amplitude of a sound by a factor of 10, it sounds twice as loud
to us.

Amplitude

Amplitude
of Wave

Amplitude
of Point

I<
Period

>I

111111111111111111111111111111111 Figure 9.2 Amplitude and period

230 SOUND MAGIC

The phase of a sound is a measure of how it lines up with another
sound wave of the same frequency (or an exact multiple of the frequency).
If we take an arbitrary point in time (for instance, the origin of our
coordinate system), the phase of a point on the wave is a measure of how
fur along the wave the point is from that arbitrary point in time. Phase is
a measure of time but is expressed in degrees, a complete waveform having
360 degrees. Phase is a relative measurement. It usually measures the
difference in start time between two sound waves.

Figure 9.3 shows two sound waves in the same graph. The phase
angle ~ is a measure of the time relationship between the two waveforms.

We're interested in phase, amplitude, and frequency because com­
bining sine waves of different phase, amplitude, and frequency produces
new waveshapes, and it's the shape of the wave that gives the sound its
unique character, what musicians call timbre.

In our programs that produce sound, we can add various waves
together to produce unique sounds. One of our programs will have the
ability to synthesize sounds from various sine waves that we specify.
Before we do that, however, we need to look at the Macintosh toolbox
routines that control the sound generation hardware.

MAKING MUSIC WITH
11111111111111111111111111111111 THE MACINTOSH

The Macintosh simulates a music or sound synthesizer in software. In tact,
it simulates three different types of synthesizers. One simply produces a
single tone with a square wave. You can specify the frequency, amplitude,
and duration of the tone. The second synthesizer can produce four tones

Amplitude

'

I
_JiP~

! I

111111111111111111111111111111111 Figure 9.3 Phase

MAK.ING MUSIC WITH THE MACINTOSH 231

simultaneously. For each of the four tones, you can specify the frequency,
phase, and waveform. You cannot start and stop the four tones individu­
ally; they must be started together and must have the same duration. The
third, the free-form synthesizer, allows you to specify an arbitrary wave­
form of any length. It can be used to simulate almost any sound and has
been used by programs that do speech synthesis.

An application program controls the synthesizers through the tool­
box routines listed below.

SysBeep

Note

StartSound

StopSouild

SoundDone

SetSoundVol

GetSoundVol

Produces a preset square-wave tone of specified
duration.

Produces a tone of specified amplitude,
frequency, and duration.

Starts a sound produced by the square-wave,
four-voice, or free-form synthesizer.

Stops a sound started by the StartSound
procedure.

Returns TRUE if the sound started by StartSound
is done; otherwise returns FALSE.

Sets the sound volume to one of the eight
volume levels (0 through 7). This volume
setting applies to all sounds produced by the
synthesizers. It is the same as the sound volume
set by the control panel desk accessory.

Returns the current sound volume (0 through 7).

When you call StartSound and pass it sound data, it sets up a data
structure for the sound driver and starts the sound driver. It doesn't
actually produce the sounds. The sound driver interrupt handler executes
every 44.93 microseconds and sets the speaker current every time it
executes. The sound interrupt handler knows what to do by looking at the
sound list established by the sound driver. What this means to us is that,
in some cases, our program can start a sound and then go execute some
more code while the sound driver and its interrupt handler make the
sounds for us.

Let's see how we can use the sound routines to have some fun with
Macintosh.

232 SOUND MAGIC

11111111111111111111111111111111 SYSBEEP AND NOTE

The SysBeep and Note routines are good when you want the program to
get the user's attention but you don't care about making beautiful music.
The tone generated by SysBeep is the same as the tone that you hear when
you turn the Macintosh on. You don't have any control over the amplitude
or frequency of the tone, but you do specify its duration.

SysBeep(Duration : Integer);

Listing 9 .1 is a short program that calls Sys Beep every time you press
the mouse button.

The variable tis the duration of the tone in seconds. SysBeep needs
to be told the duration in units of 0.022 second, so the program converts
t before calling SysBeep.

The Note procedure is very similar to SysBeep, but it lets you specify
the amplitude and frequency of the tone as well as the duration.

Note(Frequency : Longint, Amplitude, Duration : Integer);

The duration for Note is in sixtieths of a second. The frequency is
specified in hertz (cycles per second), and the amplitude is an integer in the
range Oto 255, with the loudest amplitude being 255. Like SysBeep, Note
produces a square wave.

111111111111111111111111111111111 Listing 9 .1 Beep

program Beep;
{Listing 9. 1}
var

t : integer;
Done : BOOLEAN;

begin
Done := FALSE;
t := 1;
repeat
begin
repeat
until button;
repeat
until not button;
SysBeep(round(t I 0.022));

end;
until Done;

end.

CONTROLLING THE VOLUME 233

The program in listing 9.2 enters a loop that uses the Note procedure
to produce tones of successively higher frequency.

When the frequency reaches the upper limit allowed by the Macin­
tosh software, the program starts again at the lowest frequency. You will
notice when you run this program that the Macintosh hardware and
software can produce high-frequency tones that are beyond the capabili­
ties of the speaker. As the program gets into that frequency range, you start
to hear the lower subharmonics of the tone that the Macintosh is trying to
produce. If you want to produce the higher frequencies, you may need to
use a high-quality audio amplifier and speaker hooked to the audio output
jack on the back of the Macintosh.

11111111111111111111111111111111 CONTROWNG THE VOWME

Do you remember the volume control on the control panel desk acces­
sory? It sets the volume level for all sounds produced by the Macintosh.
Some of the sound routines that you can call from your program let you
specify an amplitude, but that amplitude is not the same as the volume

111111111111111111111111111111111 Listing 9.2 Note

program Note;
{listing 9.2}
var
Amplitude, Duration integer;
Frequency : Long int;
Done : BOOLEAN;
t : real;

begin
Done := FALSE;

{time in units of 1 sec}
t := 0.1;

{duration in units of 1/60 sec}
duration := round (60 * t);

{frequency in Herz (cycles per second)}
Frequency := 440;

(amplitude, 0 ... 255)
Amplitude := 64;
repeat
begin

Note(Frequency, Amplitude, Durat~on);

Frequency : = round (Frequency * (1 + 1 I 14)) ;
if Frequency > 32767 then

Frequency := 440;
end;

until Done;
end.

234 SOUND MAGIC

setting. When your program sets a sound's amplitude to its highest value,
the sound is as loud as the current volume setting allows. If you set the
amplitude lower, the sound is proportionally lower than the current
volume setting.

Even though the volume is supposed to be set by the user with the
control panel, the sound driver provides two routines to allow you to
manipulate the volume from your program. The GetSound procedure
returns the current volume level setting. It is a value between O and 7, the
same as the volume level settings in the control panel. The SetSoundVol
procedure sets the volume level to the value that you specify; again, it's
from Oto 7.

Even though those routines are available, the Macintosh user interface
design guidelines recommend that you not use them. You should allow the
user to control the volume with the control panel.

11111111111111111111111111111111 THE SOUND SYNTHESIZERS

When you want to do something more ambitious than producing simple
tones, you need to use one of the three audio synthesizers. Each synthe­
sizer is actually a piece of software in the sound driver and uses the same
hardware to produce sounds that the SysBeep and Note procedures use.
You use the same set of procedures and functions to control all three
synthesizers. The difference is in the data structures that you pass to the
StartSound procedure.

There are three different types of synthesizer data structures, one for
each synthesizer type. Each has a synthesizer record, but the record
formats are different. The first field in the record contains the synthesizer
type and thus identifies the record type. The synthesizer types are pre­
defined constants.

const
SWmode = -1;
FFmode = O;
FTmode = l;

(Square-wave synthesizer)
(Free-form synthesizer)
(Four-tone synthesizer)

The synthesizer records have predefined record types.

type
SWSynthRec = record

mode : integer;
triplets : Tones

end;

FFSynthRec = record
mode : integer;
rate : longint;
wave Bytes : Free Wave

end;

FTSynthRec = record
mode : integer;
SndRec : FTSndRecPtr

end;

THE SOUND SYNTHESIZERS 235

The application program must set the mode field in the synthesizer
record to one of the predefined mode values before calling StartSound.

Each of the synthesizer records refers to other predefined record
types: triplets, waveBytes, and SndRec. We'll look at those record types
when we talk about the individual synthesizers in detail.

When using the square-wave or four-tone synthesizers, we don't use
the predefined synthesizer record type. Instead we define a record of
identical format. This seems to be a peculiarity of the way that Macintosh
Pascal uses the sound driver.

An application program starts a synthesizer by calling the StartSound
procedure. The sound driver and synthesizer software will produce the
sounds specified in the synthesizer record until they have produced all of
the sounds specified or the program calls the StopSound procedure.

Compared to the processing speed of the Macintosh, it takes a long
time to produce a sound. The program has the option of having the
StartSound routine wait until it has finished before returning or having it
return as soon as it starts the sound. If the StartSound routine returns as
soon as it starts the sound, the program can continue to execute while the
sound driver makes sounds. The program can use the SoundDone func­
tion to find out if the sound driver is finished and ready to start another
sound.

The documentation on StartSound states that you can specify a
routine for the driver to execute when it is finished. However, that's not
the kind of thing you can get away with in Macintosh Pascal. The sound
completion routine is executed as if it were an interrupt handler, not an
application program. If your program were compiled into a stand-alone
application program instead of running as a Macintosh Pascal interpreted
program, you could use that as a sound completion routine, but you
would still be limited in what you could do with it. Because it's treated as
an interrupt handler, the routine cannot call StartSound. About the only
thing it can do is post an event and let the application program detect the

236 SOUND MAGIC

event with a call to the event manager. You might just as well use the
SoundDone procedure to find out when the driver is finished. It's a lot
simpler.

StartSound(SynthRecPtr, NBytes, CompletionPtr);

SynthRecPtr is a pointer to the synthesizer record. CompletionPtr is
the pointer to the routine to execute when the driver has finished. In
Macintosh Pascal, it should be set to either nil or pointer(-1). If Com­
pletionPtr is nil, the StartSound routine will return as soon as it starts the
sound. If CompletionPtr is equal to pointer(-1), StartSound won't return
until the driver has finished producing the sounds specified in the syn­
thesizer record.

NBytes is the size of the synthesizer record. Instead of hard-coding
the record size, you should always use SizeOf(SynthRec), where SynthRec
is the synthesizer record. Also, you can use the @ operator instead of
creating a pointer to the synthesizer record. Just put @SynthRec in place
of SynthRecPtr.

The StopSound procedure causes the sound driver to immediately
stop producing sound. In Macintosh Pascal, you cannot start another
sound even though the current one has finished unless you call
StopSound. There's nothing in the documentation to identify that limi­
tation, but that's the way it works. The best method is to call StartSound,
do other processing that you need to do, and when you are ready to
start another sound, wait in a loop until SoundDone returns a TRUE
value. When you fall out of that loop, call StopSound; then call StartSound
again.

StartSound(@SynthRec, SizeOf(SynthRec), nil);

other processing

repeat
until SoundDone;
StopSound;
StartSound(@SynthRec, SizeOf(SynthRec) nil);

GENERATING SQUARE-WAVE TONES 237

GENERATING
11111111111111111111111111111111 SQUARE-WAVE TONES

The square-wave tone synthesizer is the easiest to use and is just the thing
for applications that don't need more complicated sounds. The synthe­
sizer record for the square-wave synthesizer has an array that contains a list
of tones. The array has three parameters for each tone: the count (fre­
quency information), the amplitude, and the duration. When we use the
square-wave synthesizer in Macintosh Pascal, we don't define a variable of
type SWSynthRec; instead we define a record of our own that looks like
the SWSynthRec.

SynthRec : record
mode : Integer;
triplets : array [0 .. 3000] of Tone;

end;

The application program must set the mode to SWMode before
calling StartSound.

The elements of the triplets array are tone records. A tone record
defines one tone and has the values for the tone's count (frequency),
amplitude, and duration.

Tone = record
Count : Integer;
Amplitude : Integer;
Duration : Integer

end;

The duration is in sixtieths of a second, and the amplitude is just like
the amplitude in the Note procedure: it has a range of 0 to 255, with 255
being the loudest. The count is a method of representing the frequency. If
the frequency is expressed in hertz (cycles per second), the formula for the
count is:

Count = 783360 I Frequency

When you call StartSound and pass it a synthesizer record for the
square-wave synthesizer, it starts reading the tone information from the
triplets array and sounds each tone in sequence.

Listing 9.3 is a short program that uses the square-wave synthesizer.

238 SOUND MAGIC

111111111111111111111111111111111 Listing 9.3 SquareWave

program SquareWave;
{listing 9. 3}
con st

NTones = 28;

type
Tone = record

Count : Integer;
Amplitude : Integer;
Duration : Integer

end;

var
frequency, amp, i integer;
secs : real;
SynthRec : record

Mode : integer;
Triplets : array [1 •• NTones J of Tone;

end.;

begin
frequency := 440;
secs := 0.1;
SynthRec.Mode := SWMode;
amp := 128;
for i := 1 to NTones do
begin
with SynthRec.Triplets[iJ do
begin

count := round(783360 I frequency);
amplitude := amp;
duration : = round (secs * 60);
Frequency := round(Frequency * (1 + 1 I 14));
amp := amp - ((128 - 1) div NTones);
secs := secs + ((0.5 - 0.1) I NTones);

end;
end;

Start Sound (@SynthRec, sizeof (SynthRec), nil);
repeat
until SoundDone or Button;
if button then

StopSound;
end.

The program sets the synthesizer mode variable and then fills the
triplets array with tone data. It executes a loop that steps through the
elements in the triplets array, setting the count, amplitude, and duration
for each tone. It specifies a different frequency and amplitude for each
tone, so it must calculate a new amplitude and frequency each time

SOUND FROM FREE-FORM WAVEFORMS 239

through the loop. Since the frequency is encoded as a count, the program
also calculates the count each time through the loop.

After the program fills in the triplets array elements with tone data, it
calls StartSound. StartSound uses the square-wave synthesizer to sound
each tone in turn. We passed StartSound the pointer value nil in place of
the completion routine pointer, so it returns immediately without waiting
for all of the tones to be done. The program then enters a loop, waiting
for the sound driver to be done or the mouse button to be pushed. If you
push the mouse button, the program calls StopSound and stops the sound
driver from generating sounds. If you don't push the mouse button, the
program calls StopSound after the driver has finished generating sounds.

SOUND FROM FREE-FORM
11111111111111111111111111111111 WAVEFORMS

The square-wave synthesizer is easy to use but not very exciting. Using the
free-form synthesizer, the Macintosh is capable of producing more com­
plicated sounds. It can make almost any sound that you can imagine. The
free-form synthesizer reads a description of an arbitrary waveshape and
turns it into sound. This synthesizer has been used to make a variety of
sound effects, even human speech. With the proper audio equipment, you
can record any sound and digitize it. After turning the digitized sound into
a free-form synthesizer wave description, you can reproduce it on the
Macintosh.

The free-form synthesizer is controlled by StartSound, StopSound,
and SoundDone just like the other synthesizers. Its synthesizer record
contains the synthesizer mode (FFMode), a rate parameter, and an array
that describes the free-form wave.

SynthRec : record
Mode : Integer;
Rate : Fixed;
WaveBytes : packed array [O .. 30000] of Byte

end;

In Macintosh Pascal, we do not define a variable of type FFSynthRec,
the predefined free-form synthesizer record type. Instead, we define a
record variable with the same structure as the predefined synthesizer
record, just as we have done above.

The rate field is a fixed-point number. The fixed-point data type is
something that you rarely see in Macintosh Pascal. It is used by some of the
toolbox routines but is not very well supported by the Macintosh Pascal

240 SOUND MAGIC

interpreter. There are only a few fixed-point arithmetic and conversion
routines documented in the Macintosh Pascal reference manual.

A fixed-point number is 32 bits long, the same length as a long
integer, and some documentation uses the longint type when referring to
fixed-point numbers. Even though fixed-point numbers are the same size
as long integers, the data format is quite different. The high-order word of
a fixed-point number contains an integer that is the whole part of the
number. The low-order word contains the fractional part. There is no
exponent. To convert a number from an integer to fixed-point, you must
shift it left 16 bits to get it into the high-order word.

The WaveBytes array contains a description of the waveform for the
tone that you want the synthesizer to produce. Each element in the array
is a byte that contains a value between 0 and 255. When you call the
StartSound procedure, the Macintosh reads each byte of the waveform
description in turn and moves the speaker to correspond to the value of
the waveform at that point. The rate at which the sound driver reads
waveform bytes and creates sound is determined by the rate parameter in
the synthesizer record.

The rate variable determines how many waveform description bytes
the sound driver will read every 44.93 microseconds (the update rate of
the sound synthesizer hardware). You can calculate how long it will take
to generate a waveform at a given rate with the formula below.

time:= 44.93E-6 • (size I rate);

Size is the number of bytes that the waveform occupies in the
waveform description array. Time is in seconds.

If you know the time that you want the synthesizer to take to sound
one waveform, you can use one of the formulas below in your program to
calculate the rate.

temp:= round(44.93E-6 • (size I time));
rate : = BitShift(temp, 16);

The temp variable is an integer, and its value must be shifted left 16
bits to convert it to the fixed-point type. The result of the multiplication
and division is a real number (floating-point), and we round it off to an
integer value before putting it into temp.

If you know the frequency of a waveform that you are going to repeat,
you can calculate the rate parameter with the following formula.

temp:= round(44.93E-6 * size • frequency);
rate : = BitShift(temp, 16);

SOUND FROM FREE-FORM WAVEFORMS 241

The frequency is in hertz.
Our free-form program creates a waveform definition and then calls

StartSound to make the sound. We could make a nonrepeating waveform
of arbitrary shape, but in this program, I chose to make a tone that consists
of a repeated waveform. We calculate a basic waveshape that is 256 bytes
and then fill the waveform array with repeated copies of that 255-byte
waveform. If we were doing speech synthesis or making complicated
sound effects, we wouldn't use a repeated waveshape.

We calculate the repeated waveshape by mathematically combining
sine, cosine, square, and triangle waves. By combining several simple
waveshapes, we can produce more complicated waves. Figure 9.4 shows
a wave that is a combination of one sine wave with another sine wave of
smaller amplitude and higher frequency. The higher-frequency sine wave
seems to ride on the shoulders of the larger sine wave.

We can see the function that produced that waveshape in listing 9.4.
Several functions are defined in the program to give you examples of how
you can create your own unique functions and waveshapes.

The program is easy to run; you just start it with the Go command in
the Macintosh Pascal Run menu and wait for it to calculate the wave, draw
the waveshape, and make the sound. The amount of time required to
calculate the waveshape depends on the complexity of the function.
For the most complex function in the listing, the program takes about
2 minutes.

~D Drowing

111111111111111111111111111111111 Figure 9.4 A composite waveform

242 SOUND MAGIC

111111111111111111111111111111111 Listing 9.4 The FunctC Function

{listing 9. 4}
function FunctC (angle
con st

Nl = l;
N2 = 0. l;

var
Al, A2 : real;

beqin
Al := Nl I (Nl + N2);
A2 := N2 I (Nl + N2);

real) real;

FunctC :=Al * sin(angle) + A2 * sin(lS * Angle);
end;

The main part of the program is shown in listing 9. 5. The first thing
it does is hide all of the Macintosh Pascal windows. It then calls lnitDraw
to set the drawing window size and show the drawing window. After
setting the frequency and amplitude of the tone, the program calls
CalcOne to calculate the basic waveshape and SetSound to put repeated
copies of it into the waveform array. SetSound also sets the mode and rate
variables in the synthesizer record.

The DrawOne procedure draws one cycle of the basic waveshape in
the drawing window. We call StartSound and use pointer(-1) as the
completion routine pointer. It causes StartSound to wait until the sound is
finished before returning.

The Calcone procedure in listing 9.6 makes repeated calls to a
periodic function to fill the OneWave array with one cycle of our basic
waveshape. We pass the wave function an angle between 0 and 211", and the
function returns an amplitude in the range - 1 to + 1. We calculate the

111111111111111111111111111111111 Listing 9.5 The Main Part of FreeForm

{listing 9.5}
beqin

HideAll;
InitDraw;
Freq := 220;
Amp := 1;
CalcOne;
Set Sound;
DrawOne;
StartSound(@SynthRec, SizeOf(SynthRec), pointer(-1));
StopSound;

end.

SOUND FROM FREE-FORM WAVEFORMS 243

lllllllllllllllllllllllllllllllll Listing 9.6 The Calcone Routine

{listing 9.6}
procedure Calcone;
var

i : integer;
begin

for i : = 0 to WaveLength - 1 do
begin
theta := 2 * pi * i I WaveLength;
OneWave[i] := 128 + trunc(Amp * 127 * FunctC(theta));

end;
end;

angle by multiplying 211" by the ratio of the stepping index to the wave­
length. The wavelength is the number of bytes in one complete cycle (the
number of elements in the OneWave array). We take the amplitude re­
turned by the function (a real number) and convert it to an integer in the
range 0 to 255. That's the value that we put in the One Wave array element.
It's within the proper range to fit in a 1-byte array element.

Let's look at some other wave functions and their waveshapes. Listing
9. 7 shows a function that consists of a sine function and the first three odd
harmonics. The wave that it produces is shown in figure 9.5.

When we hear the sound corresponding to that waveshape, it sounds
very close in frequency to the basic waveshape. The shape almost resem­
bles a square wave. The more odd harmonics you add, the more the wave
looks like a square wave.

111111111111111111111111111111111 Listing 9. 7 The FunctB Function

{listing 9.7}
function FunctB (angle : real) real;
con st

Nl l;
N2 = l;
N3 = l;
N4 = l;

var
Al, A2, A3, A4 : real;

begin
Al := Nl / (Nl + N2 + N3 + N4);
A2 := N2 I (Nl + N2 + N3 + N4);
A3 := N3 I (Nl + N2 + N3 + N4);
A4 := N4 I (Nl + N2 + N3 + N4);
FunctB :=Al * sin(angle) + A2 * sin(3 * angle) + A3 * sin(S

*angle) + A4 * sin(7 *angle);
end;

244 SOUND MAGIC

Drowing

111111111111111111111111111111111 Figure 9.5 Odd harmonics

In listing 9 .8, we see a function that creates a waveform from a sine
wave and several even harmonics. As we can see in figure 9.6, the shape is
quite different from that of the wave with odd harmonics. When we hear
that sound, it sounds more like several tones in harmony.

This program is easy to modify to try new waveshapes. In each of the
functions already defined, the different components of the function are
multiplied by an amplitude factor before being added together. Try chang-

111111111111111111111111111111111 Listing 9.8 The FunctA Function

{listing 9. 8}
function FunctA (angle : real) real;
con st

Nl = l;
N2 = l;
N3 = l;

var
Al, A2, A3 : real;

begin
Al := Nl I rn1 + N2 + N3);
A2 : = N2 / (N 1 + N2 + N 3) ;
A3 := N3 / (Nl + N2 + N3);
FunctA := Al * sin(angle) + A2 * sin(2 * Angle) + A3 * sin(4

* angle);
end;

USING THE FOUR-VOICE SYNTHESIZER 245

Drowing

111111111111111111111111111111111 Figure 9.6 Even harmonics

ing the relative amplitudes of different harmonics, and see what happens.
You can also try your hand at making new combinations of sine, square,
and triangle waves . Something else that would be interesting to try would
be to write a function that produces random numbers within a given
amplitude range. If you add various amounts of that function to the rest of
a calculated waveshape, you will introduce some noise. It can really
change the character of a sound.

You'll find the complete listing of the free-form wave program at the
end of this chapter.

USING THE FOUR-VOICE
11111111111111111111111111111111 SYNTHESIZER

The four-voice synthesizer can produce sound from arbitrarily shaped,
repeating waveforms. Its advantage is that it can play four waveforms
simultaneously. Its limitation is that it can play only repeating waveforms
that can be stored in 256-byte arrays. It cannot play a long nonrepeating
waveform the way the free-form synthesizer can. For Macintosh Pascal
programmers, the four-voice synthesizer will be a lot more useful than the
free-form synthesizer because, with the memory limitations imposed by
Macintosh Pascal, you can't play a very long free-form waveform. Since the

246 SOUND MAGIC

four-voice synthesizer repeats waveforms, the duration of the tones is not
related to the amount of memory available.

When using the four-voice synthesizer, we actually use the predefined
data types for the synthesizer record and other data records. In.addition
to the synthesizer record, the four-voice synthesizer requires one sound
record and waveform arrays, one for each waveform that we use.

type
FTSynthRec = record

Mode : integer;
SndRec : FTSndRecPtr

end;

The synthesizer record contains just the synthesizer type and a
pointer to the sound record. The sound record has a duration parameter
that applies to all four tones, but for each of the four tones it has rate, phase
information, and a pointer to the waveform array.

FTSoundRec = record
Duration : Integer;
SoundlRate : Fixed;
SoundlPhase : Integer;
Sound2Rate : Fixed;
Sound2Phase : Integer;
Sound3Rate : Fixed;
Sound3Phase : Integer;
Sound4Rate : Fixed;
Sound4Phase : Integer;
Soundl Wave,
Sound2Wave,
Sound3Wave,
Sound4Wave : WavePtr

end;

The SoundRate variables are just like the rate variable in the free-form
synthesizer record. If you set a sound rate variable to zero, the synthesizer
does not produce the corresponding tone. The waveform array has the
same format as the OneWave array that we use in the free-form program.

Wave = packed array [0 .. 255] of Byte;

The sound synthesizer doesn't necessarily start reading a waveform at
the first byte in the wave array. You can specify where the synthesizer will

USING THE FOUR-VOICE SYNTHESIZER 247

start reading waveform bytes. For each of the four tones, you put the wave
array index of the starting byte in the SoundPhase variable. By setting the
SoundPhase variables to nonzero values, you can determine the phase
relationships among the four tones.

Our four-voice synthesizer program is more elaborate than our other
sound programs. Like the free-form program, it calculates waveshapes
from sine, square, and triangle functions . It displays the waveshapes
individually and in combination. Since it can handle four tones, we put
four control boxes at the bottom of the drawing window so the user can
selectively enable or disable each tone. If you disable a tone, the program
does not display that tone 's waveshape.

It takes the program a while to calculate each waveshape, so we add
a prompt box that explains what the program is doing and prompts the
user for a mouse click at various points before proceeding. When you start
the program, you see the display shown in figure 9. 7. If you click the
mouse in any of the boxes in the lower left part of the window, you toggle
the on/off control for the corresponding tone.

Figure 9.8 shows the lower part of the drawing window with two
tones turned off.

D Drawing

I ON 12 ON 13 ON 14 ON J Select Uoices or Click Mouse in Window To Start

'2J

11 11 111111111 111 11 11 111111111 11 11 Figure 9. 7 The four-voice program window

248 SOUND MAGIC

lll!JDEl!JDI 3 ON 14 ON I Select Uoices or Click Mouse in Window To Start

111111111111111111111111111111111 Figure 9.8 Tone control boxes

To start the calculation of the waveforms, you click the mouse
anywhere outside of the four tone control boxes. When the program
finishes calculating each waveform, it displays the waveform, stops, and
asks you to click the mouse to continue (figure 9.9).

The program has four functions set up, but you can change any of
them by changing the CalcWave routine. The four functions that are in the
program listing are a sine with two odd harmonics, a sine with two even
harmonics, a triangle, and a square wave.

After the program has calculated and displayed each of the four
waveforms, it displays all four in the same window, as shown in figure 9 .10.

If you've studied the other programs in this book, there's little need
to go into the details of how the drawing window is initialized and how
the control boxes work. Most of the calculations are the same as those in
the free-form synthesizer program but with variations because of the fact

Drawing

ll!JDEl!JD 3 ON 4 ON

111111111111111111111111111111111 Figure 9.9 Click Mouse to Continue

USING THE FOUR-VOICE SYNTHESIZER 249

Drawing

1 ON 2 ON 3 ON 4 ON

111111111111111111111111111111111 Figure 9.10 Four waves

that there are four tones. You will probably want to experiment with the
waveform calculations, so we'll look at the differences between these and
the one in the free-form program.

The InitSound procedure initializes the synthesizer record, the sound
record, and the amplitude variables. The amplitude variables, Ampl
through Amp4, are used to set the relative amplitudes of the four tones.
They are real numbers and can take on values between 0 and 1. In the
unmodified program, they are all set to 1 (see listing 9.9).

You control the duration of the tones by setting the Time variable to
the duration in seconds.

The four-voice wave calculation routine is different from the one in
the free-form program because, in the four-voice program, we have the
capability of turning off a tone. If the tone is turned off, the routine
doesn't waste time calculating the waveform. The CalcSound routine
checks the SoundRate variable for each tone to see if the tone is turned off;
the rate is zero if the tone is turned off (see listing 9.10).

If the amplitude for one of the tones has been set to zero but the tone
is still turned on, the routine doesn't calculate the waveform; it just sets all
of the bytes in the waveform array to zero. That 's faster than going through
the function calculations, but it still takes time, so the routine puts the

250 SOUND MAGIC

111111111111111111111111111111111 Listing 9.9 The InitSound Routine

{listing 9.9}
procedure InitSound;
var

Freql, Freq2, Freq3, Freq4 : real;
begin
{initialize synthesizer record}

SynthRec.Mode := FTMode;
SynthRec.SndRec := @SoundRec;

{set synthesizer record pointer}
SynthRecPtr := @SynthRec;

{initialize sound record}
Time := 1. O;
with SoundRec do
begin

Duration := round(Time * 60);
Freql := 440;
Freq2 := 440 * (1 + 4 I 14);
Freq3 := 660;
Freq4 := 880;
if vl than

SoundlRate := RateCalc(Freql)
else

SoundlRate := O;
if v2 than

Sound2Rate := RateCalc(Freq2)
else

Sound2Rate := O;
if v3 than

Sound3Rate := RateCalc(Freq3)
else

Sound3Rate := O;
if v4 then

Sound4Rate := RateCalc(Freq4)
else

Sound4Rate := O;
SoundlPhase := O;
Sound2Phase := O;
Sound3Phase := O;
Sound4Phase := O;

{set relative amplitudes of 4 voices, 0 -> 1, loudest 1}
Ampl := 1;
Amp2 := 1;
Amp3 := 1;
Amp4 := 1;
SoundlWave
Sound2Wave
Sound3Wave
Sound4Wave

end;
and;

:= @Wavel;
:= @Wave2;
:= @Wave3;
:= @Wave4;

USING THE FOUR-VOICE SYNTHESIZER 251

lllllllllllllllllllllllllllllllll Listing 9.10 Calculating Wave 1

{listing 9.10}

{calculate wavel}
if SoundRec.SoundlRate <> 0 then
begin
Message('Calculating Waye 1');
if Ampl = 0.0 then
for i := 0 to 255 do

Wavel[i] := 0
else
for i := 0 to 255 do
begin

theta := i * 2 * pi I 255;
Wavel[i] := 128 + trunc(Ampl * 127 * FunctB(theta));

end;
end;

Calculating Wave message in the message box at the bottom of the
drawing window.

The full listing for the four-voice program is at the end of the chapter.
There are several ways you could improve on this program. One way
would be to change the DrawWave procedure to pass it the phase of the
wave you want to draw, and have it start at the proper byte in the waveform
array. You would probably want to draw each individual wave starting at
byte zero but draw them with the proper phase relationships when
Draw All calls Draw Wave to put all four waveforms on the screen. When
you start drawing a waveform at the proper phase, you will need to wrap
around to the beginning of the waveform array after byte 2 5 5 so that you
draw the entire cycle of the waveform.

Another useful modification would be to have a display that shows
the composite waveform of all four voices. You would need to take into
account the phase and rate of each tone.

Listings 9 .11 and 9 .12 show the FreeForm and Four Voice programs in
their entirety.

252 SOUND MAGIC

111111111111111111111111111111111 Listing 9.11 FreeForm

program FreeForm;
{listing 9 .11}
con st

DrawTop = 4 5;
DrawLeft = 50;
DrawWidth = 300;
DrawHeight = 280;
pi = 3.1415926;
MaxBytes = 11000;
WaveLength = 256;

type
Byte = 0 •. 255;

var
i : integer;
DrawWind, DrawRect : Rect;
Amp, Freq, theta : real;
SynthRec : record

mode : integer;
rate : Fixed;
waveBytes : packed array [0 .. MaxBytes J of Byte;

end;
OneWave : packed array [0 .• Wavelength] of Byte;

function Triangle (angle : real) : real;
begin
if angle <= pi then
begin

Triangle := 2 * angle I pi - 1;
end

else
begin

Triangle := 1 - 2 * (angle - pi) I pi;
end;

end;

function Square (angle
begin
if angle < pi then

Square := 1. 0
else

Square := -1. 0;
end;

function FunctC (angle
const
Nl = 1;
N2 = 0 .1;

var

real) real;

real) real;

Continued

THE FREEFORM PROGRAM 253

111111111111111111111111111111111 Listing 9.11 Continued

Al, A2 : real;
begin

Al := Nl I (Nl + N2);
A2 := N2 / (Nl + N2);
FunctC :=Al * sin(angle) + A2 * sin(lS * Angle);

end;

function FunctB (angle
con st

Nl l;
N2 l;
N3 l;
N4 l;

var
Al, A2, A3, A4 : real;

begin

real)

Al := Nl / (Nl + N2 + N3 + N4);
A2 := N2 / (Nl + N2 + N3 + N4);
A3 := N3 I (Nl + N2 + N3 + N4);
A4 ;= N4 I (Nl + N2 + N3 + N4);

real;

FunctB := Al * sin(angle) + A2 * sin(3 * angle) + A3 * sin(S
* angle) + A4 * sin(? * angle);

end;

function FunctA (angle
con st

Nl l;
N2 = l;
N3 = l;

var
Al, A2, A3 : real;

begin

real)

Al : = Nl / (Nl + N2 + N3) ;
A2 : = N2 / (Nl + N2 + N3);
A3 : = N3 I (Nl + N2 + N3);

real;

FunctA := Al * sin(angle) + A2 * sin(2 * Angle) + A3 * sin(4
* angle);

end;

procedure Calcone;
var

i : integer;
begin

for i := 0 to WaveLength - 1 do
begin

theta := 2 * pi * i I WaveLength;
Onewave[i] := 128 + trunc(Amp * 127 * FunctC(theta));

end;
end;

Continued

254 SOUND MAGIC

111111111111111111111111111111111 Listing 9.11 Continued

procedure DrawOne;
con st
startV = 10;

var
i : integer;

begin
Move To (5, startV + 25 6 - OneWave [0]) ;
for i : = 1 to WaveLength - 1 do

LineTo(5 + i, startV + 256 - Onewave[i])
end;

procedure InitDraw;
begin

SetRect(DrawWind, DrawLeft, DrawTop, DrawLeft + DrawWidth,
DrawTop + DrawHeight);

SetDrawingRect(DrawWind);
SetRect(DrawRect, O, O, DrawWidth, DrawHeight);
ShowDrawing;

end;

function RateCalc (Frequency
var

temp long int;
begin

{assume wavelength bytes/cycle}

real) Fixed;

temp := Round(Wavelength * Frequency * 44.93E-6);
RateCalc := BitShift (temp, 16);

end;

procedure SetSound;
var

i : integer;
begin
with SynthRec do
begin

mode : = FFMode;
rate := RateCalc(Freq);
for i : = 0 to MaxBytes do
waveBytes [i] := Onewave[i mod WaveLength];

end;
end;

begin
HideAll;
InitDraw;
Freq := 220;
Amp := 1;
CalcOne;
Set Sound;
DrawOne;
StartSound(@SynthRec, SizeOf(SynthRec), pointer(-1));
StopSound;

end.

111111111111111111111111111111111 Listing 9.12 FourVoice

program FourVoice;
{listing 9 .12}
con st

DrawTop = 3 7;
DrawLeft = 5;
DrawWidth = 510;
DrawHeight = 315;
pi = 3 .1415926;
System = O;

var

THE FOURVOICE PROGRAM

DrawRect, DrawWind, MsgRect : rect;
vlRect, v2Rect, v3Rect, v4rect : rect;
vl, v2, v3, v4, Done : BOOLEAN;
voices : integer;
Wavel, Wave2, Wave3, Wave4 : wave;
SoundRec : FTSoundRec;
SoundRecPtr : FTSndRecPtr;
SynthRec : FTSynthRec;
SynthRecPtr : FTSynthPtr;
i : integer;
Time, AMpl, Amp2, Amp3, Amp4 real;
mouse : point;

procedure WaitClick;
begin
repeat

InvertRect(MsgRect);
until button;
repeat
until not button;

end;

procedure Message (theString str255);
begin

EraseRect(MsgRect);
FrameRect(MsgRect);
Move To (MsgRect. left + 4, MsgRect. top + 14) ;
DrawString(theString);

end;

procedure ToggleVl;
begin
vl := not vl;
if vl then
begin

EraseRect(vlRect);
FrameRect(vlrect);
Move To (vlRect. left + 4, vlRect. top + 14);
Drawstring ('1 ON');
Voices : = Voices + i;

255

Continued

256 SOUND MAGIC

111111111111111111111111111111111 Listing 9.12 Continued

end
else
begin

EraseRect(vlRect);
FrameRect(vlrect);
MoveTo(vlRect.left + 4, vlRect.top + 14);
Drawstring (' 1 OFF');
InvertRect(vlRect);
Voices := Voices - l;

end;
end;

procedure ToggleV2;
begin

v2 := not v2;
if v2 then
begin

EraseRect(v2Rect);
FrameRect(v2rect);
MoveTo(v2Rect.left + 4, v2Rect.top + 14);
Drawstring ('2 ON');
Voices := Voices + l;

end
else
begin

EraseRect(v2Rect);
FrameRect(v2rect);
Move To (v2Rect. left + 4, v2Rect. top + 14);
Drawstring ('2 OFF');
InvertRect(v2Rect);
Voices . - Voices - 1;

end;
end;

procedure ToggleV3;
begin

v3 := not v3;
if v3 then
begin

EraseRect(v3Rect);
FrameRect(v3rect);
Move To (v3Rect. left + 4, v3Rect. top + 14);
Drawstring (' 3 ON');
Voices . - Voices + 1;

end
else
begin

EraseRect(v3Rect);
FrameRect(v3rect);
MoveTo(v3Rect.left + 4, v3Rect.top + 14);
Drawstring ('3 OFF');

Continued

111111111111111111111111111111111 Listing 9.12 Continued

InvertRect (·v3Rect) ;
Voices := Voices - 1;

end;
end;

procedure ToggleV4;
begin

v4 := not v4;
if v4 then
begin

EraseRect(v4Rect);
FrameRect(v4Rect);

THE FOURVOICE PROGRAM

MoveTo(v4Rect.left + 4, v4Rect.top + 14);
Drawstring (' 4 ON');
Voices := Voices + 1;

end
else
begin

EraseRect(v4Rect);
FrameRect(v4Rect);
MoveTo(v4Rect.left + 4, v4Rect.top + 14);
Drawstring ('4 OFF');
InvertRect(v4Rect);
Voices := Voices - 1;

end;
end;

procedure Varinit;
begin

Voices := 4;
vl := TRUE;
v2 := TRUE;
v3 := TRUE;
v4 := TRUE;

end;

procedure InitDraw;
var

BoxBottom, BoxTop, BoxWidth, BoxHeight : Integer;
begin

257

SetRect(DrawWind, DrawLeft, DrawTop, DrawLeft + DrawWidth,
DrawTop + DrawHeight);

SetDrawingRect(DrawWind);
ShowDrawing;
BoxHeight : = 2 0;
BoxBottom := DrawHeight - 15;
BoxTop := BoxBottom - BoxHeight;
BoxWidth := 40;
Set Re ct (DrawRect, 0, 0, DrawWidth, Box Top - 1) ;
SetRect(vlRect, O, BoxTop, BoxWidth, BoxBottom);
SetRect(v2Rect, vlRect.right, BoxTop, vlRect.right +

Continued

258 SOUND MAGIC

111111111111111111111111111111111 Listing 9.12 Continued

BoxWidth, BoxBottom);
SetRect(v3Rect, v2Rect.right, BoxTop, v2Rect.right +

BoxWidth, BoxBottom);
SetRect(v4Rect, v3Rect.right, BoxTop, v3Rect.right +

BoxWidth, BoxBottom);
SetRect (MsgRect, v4Rect. right, BoxTop, DrawWidth - 10,

BoxBottom);
FrameRect(vlRect);
FrameRect(v2Rect);
FrameRect(v3Rect);
FrameRect(v4Rect);
FrameRect(MsgRect);
MoveTo(vlRect.left + 4, vlRect.top + 14);
Drawstring (' 1 ON');
MoveTo (v2Rect.left + 4, v2Rect.top + 14);
Drawstring ('2 ON');
MoveTo (v3Rect.left + 4, v3Rect.top + 14);
Drawstring ('3 ON');
MoveTo(v4Rect.left + 4, v4Rect.top + 14);
Drawstring ('4 ON');

end;

function RateCalc (Frequency
var

temp long int;
beqin

{assume 255 bytes/cycle}

real) Fixed;

temp:= Round(255 *Frequency* 44.93E-6);
RateCalc := BitShift (temp, 16);

end;

procedure InitSound;
var

Freql, Freq2, Freq3, Freq4 : real;
beqin

{initialize synthesizer record}
SynthRec.Mode := FTMode;
SynthRec.SndRec := @SoundRec;

I set synthesizer record pointer}
SynthRecPtr := @SynthRec;

{initialize sound record}
Time : = 1. O;
with SoundRec do
beqin

Duration := round(Time * 60);
Freql := 440;
Freq2 . - 4 4 0 * (1 + 4 I 14) ;
Freq3 := 660;
Freq4 .- 880;
if vl then

SoundlRate := RateCalc(Freql)

Continued

111111111111111111111111111111111

THE FOURVOICE PROGRAM 259

Listing 9.12 Continued

else
SoundlRate := O;

if v2 than
Sound2Rate := RateCalc(Freq2)

else
Sound2Rate := O;

if v3 than
Sound3Rate := RateCalc(Freq3)

else
Sound3Rate := O;

if v4 than
Sound4Rate := RateCalc (Freq4)

else
Sound4Rate := O;

SoundlPhase := O;
Sound2Phase := O;
Sound3Phase := O;
Sound4Phase := O;

{set relative amplitudes of 4 voices, 0 -> 1, loudest 1}
Ampl := 1;
Amp2 := 1;
Amp3 := 1;
Amp4 := 1;
SoundlWave := @Wavel;
Sound2Wave := @Wave2;
Sound3Wave := @Wave3;
Sound4Wave := @Wave4;

and;
and;

function Triangle (angle real) real;
begin
if angle <= pi than
begin

Triangle : = 2 * angle I pi - 1;
and

else
begin

Triangle := 1 - 2 * (angle - pi) I pi;
and;

and;

function Square (angle
begin
if angle < pi than

Square := 1. 0
else

Square := -1. O;
end;

function FunctB (angle

real) real;

real) real;

Continued

260 SOUND MAGIC

111111111111111111111111111111111 Listing 9.12 Continued

con st
Nl l;
N2 : l;
N3 : l;

var
Al, A2, A3 : real;

begin
Al :: Nl I (Nl + N2 + N3);
A2 : : N2 I (Nl + N2 + N3) ;
A3 :: N3 / (Nl + N2 + N3);
FunctB :: Al * sin(angle) + A2 * sin(3 * angle) + A3 * sin(5

* angle);
end;

function FunctA (angle
con st

Nl l;
N2 : l;
N3 ,., l;

var
Al, A2, A3 : real;

begin

real)

Al : : Nl / (Nl + N2 + N3) ;
A2 : : N2 / (Nl + N2 + N3) ;
A3 :: N3 / (Nl + N2 + N3);

real;

FunctA :: Al * sin(angle) + A2 * sin(2 * Angle) + A3 * sin(4
* angle);

end;

procedure CalcSound;
{fill in the wave arrays}

var
i : integer;
theta : real;

begin
{calculate wavel}

if SoundRec.SoundlRate <> 0 then
begin
Message('Calculating Wave 1');
if Ampl ,., 0.0 then
for i :: 0 to 255 do
Wavel[i) :: 0

else
for i :: 0 to 255 do
begin

theta :: i * 2 * pi I 255;
Wavel[i) :: 128 + trunc(Ampl * 127 * FunctB(theta));

end;
end;

I calculate wave2}

Continued

THE FOURVOICE PROGRAM 261

111111111111111111111111111111111 Listing 9.12 Continued

if SoundRec. Sound2Rate <> 0 than
begin
Message('Calculating wave 2');
if Amp2 = 0.0 then
for i := 0 to 255 do

Wave2 [i] := 0
else
for i := O to 255 do
begin

theta := i * 2 * pi I 255;
Wave2 [i] := 128 + trunc (Amp2 * 127 * FunctA (theta));

end;
end;

{calculate wave3}
if SoundRec. Sound3Rate <> 0 then
begin
Message('Calculating Wave 3');
if Amp3 = 0.0 then
for i := 0 to 255 do

Wave3 [i] := 0
else
for i := 0 to 255 do
begin

theta := i * 2 * pi I 255;
Wave3[i] := 128 + trunc(Amp3 * 127 * Triangle(theta));

end;
end;

{calculate wave4}
if SoundRec. Sound4Rate <> 0 then
begin

Message('Calculating Wave 4');
if Amp4 = 0.0 then
for i := 0 to 255 do

Wave4 [i] := 0
else
for i := O to 255 do
begin

theta := i * 2 * pi I 255;
Wave4[i] := 128 + trunc(Amp4 * 127 * Square(theta));

end;
end;

end;

procedure DrawWave (theWave
start : point;
scale : real) ;

var
i, v : integer;

begin
v := Round(scale * theWave[O]);
MoveTo(start.h, start.v - v);

Wave;

Continued

282 SOUND MAGIC

111111111111111111111111111111111 Listing 9.12 Continued

for i := 1 to 255 do
bag in

v := Round(scale * theWave[i]);
LineTo(start.h + i, start.v - v);

end;
end;

procedure DrawAll;
con st

waveHgt 64;
waveSep 4;

var
i : integer;
startPt : point;
QScale : real;

begin
EraseRect(DrawRect);
Message ('Waves for all voices');
QScale : = 0. 25;
startPt .h := 10;
startPt. v : = waveHgt + 4;
if vl than

DrawWave (Wavel, startPt, QScale);
startPt. v : = startPt. v + waveHgt + wave Sep;
if v2 then

DrawWave (Wave2, startPt, QScale);
startPt. v : = startPt. v + waveHgt + waveSep;
if v3 then

DrawWave (Wave3, startPt, QScale);
startPt. v : = startPt. v + waveHgt + waveSep;
if v4 then

DrawWave(Wave4, startPt, QScale);
Message ('Click Mouse to Hear Tones ');

end;

procedure DrawWaves;
var

i : integer;
start point;
Scale : real;

begin
start.h := 10;
start.v := 128 + ((DrawHeight - 24) div 2);
Scale := 1;
if vl then
begin

EraseRect(DrawRect);
Message ('Wave 1');
DrawWave(Wavel, start, scale);
Message ('wave 1, Click Mouse to Continue');
WaitClick;

Continued

lllllllllllllllllllllllllllllllll Listing 9.12 Continued

end;
if v2 then
begin

EraseRect(DrawRect);
Message('Wave 2');
DrawWave(Wave2, start,
Message('Wave 2, Click
WaitClick;

end;
if v3 then
begin

EraseRect(DrawRect);
Message ('Wave 3 ');
DrawWave(Wave3, start,
Message ('Wave 3, Click
WaitClick;

end;
if v4 then
begin

EraseRect(DrawRect);
Message ('Wave 4') ;
or·awwave (Wave4, start,
Message('Wave 4, Click
WaitClick;

end;
if voices > 1 then

DrawAll
else

THE FOURVOICE PROGRAM

scale);
Mouse to Continue') ;

scale);
Mouse to Continue');

scale);
Mouse to Continue') ;

Message('Click Mouse to Hear Tones');
WaitClick;

end;

begin
HideAll;
Done := FALSE;
TextFont(System);
TextSize(12);
Varinit;
initdraw;
repeat

213

Message ('Select Voices or Click Mouse in Window To Start');
repeat
until button;
repeat
until not button;
GetMouse(mouse.h, mouse.v);
if PtinRect (Mouse, vlRect) then

ToggleVl
else if ptinRect (mouse, v2Rect) then

ToggleV2
else if Ptinrect (mouse, v3Rect) then

Continued

264 SOUND MAGIC

111111111111111111111111111111111 Listing 9.12 Continued

ToggleV3
else if PtinRect (mouse, v4Rect) then

ToggleV4
else
begin

initsound;
calcsound;
DrawWaves;
StartSound(SynthRecPtr, SizeOf(SynthRec), nil);
repeat
until SoundDone;
Stop Sound;

end;
until done;

end.

111

APPENDIXES

A QuickDraw Data Structures

B QuickDraw Routines

C Mouse Routines

D Macintosh Pascal Window Routines

E Sound Routines and Data Structures

111

265

APPENDIX A: QUICKDRAW DATA STRUCTURES 267

APPENDIX A: QUICKDRAW
11111111111111111111111111111111 DATA STRUCTURES

canst

type

srcCopy = O;
srcOR = l;
srcXOR = 2;
srcBIC = 3;
notSrcCopy = 4;
notSrcOR = 5;
notSrcXOR = 6;
notSrcBIC = 7;
patCopy = 8;
patOR = 9;
patXOR = 10;
patBIC = 11;
notPatCopy = 12;
notPatOR = 13;
notPatXOR = 14;
notPatBIC = 15;

pattern =packed array [0 .. 7] of 0 .. 255;
Styleltem = (bold, italic, underline, outline,

shadow, condense, extend);
Fontinfo = record

ascent,
descent,
widMax,
leading : integer;

end;
Point = record case integer of

0 : (v : integer; h : integer);
1 : (vh : array [vhSelect] of integer);

end;
Rect = record case integer of

O : (top, left, bottom, right : integer);
1 : (topLeft, botRight : Point);

end;
QDByte = -128 .. 127;
QDPtr = AQDByte;

288 APPENDIXES

BitMap = record
baseAddr: QDPtr;
rowBytes : integer;
bounds : Rect;

end;
Bitsl6: array [0 .. 15] of integer;
Cursor = record

data : Bits 16;
mask : Bitsl6;
hotspot : Point;

end;
PenState = record

pnLoc : Point;
pnSize : Point;
pnMode : integer;
pnPat : Pattern;

end;
PolyHandle = "PolyPtr;
PolyPtr = "Polygon;
Polygon = record

polySize : integer;
polyBBox : Rect;
poly Points : array [O .. O] of point;

end;
RgnHandle = "RgnPtr;
RgnPtr = "Region;
Region = record

rgnSize : integer;
rgnBBox : Rect;

end;
PicHandle = "PicPtr;
PicPtr = "Picture;
Picture = record

picSize : integer;
picFrame : Rect;

end;
GraiPort = record

device : integer;
portBits : BitMap;
portRect : Rect;
visRgn: RgnHandle;
clipRgn: RgnHandle;
bkPat : Pattern;

APPENDIX A: QUICKDRAW DATA STRUCTURES 269

fillPat : Pattern;
pnLoc : Point;
pnSize : Point;
pnMode : integer;
pnPat : Pattern;
pn Vis : integer;
txFont : integer;
txFace : Style;
txMode : integer;
txSize : integer;
spExtra : longint;
fgColor : longint;
bkColor : longint;
ColrBit : integer;
patStretch : integer;
picSave : QDHandle;
rgnSave : QDHandle;
polySave : QDHandle;
grafFrocs : QDProcPtr;

end;

APPENDIX B: QUICKDRAW ROUTINES 271

APPENDIX B: QUICKDRAW
11111111111111111111111111111111 ROUTINES

Calculations

AddPt(src, dst);
Type:
Parameters:

Description:

EmptyRect(r);
Type:
Parameter:
Description:

EqualPt(ptl, pt2);
Type:
Parameters:

Description:

Procedure
src Point
dst Point variable
Add the coordinates of src to dst, and put the result
in dst.

Function Boolean
r Re ct
Return TRUE if the rectangle is empty, that is, if it
has zero width or zero height.

Function Boolean
ptl Point
pt2 Point
Return TRUE if the coordinates of the two points are
the same.

EqualRect(rectl, rect2);
Type: Function Boolean

Rect Parameters: rectl

Description:

GlobalToLocal(pt);
Type:
Parameter:
Description:

rect2 Re ct
Return TRUE if the coordinates of the corners of the
rectangles are equal.

Procedure
pt Point variable
Convert the coordinates of the point from the global
coordinate system to the current GrafPort's local
coordinate system.

272 APPENDIXES

InsetRect(r, db, dv);
Type:
Parameters:

Description:

LocalToGlobal(pt);
Type:
Parameter:
Description:

Procedure
r Rect variable
dh Integer
dv Integer
Shrink the rectangle by the amounts dh (horizontal)
and dv (vertical). If dh or dv is negative, the
rectangle is expanded in that direction instead
of shrunk.

Procedure
pt Point variable
Convert the coordinates of the point from the
current GrafPort's local coordinate system to the
global coordinate system.

MapPt(pt, fromRect, toRect);
Type: Procedure
Parameters: pt Point variable

Re ct

Description:

fromRect
to Re ct Re ct
Calculate the coordinates in toRect of the point in
fromRect, scaling its position to match the scale
difference between the two rectangles.

MapRect(r, fromRect, toRect);
Type: Procedure
Parameters:

Description:

r
fromRect
toRect

Rect variable
Rect
Re ct

Map the coordinates of rectangle r's corners from
the source rectangle to the destination rectangle,
scaling to match the dimensions of the destination
rectangle. (Calls MapPt to map the corners.)

OffsetRect(r, db, dv);
Type:
Parameters:

Description:

PtlnRect(pt, r);
Type:
Parameters:

Description:

APPENDIX B: QUICKDRAW ROUTINES 273

Procedure
r Re ct
dh Integer
dv Integer
Offset the coordinates of the rectangle's corners
by dh (horizontal) and dv (vertical). Moves
the rectangle.

Function
pt

Boolean
Point

r Rect
Return TRUE if the point is inside the rectangle.

Pt2Rect(ptl, pt2, dstRect);
Type: Procedure
Parameters: ptl Point

Point

Description:

pt2
dstRect Rect variable
Set dstRect to the rectangle that just encloses the
two points.

SectRect(srcl, src2, dstRect);
Type: Function Boolean

Re ct Parameters: srcl

Description:

SetPt(pt, b, v);
Type:
Parameters:

Description:

src2 Rect
dstRect Rect variable
Set dstRect to the area of intersection of the two
source rectangles.

Procedure
pt Point variable
h Integer
v Integer
Set the coordinates of pt to h (horizontal) and
v (vertical).

274 APPENDIXES

SetRect(r, left, top, right, bottom);
Type: Procedure
Parameters: r Rect

left Integer
top Integer
right Integer
bottom Integer

Decription: Set the rectangle data structure to the specified
coordinates.

SubPt(src, dst);
Type:
Parameters:

Description:

Procedure
src Point
dst Point variable
Subtract the coordinates of src from dst, and put the
result in dst.

UnionRect(srcl, src2, dstRect);
Type: Procedure
Parameters:

Description:

Cursor

HideCursor;
Type:
Parameters:
Description:

InitCursor;
Type:
Parameters:
Description:

srcl Rect
src2 Rect
dstRect Rect variable
Set dstRect to the rectangle that just encloses both
of the source rectangles.

Procedure
none
Hide the cursor, and decrement the cursor level
variable. The cursor stays hidden as long as the
cursor level is negative.

Procedure
none
Initialize the cursor (set it to a visible arrow).

ObscureCursor;
Type:
Parameters:
Description:

SetCursor(crsr);
Type:
Parameter:
Description:

SbowCursor;
Type:
Parameters:
Description:

GrafPort

BackPat(pat);
Type:
Parameter:
Description:

ClipRect(r);
Type:
Parameter:
Description:

ClosePort(port);
Type:
Parameter:
Description:

GetClip(rgn);
Type:
Parameter:
Description:

APPENDIX B: QUICKDRAW ROUTINES 275

Procedure
none
Hide the cursor until the mouse is moved. (Does not
decrement the cursor level.)

Procedure
crsr Cursor
Set the cursor shape.

Procedure
none
Increment the cursor level. If it is zero, show
the cursor.

Procedure
pat Pattern
Set the bkPat field in the current GrarPort's data
structure.

Procedure
r Re ct
Set the clipRect field in the current GrarPort's data
structure.

Procedure
port GrarPtr
Close the GrarPort, deallocating its memory.

Procedure
rgn RgnHandle
Set rgn to the clipRgn of the current GrarPort.

278 APPENDIXES

GetPort(port);
Type:
Parameter:
Description:

GrafDevice(device);
Type:
Parameter:
Description:

InitGraf(globalPtr);
Type:
Parameter:
Desription:

InitPort(port);
Type:
Parameter:
Description:

Procedure
port GrafPtr variable
Get a pointer to the current GralPort's data
structure.

Procedure
device Integer
Set the device field in the GrafPort data structure.

Procedure
globalPtr QDPtr
Initialize the QuickDraw package (called
automatically by Macintosh Pascal).

Procedure
port GrafPtr
Initialize the GralPort data structure for a port that
is already open.

MovePortTo(leftGlobal, topGlobal);
Type: Procedure
Parameters: leftGlobal Integer

topGlobal Integer
Description: Move the portRect; set the upper left corner of the

portRect field in the GrafPort data structure.

OpenPort(port);
Type:
Parameter:
Description:

Procedure
port GrafPtr
Open the GrafPort, allocating memory and
initializing the GralPort data structure.

PortSize(widtb, beigbt);
Type: Procedure
Parameters: width Integer

height Integer
Description: Set the size of the portRect field in the GrafPort data

structure. Changes only the lower right corner
of portRect.

SetClip(rgn);
Type:
Parameter:
Description:

SetOrlgin(h, v);
Type:
Parameters:

Description:

SetPort(port);
Type:
Parameter:
Description:

SetPortBits(bm);
Type:
Parameter:
Description:

Ltne

Line(db, dv);
Type:
Parameters:

Description:

LineTo(h, v);
Type:
Parameters:

Description:

APPENDIX B: QUICK.DRAW ROUTINES 277

Procedure
rgn RgnHandle
Set the clipRgn of the current GrarPort.

Procedure
h Integer
v Integer
Set the origin of the GrarPort's coordinate system
(changes the portBits.bounds, portRect, and visRgn
fields in the GrarPort data structure).

Procedure
port GraphPtr
Set the current GrarPort to the GrarPort data
structure specified by the pointer.

Procedure
bm BitMap
Set the portBits field in the GrarPort data structure.

Procedure
dh Integer
dv Integer
Draw a line from the current pen location to the
point calculated by adding dh to the pen's
horizontal coordinate and adding dv to the pen's
vertical coordinate.

Procedure
h Integer
v Integer
Draw a line from the current pen location to the
point specified by the horizontal coordinate, h, and
the vertical coordinate, v.

278 APPENDIXES

Pen

GetPen(pt);
Type:
Parameter:
Description:

Procedure
pt Point variable
Set pt to the current pen location.

GetPenState(pnState);
Type: Procedure
Parameter: pnState PenState variable
Description: Set pnState to the current pen state.

HidePen;
Type:
Parameters:
Description:

Move(dh, dv);
Type:
Parameters:

Description:

MoveTo(h, v);
Type:
Parameters:

Description:

PenMode(mode);
Type:
Parameter:
Description:

Procedure
none
Decrement the pen visibility variable (pnVis) in the
current graph port. As long as the variable is less
than zero, the pen cannot draw. The first call to
HidePen will make the pen invisible. Subsequent
calls must be balanced by an equal number of calls
to ShowPen in order to make the pen draw again.

Procedure
dh Integer
dv Integer
Move the pen by dh horizontally and dv vertically.

Procedure
h Integer
v Integer
Move the pen to the specified coordinates.

Procedure
mode Integer
Set the pen mode in the current graph port.

PenNormal;
Type:
Parameters:
Description:

PenPat(pat);
Type:
Parameter:
Description:

APPENDIX B: QUICKDRAW ROUTINES 279

Procedure
none
Initialize the pen parameters in the current graph
port to a pen size of (1, 1), a pen mode of patCopy,
and a pen pattern of black.

Procedure
pat Pattern
Set the current graph port's pen pattern to the
specified pattern.

PenSize(width, height);
Type: Procedure
Parameters: width Integer

height Integer
Description: Set the current graph port's pen size to the specified

dimensions.

SetPenState(pnState);
Type: Procedure
Parameter: pnState PenState
Description: Set the current graph port's pen state.

Show Pen;
Type:
Parameters:
Description:

Picture

ClosePicture;
Type:
Parameters:
Description:

Procedure
none
Increment the current graph port's pen visibility
parameter. The parameter cannot be greater than
zero. If the parameter is zero, the pen can draw; if
it is less than zero, the pen cannot draw.

Procedure
none
Stop recording QuickDraw calls in the current
picture data structure.

280 APPENDIXES

DrawPlcture(tbePicture, r);
Type: Procedure
Parameters: thePicture PicHandle

Description:
r Re ct
Scale the picture to fit in the rectangle, and draw it
in the rectangle.

KlllPlcture(tbePlcture);
Type: Procedure
Parameter: thePicture PicHandle
Description: Deallocate the memory used by the picture data

structure.

OpenPlcture(plcFrame);
Type: Function PicHandle
Parameter: picFrame Rect
Description: Allocate memory for and create a data structure for

recording QuickDraw calls as a picture. Start
recording QuickDraw calls in the picture

Polygons

ClosePoly,·
Type:
Parameters:
Description:

ErasePoly(poly);
Type:
Parameter:
Description:

FlllPoly(poly, pat);
Type:
Parameters:

Description:

data structure.

Procedure
none
Deallocate the data structure for the current
polygon, and stop saving QuickDraw calls in it.

Procedure
poly Poly Handle
Erase the polygon by filling it with the current
background pattern.

Procedure
poly Poly Handle
pat Pattern
Fill the polygon with the specified pattern.

'FramePoly(poly);
Type:
Parameter:
Description:

InvertPoly(poly);
Type:
Parameter:
Description:

KillPoly(poly);
Type:
Parameter:
Description:

APPENDIX B: QUICKDRAW ROUTINES 281

Procedure
poly Poly Handle
Draw the outline of the polygon, using the current
pattern.

Procedure
poly Poly Handle
Invert the value (1or0) of each pixel in the polygon.

Procedure
poly Poly Handle
Deallocate the data structure in which the polygon
is stored.

OffsetPoly(poly, db, dv);
Type: Procedure
Parameters: poly Poly Handle

dh Integer
dv Integer

Description: Move the polygon horizontally by distance dh and
vertically by distance dv.

OpenPoly;
Type:
Parameters:
Description:

PaintPoly(poly);
Type:
Parameter:
Description:

Function Poly Handle
none
Allocate the polygon data structure, and begin
recording QuickDraw calls in it. The function
returns a handle to the data structure.

Procedure
poly Poly Handle
Fill the polygon with the current pattern, using the
current pen parameters.

282 APPENDIXES

Region

CloseRgn(tbeRgn);
Type:
Parameter:
Description:

Procedure
theRgn RgnHandle
Stop storing QuickDraw calls, and organize the
QuickDraw shapes defined by QuickDraw calls into
a region. You must supply a handle to a region
previously defined by NewRgn.

CopyRgn(srcRgn, dstRgn),·
Type: Procedure
Parameters: srcRgn RgnHandle

dstRgn RgnHandle
Description: Copy the source region's data structure to the

destination region's data structure.

Dif.fRgn(ARgn, BRgn, dstRgn);
Type: Procedure
Parameters: ARgn RgnHandle

BRgn RgnHandle
dstRgn RgnHandle

Description: Calculate the difference between ARgn and BRgn,
and store the resulting region in dstRgn. The effect
is that of subtracting BRgn from ARgn.

DisposeRgn(tbeRgn);
Type: Procedure
Parameter: theRgn RgnHandle
Description: Deallocate the memory used by the region data

structure.

EmptyRgn(tbeRgn);
Type:
Parameter:
Description:

Function Boolean
theRgn RgnHandle
Return a value of TRUE if the region is empty. An
empty region is one that has dimensions of O; it
contains no pixels.

APPENDIX B: QUICKDRAW ROUTINES 283

EqualRgn(ARgn, BRgn);
Type: Function Boolean
Parameters: ARgn RgnHandle

BRgn RgnHandle
Description: Return a value of TRUE if ARgn and BRgn are equal.

EraseRgn(theRgn);
Type:
Parameter:
Description:

FillRgn(tbeRgn, pat);

Regions are equal if they are identical (have the same
location, shape, and dimensions).

Procedure
theRgn RgnHandle
Erase the region by filling it with the current
background pattern.

Type: Procedure
Parameters: theRgn RgnHandle

pat Pattern
Description: Fill the region with the specified pattern.

FrameRgn(tbeRgn);
Type:
Parameter:
Description:

Procedure
theRgn RgnHandle
Draw the outline of the region, using the current
pen pattern and pen parameters.

/nsetRgn(tbeRgn, db, dv);
Type: Procedure
Parameters: theRgn RgnHandle

dh Integer
dv Integer

Description: Change the size of the region while leaving it in the
same location. The amount to shrink the region
horizontally is dh; dv is the amount to shrink it
vertically. Negative values of dh or dv make the
region larger rather than smaller.

InvertRgn(theRgn);
Type:
Parameter:
Description:

Procedure
theRgn RgnHandle
Invert the value (1 or 0) of each pixel in the region.

284 APPENDIXES

NewRgn;
Type:
Parameters:
Description:

Function RgnHandle
none
Allocate the memory for a region data structure.

OffsetRgn(tbeRgn, db, dv);
Type: Procedure
Parameters: theRgn RgnHandle

dh Integer
dv Integer

Description: Change the location of a region by dh horizontally
and dv vertically.

OpenRgn(tbeRgn);
Type:
Parameter:
Description:

PaintRgn(tbeRgn);
Type:
Parameter:
Description:

PtlnRgn(pt, tbeRgn),·

Procedure
theRgn RgnHandle
Start recording QuickDraw calls that will be used by
CloseRgn to calculate a region data structure.

Procedure
theRgn RgnHandle
Fill the region with the current pattern, using the
current pen parameters.

Type: Function Boolean
Parameters: theRgn RgnHandle

pt Point
Description: Return a value of TRUE if the specified point is

inside the region.

RectlnRgn(r, tbeRgn);
Type: Function Boolean
Parameters: theRgn RgnHandle

r Re ct
Description: Return a value of TRUE if the specified rectangle is

completely enclosed by the region.

RectRgn(tbeRgn, r);
Type:
Parameters:

Description:

APPENDIX B: QUICKDRAW ROUTINES 285

Procedure
theRgn RgnHandle
r Re ct
Set the region to the rectangle. The previous
description of the region is lost, and the region
becomes a retangle with the position and
dimensions of the specified rectangle.

SectRgn(ARgn, BRgn, dstRgn);
Type: Procedure
Parameters: ARgn RgnHandle

BRgn RgnHandle
dstRgn RgnHandle

Description: Set the destination region, dstRgn, to the
intersection of ARgn and BRgn. The area enclosed
by dstRgn is the area where ARgn and BRgn overlap.

SetEmptyRgn(tbeRgn);
Type: Procedure
Parameter: theRgn RgnHandle
Description: Replace the region data structure with one that

defines an empty region, a region with zero
dimensions. An empty region encloses no pixels.

SetRectRgn(tbeRgn, left, top, right, bottom);
Type: Procedure
Parameters: theRgn RgnHandle

left Integer
top Integer
right Integer
bottom Integer

Description: Set the region to a rectangle. Like RectRgn, except
that, with SetRectRgn, you specify the coordinates
of the rectangle's corners rather than defining the
rectangle with a rectangle data structure.

286 APPENDIXES

UnionRgn(ARgn, BRgn, dstRgn);
Type: Procedure
Parameters: ARgn RgnHandle

BRgn RgnHandle
dstRgn RgnHandle

Description: Set the destination region, dstRgn, to the areas
enclosed by ARgn and BRgn. The resulting region
can have discontiguous areas.

XorRgn(ARgn, BRgn, dstRgn);
Type: Procedure
Parameters: ARgn RgnHandle

BRgn RgnHandle
dstRgn RgnHandle

Description: Set the destination region to the area in the union of
ARgn with BRgn that is not also a part of the
intersection of ARgn and BRgn.

Shapes

EraseArc(r, startAngle, arcAngle);
Type: Procedure
Parameters:

Description:

EraseOval(r);
Type:
Parameter:
Description:

EraseRect(r);
Type:
Parameter:
Description:

r Rect
startAngle Integer
arcAngle Integer
Erase the arc by filling it with the current
background pattern. The arc is a portion of the oval
defined by the rectangle. It starts at the start angle
and extends to the angle that is the sum of
startAngle degrees plus arcAngle degrees.

Procedure
r Re ct
Erase the oval defined by the rectangle by filling it
with the current background pattern.

Procedure
r Re ct
Erase the rectangle by filling it with the current
background pattern.

APPENDIX B: QUICKDRAW ROUTINES 287

EraseRoundRect(r, ovWd, ovHt);
Type: Procedure
Parameters: r Rect

ov\'Vd Integer
ovHt Integer

Description: Erase the rounded rectangle by filling it with the
current background pattern.

FillArc(r, startAngle, arcAngle, pat);
Type: Procedure
Parameters: r Rect

startAngle Integer
arcAngle Integer
pat Pattern

Description: Fill the arc with the specified pattern. The arc is a
pie-shaped portion of the oval defined by the
rectangle. It starts at the start angle and extends to
the angle that is the sum of startAngle degrees plus
arcAngle degrees.

FtllOval(r, pat);
Type:
Parameters:

Description:

FtllRect(r, pat);
Type:
Parameters:

Description:

Procedure
r Re ct
pat Pattern
Fill the oval defined by the rectangle with the
specified pattern.

Procedure
r Re ct
pat Pattern
Fill the rectangle with the specified pattern.

FtllRoundRect(r, ovWd, ovHt, pat),·
Type: Procedure
Parameters: r Rect

ov\'Vd Integer
ovHt Integer
pat Pattern

Description: Fill the rounded rectangle with the specified
pattern.

288 APPENDIXES

FrameArc(r, startAngle, arcAngle),·
Type: Procedure
Parameters: r Rect

startAngle Integer
arcAngle Integer

Description: Draw the arc, using the current pen parameters. The
arc is a portion of the oval defined by the rectangle.
It starts at the start angle and extends to the angle
that is the sum of startAngle degrees plus

FrameOval(r);
Type:
Parameter:
Description:

FrameRect(r);
Type:
Parameter:
Description:

arcAngle degrees.

Procedure
r Re ct
Draw the oval defined by the rectangle.

Procedure
r Re ct
Draw the rectangle.

FrameRoundRect(r, ovWd, ovHt);
Type: Procedure
Parameters: r Re ct

ovWd Integer
ovHt Integer

Description: Draw the round rectangle.

InvertArc(r, startAngle, arcAngle);
Type: Procedure
Parameters:

Description:

r Re ct
startAngle Integer
arcAngle Integer
Invert the arc. The arc is a pie-shaped portion of the
oval defined by the rectangle. It starts at the start
angle and extends to the angle that is the sum of
startAngle degrees plus arcAngle degrees. Inversion
consists of inverting the value (1 or 0) of every pixel
within the arc.

InvertOval(r);
Type:
Parameter:
Description:

InvertRect(r);
Type:
Parameter:
Description:

APPENDIX B: QUICKDRAW ROUTINES 289

Procedure
r Re ct
Invert the oval defined by the rectangle, including
its interior. Inversion consists of inverting the value
(1 or 0) of every pixel within the oval.

Procedure
r Re ct
Invert the rectangle. Inversion consists of inverting
the value (1 or 0) of every pixel within the rectangle.

InvertRoundRect(r, ovWd, ovHt);
Type: Procedure
Parameters: r Rect

ovWd Integer
ovHt Integer

Description: Invert the rounded rectangle. Inversion consists of
inverting the value (1 or 0) of every pixel within the
rounded rectangle.

PaintArc(r, startAngle, arcAngle),·
Type: Procedure
Parameters: r Rect

startAngle Integer

~ arcAngle Integer
Descri tion: Fill the arc with the current pen pattern. The arc is

a portion of the oval defined by the rectangle. It
starts at the start angle and extends to the angle
that is the sum of startAngle degrees plus

PaintOval(r);
Type:
Parameter:
Description:

PaintRect(r);
Type:
Parameter:
Description:

arcAngle degrees.

Procedure
r Re ct
Fill the oval with the current pen pattern.

Procedure
r Rect
Fill the rectangle with the current pen pattern.

290 APPENDIXES

PatntRoundRect(r, ovWd, ovHt);
Type: Procedure
Parameters:

Description:

Text

CbarWtdtb(cb);
Type:
Parameter:
Description:

DrawCba'l(cb);
Type:
Parameter:
Description:

DrawString(string);
Type:
Parameter:
Description:

r Re ct
ovWd Integer
ovHt Integer
Fill the rounded rectangle with the current pen
pattern.

Function
ch

Integer
Char

Return the width, in pixels, of the character ch,
assuming that the character is drawn with the
current text font, style, and size.

Procedure
ch Char
Draw the character ch at the current pen location,
using the current text font, style, and size.

Procedure
string Str255
Draw the characters in the string starting at the
current pen position, using the current text font,
style, and size.

DrawText(textBuf, ftrstByte, byteCount);
Type: Procedure
Parameters: textBuf QDPtr

firstByte Integer
byteCount Integer

Description: Draw the text in the text buffer, starting at the
current pen position and using the current text font,
style, and size.

GetFontlnfo(info);
Type:
Parameter:
Description:

SpaceExtra(extra);
Type:
Parameter:
Description:

String Width(s);
Type:
Parameter:
Description:

TextFace(face);
Type:
Parameter:
Description:

TextFont(font);
Type:
Parameter:
Description:

TextMode(mode);
Type:
Parameter:
Description:

TextSize(size);
Type:
Parameter:
Description:

APPENDIX B: QUICKDRAW ROUTINES 291

Procedure
info Fontinfo variable
Fill the info variable with information about the
current text font's character dimensions (ascent,
descent, maximum width, and leading).

Procedure
extra Longint
Set the number used to calculate how much to
widen the distance between characters when
justifying text.

Function Integer
s Str255
Return the length in pixels of the specified string,
assuming that it is drawn in the current text font,
style, and size.

Procedure
face Style
Set the current graph port's text face.

Procedure
font Integer
Set the current graph port's text font.

Procedure
mode Integer
Set the current graph port's text mode.

Procedure
size Integer
Set the current graph port's text size.

292 APPENDIXES

Te:xtWtdtb(textBuf, ftrstByte, byteCount),·
Type: Function Integer
Parameters: textBuf QDPtr

firstByte Integer
byteCount Integer

Description: Return the width of the text in the text buffer,
assuming that it is drawn in the current text font,
style, and size.

APPENDIX C: MOUSE ROUTINES 293

11111111111111111111111111111111 APPENDIX C: MOUSE ROUTINES

Button;
Type:
Parameters:
Description:

GetMouse(h, v);
Type:
Parameters:

Description:

StillDawn;
Type:
Parameters:
Description:

WaitMouseUp;
Type:
Parameters:
Description:

Function Boolean
none
Return the current state of the mouse button
(TRUE =button down).

Procedure
h Integer variable
v Integer variable
Get the current mouse position in the coordinate
system of the drawing window, and put it in the
variables h (horizontal coordinate) and v (vertical
coordinate).

Function Boolean
none
Test to see if the mouse button is down and there
are no other mouse events in the event queue.

Function Boolean
none
Test to see if the mouse button is down and there
are no other mouse-down events in the event
queue. Removes mouse-up events from the
event queue.

APPENDIX D: MACINTOSH PASCAL WINDOW ROUTINES 295

APPENDIX D: MACINTOSH
11111111111111111111111111111111 PASCAL WINDOW ROUTINES

HideAll;
Type:
Parameters:
Description:

Procedure
none
Hide all of the windows.

SetDrawingRect(DrawingRect);
Type: Procedure
Parameter: DrawingRect Rect
Description: Set the drawing window to the size specified by

DrawingRect.

Show Drawing;
Type:
Parameters:
Description:

Procedure
none
Show the drawing window.

APPENDIX E: SOUND ROUTINES AND DATA STRUCTURES 297

APPENDIX E: SOUND ROUTINES
11111111111111111111111111111111 AND DATA STRUCTURES

Sound Data Structures

const

type

SWmode = -1;
FFmode = O;
FTmode = l;

byte = 0 .. 255;

(Square-wave mode)
(Free-form mode)
(Four-tone mode)

Square-Wave Synthesizer

type
Tone = record

Count,
Amplitude,
Duration : integer

end;

Tones = array [0 .. 3000] of Tone;

SWSynthRec = record
Mode : integer;
Triplets : Tones

end;

SwSynthPtr = "'SWSynthRec;

298 APPENDIXES

Free-Form Synthesizer

type
FreeWave = packed array [0 .. 30000] of byte;
FFSynthRec = record

Mode : integer;
Rate : longint;
WaveBytes: FreeWave

end;

FFSynthRecPtr = "FFSynthRec;

Four-Voice Synthesizer

type
Wave = packed array [0 .. 255] of byte;
WavePtr = "Wave;
FTSoundRec = record

duration : integer;
Sound 1 Rate : fixed;
Sound 1 Phase : longint;
Sound2Rate : fixed;
Sound2Phase : longint;
Sound3Rate : fixed;
Sound3Phase : longint;
Sound4Rate : fixed;
Sound4Phase : longint;
Soundl Wave : WavePtr;
Sound2Wave: WavePtr;
Sound3 Wave : WavePtr;
Sound4Wave : WavePtr;

end;

FTSndRecPtr = "FTSoundRec;

FTSynthRec = record
mode : integer;
SndRec : FTSndRecPtr

end;

FTSynthPtr = "FTSynthRec;

APPENDIX E: SOUND ROUTINES AND DATA STRUCTURES 299

Sound Routines

GetSoundVol(Level);
Type:
Parameter:
Description:

Procedure
Level Integer variable
Get the current sound volume setting. The sound
volume is an integer in the range 0 .. 7.

Note(Frequency, Amplitude, Duration);
Type: Procedure
Parameters: Frequency Longint

Amplitude Integer
Duration Integer

Description: Produce a single square-wave tone with the
specified frequency, amplitude, and duration.
Frequency is in hertz, duration is in units of 0.022
sec, and amplitude is 0 .. 255.

SetSoundVol(Level};
Type:
Parameter:
Description:

SoundDone;
Type:
Parameters:
Description:

Procedure
Level Integer
Set the current sound volume setting. The sound
volume is an integer in the range 0 .. 7.

Function Boolean
none
Return TRUE if the last sound started
is complete.

StartSound(SyntbRecPtr, SyntbRecSize, completionPtr);
Type: Procedure
Parameters: SynthRecPtr Pointer

SynthRecSize Longint
completionPtr Pointer

Description: Start producing a sound, using the specified
synthesizer record.

300 APPENDIXES

StopSound;
Type
Parameters:
Description:

SysBeep(Duration);
Type:
Parameter:
Description:

Procedure
none
Stop producing sound.

Procedure
Duration Integer
Produce a tone for the specified length of time.
Time is in units of 0.022 second.

Aliasing

Ascent

Amplitude

Arc

CAD

Clip

Coordinates

Cursor

111

GLOSSARY

The creation of irregularities in an image as a result of limiting
drawing to fixed pixels. Produces a jagged appearance in lines not
parallel to the coordinate axes.

The distance between a text character's base line and its top.

The difference between the highest value that a waveform takes on
and its lowest value.

A QuickDraw object, a pie-shaped portion of an oval.

Computer-aided design, design with a program that allows a
designer to use the computer to create drawings. CAD programs
store drawing information as object descriptions rather than images.

To restrict drawing to a defined area.

The numbers that represent the position of a point in a given
coordinate system relative to that coordinate system's origin.

The small image on the screen that follows the mouse's movements.
Application programs can change the shape of the cursor, hide it,
and display it, but they cannot set the cursor position.

301

302

Descent

Erase

Fill

Fractals

Frame

Font

GrafPort

Halftone

Hot Spot

Invert

Kerning

Object

Oval

Paint

GLOSSARY

The distance between a text character's base line and its
lowest point.

To fill a QuickDraw shape (including its edges) with the current
background pattern.

To draw a specified pattern inside of a QuickDraw shape.

Images produced by a mathematical method called fractional
geometry. Fractals can be made to mimic the shapes found
in nature.

To draw the outside edge of a QuickDraw shape.

A set of text characters of a uniform shape and design.

Conceptually, a drawing area either on the screen or in a memory
buffer. Physically, a data structure that contains variables that
define the drawing area and current settings of drawing
parameters.

An image made up of dots that vary in size or pattern and hence
simulate shades of gray.

The point in the cursor image that corresponds to the mouse
position.

To reverse the state of all pixels within a QuickDraw shape
(including the shape's edges). Inverting turns a shape into a
negative image of itself.

Moving characters closer together so that part of one character
overhangs or goes under the adjacent character.

A mathematical description of something that you can draw, as
opposed to the object's image, which is a list of the pixels turned
on and off when you draw the object.

A QuickDraw shape equivalent to an ellipse.

To fill a QuickDraw shape with the pen's current pattern.

Pen

Period

Phase

Pixel

Polygon

QuickDraw

RAM

Rectangle

Region

ROM

Round
Rectangle

Spline

Synthesizer

GLOSSARY 303

A convenient term for the current drawing position and drawing
parameters. QuickDraw routines draw as if they were moving a
pen over the drawing area.

The amount of time it takes a sound wave's waveform to repeat.

The difference in start time between two identical or similar
waveforms.

A picture element. The smallest portion of the display that you
can alter.

A QuickDraw shape. A polygon is a closed figure made up of
line segments.

The Macintosh's graphics software package. The QuickDraw
routines reside in ROM.

Random access memory (read-write memory). RAM is
where applications programs, variables, and some toolbox
routines reside.

A QuickDraw shape. A QuickDraw rectangle must be parallel to
the coordinate axes.

An arbitrarily shaped portion of the drawing area. A region is
described by a data structure and can be manipulated like
QuickDraw shapes.

Read-only memory. Where the Macintosh toolbox software
is stored.

A QuickDraw shape. A round rectangle is a rectangle with
rounded corners.

A smooth curve created with a mathematical technique that
synthesizes and blends together sections of curves on the basis of
predefined control points.

Macintosh software that synthesizes sounds using the Macintosh's
speaker. There are three types of synthesizer: square-wave, free­
form, and four-voice.

111

BIBLIOGRAPHY

Apple Computer, Inc. Inside Macintosh. Promotional edition. 1985.

--. Macintosh Pascal Reference Manual. 1984.

--. Macintosh Pascal Technical Appendix. 1984.

Carpenter, Loren C. "Computer Rendering of Fractal Curves and
Surfaces." Siggraph '82, Image Synthesis Seminar materials. 1982.

Folley, J. D., and A. Van Dam. Fundamentals of Interactive Computer
Graphics. Reading, Mass.: Addison-Wesley, 1982.

Greenberg, Donald, Aaron Marcus, Allan H. Schmidt, and Vernon Gorter.
The Computer Image: Applications of Computer Graphics. Reading,
Mass.: Addison-Wesley, 1982.

Newman, William M., and Robert F. Sproull. Principles of Interactive
Computer Graphics. New York: McGraw-Hill, 1979.

305

111

INDEX

AddPt procedure, 271
Aliasing, 7
Alignment, pattern, 29-30
Amplitude of sound wave, 228, 229

setting, 223-234
Angles

of arc, 43
of rotation, 151
sine of, 128

Arbitrary point, rotation about, 134
Arc, 43, 125
Axis of rotation, 130

BackPat procedure, 275
Beep, 232
Bezier curves, 183
BIC mode, 33, 35
Bit image, 106-107
Bit map, 107-108
Bit-mapped display, 3-4
Blocks, 39
Boxes

drawing. See DrawBox
palette, 140, 142, 144, 145

rotation of, 129, 130
scaling, 135-138

B-Spline curves, 184-189
program for, 190-191, 192,

208-211
Button function, 77, 293
Bytes

in display memory, 106-107
setting, in pattern, 30-31
waveform, 240

CAD (computer-aided design)
programs, 120

CalcNew procedure, 200
for Fractal2 program, 200-201
for Fractal3 program, 204-205

Calcone procedure, 243
Calcpts routine, 192-200
Calculating Wave 1, 2 51
Calculation routines, QuickDraw,

271-274
Character origins, 55

offset, 56
Characters, text. See Text characters

307

308 INDEX

CharWidth function, 61, 63, 290
CheapCAD program, 154-177

main loop, 145
Clipping, 24
ClipRect procedure, 24, 26, 275
ClipRgn (clipping region), 109, 111,

114, 115
ClosePicture procedure, 83, 84, 279
ClosePoly procedure, 88, 89, 280
ClosePort procedure, 275
CloseRgn procedure, 95, 282
Color images, 109
CompletionPtr, 236
Computer-aided design (CAD)

programs, 120
Constants, selecting, for curve

drawing, 182-183
Control palette boxes, 142
Control points, fitting curves to, 180,

182, 183
B-Spline curves, 184-185, 187

Control routines, 149
Coordinate system, 12-13, 102-106

for bit image, 107
conversions, 19-20, 112-114
GratPort and, 111
of object, 121
pen in, 28
SetOrigin procedure for, 114-115
translation of, 1 7-19

Coordinate transformations, 15-20,
105, 106

conversions, 19-20, 112-114
rotation, 129-134
scaling, 15-16, 17, 19, 116-117,

135-139
translation, 15, 16, 17-19, 116

Coordinates
of pen, 28

for text drawing, 60
pixel, 4-6, 12-13
and scaling, 136-13 7, 139

CopyRgn procedure, 282
Cursor, 38-39, 70-76, 77

QuickDraw routines for, 72-73,
274-275

Cursor hot spot, 72

Cursor image, 70, 72
Cursor level, 73
Cursor mask, 70, 72
Curve order, 190
Curves, jagged, 191-192

fractals, drawing, 193-207,
212-225

Curves, smooth, 180-183
B-Spline curves, 184-191, 192,

208-211
CUT box, 142

Data types and data structures
bit map, 107
cursor, 72
fixed-point, 239-240
Fontinfo, 61
GratPort, 108-109
line and object records, 123
of object, 121
pattern, 30
point, 20

DrawBox with, 21
QuickDraw, 267-269
rectangle, 22
synthesizer, 234-235, 246,

297-298
Default character image, 57
Destination rectangles, 87, 116-117
Device, ImageWriter, 57-58, 105, 120
DiffRgn procedure, 282
Dimensions, 12
Disk files, fonts in, 53
Display, bit-mapped, 3-4
Display memory bits, 106-107
Display RAM, 13
DisposeRgn procedure, 96, 282
DoControl, 149
Documents, large, 103-105, 106, 115
DoCut procedure, 149
DoDraw routine, 146
DoMove procedure, 149
DoRect routine, 145
DoRot procedure, 149
DoScale procedure, 149
DoSelect routine, 148-149
DrawArcObject routine, 151, 152

DrawBox, 14
with ClipRect, 26
with coordinate transformations,

15-16, 17
with point data type, 21
with SetRect, 23
several rectangles, modification for,

25
DrawChar procedure, 55, 58, 59, 290
DrawFont program

final form, 63, 65-67
preliminary, 59
revised, 62, 64

Drawing. See also QuickDraw
curves, jagged, 191-207, 212-225
curves, smooth, 180-191, 192,

208-211
objects. See Objects
patterns, 29-31, 32, 34

in sh;ape-drawing procedures,
44

pen. See Pen
shapes, 40-47

routines for, 286-290
text. See Text characters
in two dimensions, 12-26

DrawLine, 6, 14
DrawObject routine, 149-150
DrawPicture procedure, 83, 84, 87,

280
DrawPoly routine, 94
DrawRgn routine, 96
DrawRObject routine, 147-148, 150
DrawShapes routine, 45
Drawstring procedure, 59, 290
DrawStrip procedure, 3 7
DrawText procedure, 290
DrawWave procedure, 251

Elements and element records,
123-127

EmptyRect function, 271
EmptyRgn function, 96, 282
EqualPt and EqualRect functions, 271
EqualRgn function, 283
EraseArc procedure, 286
Erase operation, 44

INDEX 308

EraseOval procedure, 286
ErasePoly procedure, 90, 280
EraseRect procedure, 286
EraseRgn procedure, 283
EraseRoundRect procedure, 287
Even harmonics, 244

Files, font, 52, 53-54
FillArc procedure, 287
Fill operation, 44, 45
FillOval procedure, 287
FillPoly procedure, 90, 280
FillRect procedure, 287
FillRgn procedure, 283
FillRoundRect procedure, 287
Fixed-point numbers, 239-240
Fontinfo record, 61
Font mover utility, 53
Fonts, type, 50-51

character set, drawing, 63-67
files, 52, 53-54
getting information about, 61, 63
manager, 57-58
names and numbers, 60-61
in object drawing, 122-123
setting characteristics of, 58

Four-voice synthesizer, 245-251,
255-264,298

Fractals, drawing, 193-200, 212-216
Fractal2, 200-201, 217-221
Fractal3, 201, 204-205, 207,

222-225
Fractional geometry, principles of,

191-192
FrameArc procedure, 151, 288
Frame operation, 44, 47
FrameOval procedure, 288
FramePoly procedure, 90, 281
FrameRect procedure, 22, 288
FrameRgn procedure, 283
FrameRoundRect procedure, 288
FRect, 146
Free-form synthesizer, 239-245,

252-254,298
French curve, 180
Frequency of sound wave, 229

with Note procedure, 233

310 INDEX

FunctA function, 244
FunctB function, 243
FunctC function, 242

GetClip procedure, 275
GetFontlnfo procedure, 61, 291
GetMouse procedure, 77, 293
GetPen and GetPenState procedures,

278
Getpoints function

in fractal programs, 197
in spline program, 190

GetPort procedure, 276
GetSoundVol procedure, 299
GlobalToLocal and LocalToGlobal

procedures, 112-113, 271,
272

GrafDevice procedure, 276
GrafPort, 108-111, 112

QuickDraw routines for, 275-277
SetOrigin procedure, 114-115

Graphics editors, 3
GraphRect, 3 7

offsetting, 103
Grids, 12-13, 38, 73, 74, 77, 78-79,

81-82
Group of objects, creating, 127-128

Halftone images, 8-9
Hex characters, 67
HideAll procedure, 295
HideCursor procedure, 73, 274
HidePen procedure, 278
Hot spot, cursor, 72

Icons, 79
Image, cursor, 70, 72
ImageWriter, 57-58, 105, 120
InitCursor procedure, 72, 274
InitDraw procedure, 102-103
InitGraf and InitPort procedures, 276
InitSound procedure, 249, 250
InLine facility, 76-77
InsetRect procedure, 272
InsetRgn procedure, 283
Integers, 16-1 7

and cursor, 75-76
vs. fixed-point numbers, 240

InvertArc procedure, 288
Invert operation, 44
InvertOval procedure, 289
InvertPoly procedurt~, 90, 281
InvertRect procedure, 289
InvertRgn procedure, 283
InvertRoundRect procedure, 289
Iterate procedure in fractal program,

193, 197-198, 199

Jagged curves, 191-192
fractals, drawing, 193-207,

212-225
Jaggies, 7

Kerning, 55-57
KillPicture procedure, 84, 280
KillPoly procedure, 89, 281

Languages for access to QuickDraw, 9
Leading, 54
Library, QuickDrawl vs. QuickDraw2,

87
Lines

converting coordinates of, 114
drawing 6, 7, 14, 227

LineTo procedure, 277
for polygons, 88

Linked lists of elements, 125-128
LocalToGlobal and GlobalToLocal

procedures, 112-113, 271,
272

Loudness of sound, 229

MacDraw program, 120
Macintosh Pascal, 9, 10

fixed-point data type in, 239-240
and mouse, 76-77
vs. QuickDraw, 43
and sound synthesizers, 235, 236
window routines, 295

MacPaint program, 120
MakePoly procedure, 94
MakeRect routine, 146, 147
MakeRgn routine, 96
MapPoly procedure, 117
MapPt and MapRect procedures, 19,

116, 272

MapRgn procedure, 11 7
Mask, cursor, 70, 72
Memory

bit image and bit map, 106-108
pixels and, 13, 106-107

Memory buffer, 105
Modes, pen, 31-39
Monospaced fonts, 51
Mouse, 76-79

and fractal drawing, 193
and object drawing, 140, 144, 146
and picture drawing, 84
and polygon drawing, 90, 92, 94
and region drawing, 96
routines for, 77, 293

MovePortTo procedure, 276
Move procedure, 278
MoveTo procedure, 278
Music, making, 230-231

NewPts and oldPts, 198-199
NewRgn function, 95, 284
NotCOPY, notOR, notXOR, notBIC

modes, 33, 35
Note procedure, 232-233, 299

Object description record, 140
Object descriptions, 120
Objects, 103-104, 120-177

data structure of, 121
group of, creating, 127-128
program for drawing, 154-1 77

explanation of, 139-151
modification of, 152-153

rotation of, 129-134, 151
scaling, 15-16, 17, 19, 116-117,

135-139, 150
shape of, representing, 122-128
trigonometry and, 128-130

ObscureCursor procedure, 73, 275
Odd harmonics, 243
Offset, random, in fractal programs,

200-201, 205
OffsetPoly procedure, 89, 94, 281
OffsetRect procedure, 103, 113, 273
OffsetRgn procedure, 95, 284
OldPts and newPts, 198-199

INDEX 311

OpenPicture function, 83, 84, 280
OpenPoly function, 88, 89, 281
OpenPort procedure, 276
OpenRgn procedure, 95, 284
Order of curve, 190
Origin

of character, 55
offset, 56

in coordinate conversions,
112-113

of document, 104-105
rotation about, 131-134
and scaling, 13 5
setting, 106, 114-115

OR mode, 32, 33, 35, 38
Oval, 41-42

PaintArc procedure, 289
Paint operation, 44, 45
PaintOval procedure, 289
PaintPoly procedure, 90, 281
Paint programs, 120
PaintRect procedure, 289
PaintRgn procedure, 284
PaintRoundRect procedure, 290
Palettes in object-drawing program,

140, 142, 144, 145
Parametric eql.lations and curves,

181-182, 183
Pascal, Macintosh, 9, 10

fixed-point data type in, 239-240
and mouse, 76-77
vs. QuickDraw, 43
and sound synthesizers, 235, 236
window routines, 295

Patterns, pen, 29-31, 32, 34
in shape-drawing procedures, 44

Pen, 13-14
in character-drawing procedure,

54-55
coordinates of, 28

for text drawing, 60
modes, drawing, 31-39
moving between lines, 61
patterns, 29-31, 32, 34, 44
QuickDraw routines for, 278-279
in shape-drawing procedures, 44

312 INDEX

PenMode procedure, 278
PenNormal, PenPat, PenSize

procedures, 279
Period of sound wave, 229
Phase of sound wave, 230
Picture elements, 124
Pictures, 79-80

creating, 83-87, 88
QuickDraw routines for, 83-84,

279-280
Pixels, 3-4

coordinates, 4-6, 12-13
in cursor, 75-76
and halftone images, 8-9
and jaggies, 7
and memory, 13, 106-107
in pattern, setting, 31
and pen size, 28

Pointer (cursor), 38-39, 70-76, 77
QuickOraw routines for, 72-73,

274-275
Points, 116

data type, 20, 21
fitting curves to, 180, 182, 183

B-Spline curves, 184-185, 187
in fractal programs, 193, 197,

198-200, 201
rotation about, 130-134
rotation of, 131-133, 134

Poiygons, 79-80, 82
creating, 87-94
QuickDraw routines for, 88-89, 90,

280-281
PortSize procedure, 276
Printer, ImageWriter, 57-58, 105, 120
Proportionally spaced fonts, 50
PtlnRect function, 2 73
PtlnRgn function, 284
Pt2Rect procedure, 273

QuickDraw, 9
bit image and bit map, 106-108
ClipRect, 24, 26
coordinate system. See Coordinate

system
and cursor, 72-73, 274-275
data structures, 267-269

GratPort, 108-111, 112
routines for, 275-277
SetOrigin procedure, 114-115

line drawing with, 6, 7, 14, 277
pen. See Pen
pictures, 79-80, 83-87, 88,

279-280
polygons, 79-80, 82, 87-84,

280-281
rectangles, 22-23
regions, 79-80, 83, 94-99

defined in GratPort, 109, 114,
115

routines for, 95-96, 282-286
routines, 271-292

cursor, 72-73, 274-275
picture, 83-84, 279-280
polygon, 88-89, 90, 280-281
region, 95-96, 282-286
text, 58-59, 61, 63, 290-292

shapes, predefined, 40-47
routines for, 286-290

text drawing with, 53, 54-55,
59-60

and font manager, 57-58
GetFontlnfo, 61
kerning, 56
routines, 58-59, 61, 63,

290-292
QuickDrawl and QuickDraw2, 87

RAM, display, 13
Random offset in fractal programs,

200-201, 205
Rate variable for free-form synthesizer,

240
Real numbers, 16
Rectangles, 22-23, 41

clipping rectangles, 24
converting coordinates of, 113
destination rectangles, 87,

116-117
MapRect and MapPt, 19, 116, 272
in object-drawing program,

145-148, 150
vs. regions, 94
round, 42

several, drawing, 2 5
StartRect, 94

RectlnRgn function, 284
RectRgn procedure, 285
Regions, 79-90, 83

defined in GratPort, 109, 114, 115
QuickDraw routines for, 95-96,

282-286
using, 94-99

Resolution, 120
Resource file, system, fonts in, 53
Rotate routine, 151
Rotation, 129-134

in object-drawing program, 151
ROT box, 142
Round rectangle, 42
Row width, 107

SCALE box, 142
ScalePt procedure, 116
Scaling, 15-16, 17, 19, 116-117,

135-139
in object-drawing program, 150
pictures with, 87, 88

SectRect function, 273
SectRgn procedure, 285
Selection box, 140
Selection of object, 148-149
SetClip procedure, 277
SetCursor procedure, 73, 275
SetDrawingRect procedure, 3 7, 295
SetEmptyRgn procedure, 285
SetOrigin procedure, 114-115, 277
SetPenState procedure, 279
SetPort and SetPortBits procedures,

277
SetPt procedure, 273
SetRect procedure, 22, 23, 274
SetRectRgn procedure, 285
SetSoundVol procedure, 299
Shading with halftone images, 89
Shapes

of object, representing, 122-128
QuickDraw, predefined, 40-43

drawing, 44-4 7
routines for, 286-290

ShowCursor procedure, 73, 275

INDEX 313

ShowDrawing procedure, 37, 295
ShowPen procedure, 279
Sine (sin) of angle, 128
Sine waves, 229, 241
Size of type, 51-52
Smooth curves, drawing, 180-183

B-Spline curves, 184-191, 192,
208-211

SoundDone function, 299
Sound driver, 231, 234, 235, 236
Sound record, 246
Sound, 228-264

music, making, 230-231
Note procedure, 232-233, 299
routines, 231, 299-300
synthesizers, 230-231, 234-236

four-voice, 245-251, 255-264,
298

free-form, 239-245, 252-254,
298

square-wave, 237-239, 297
SysBeep procedure, 232, 300
volume control, 233-234

Sound waves, 228-230
in four-voice synthesizer, 245-248,

249, 251
free-form, sounds from, 239-245
square, tones with, 237-239

SpaceExtra procedure, 291
Spacing of fonts, 50-51
Spline curves, 184-189

program for, 190-191, 192,
208-211

Spline function, 190-191, 192
Square, drawing. See DrawBox
Square-wave synthesizer, 237-239,

297
StartRect, 94
StartSound procedure, 231, 235, 236,

239, 299
StillDown function, 293
StopSound procedure, 236, 300
StringWidth function, 63, 291
Style of type, 51, 53
SubPt procedure, 274
Synthesizer records (SynthRec),

234-235, 236, 237, 239, 246

314 INDEX

Synthesizers, sound, 230-231,
234-236

four-voice, 245-251, 255-264, 298
free-form, 239-245, 252-254, 298
square-wave, 237-239, 297

SynthRecPtr, 236
SysBeep procedure, 232, 300
System resource file, fonts in, 53

Text characters, 50-67
drawing, 54-55, 58-60
fonts. See Type fonts
kerned, 55-57
measurements, 53-55
QuickDraw routines for, 58-59, 61,

63,290-292
size of type, 51-52
style of type, 51, 53

TextFace, TextFont, TextMode,
TextSize procedures, 58, 291

TextWidth function, 292
Tone records, 23 7
Transformations, coordinate. See

Coordinate transformations
Translation, 15, 16, 17-19, 116
Triangle in trigonometry, 128-129
Trigonometry, 128-130
Triplets array, 23 7
Typeface, defined, 50
Type fonts, 50-51

character set, drawing, 63-67
files, 52, 53-54
getting information about, 61, 63
manager, 57-58

names and numbers, 60-61
in object drawing, 122-123
setting characteristics of, 58

Type size, 51-52
Type style, 51, 53

UnionRect procedure, 274
UnionRgn procedure, 286

Vibration and sound, 228
VisRgn field, 109, 111
Volume control, 233-234

WaitMouseUp function, 293
WaveBytes array, 240
Wave functions, 242-244
Waves, sound, 228-23.0

in four-voice synthesizer, 245-248,
249, 251

free-form, sounds from, 239-245
square, tones with, 237-239

Wedge (arc}, 43, 125
Window manager, 94
Windows, 6, 3 7

coordinate systems of, 102, 103,
105, 106

conversion routines, 112-114
SetOrigin procedure for,

114-115
GrafPorts, 108
limiting drawing areas to, 24
Macintosh Pascal routines, 295

XOR mode, 33, 35, 38-39
XorRgn procedure, 286

More Macintosh Books from
11111111111111111111111111111111 Scott, Foresman and Company

PROGRAMMING THE
MACINTOSH
An Advanced Guide
William B. Twitty

Programming the Macintosh:
An Advanced Guide

by Bill Twitty
384 pages, softbound, $19.95
Code: 18250

One of the first Macintosh books written for experienced programmers,
this handbook explores the fundamentals of the Macintosh and its
operating system in depth.

You'll find a wealth of technical information on Macintosh hardware,
software, and peripherals. Programming the Macintosh

o shows you how to use Macintosh systems software
o offers an introduction to the 68000 microprocessor
o explains how to program in Macintosh Pascal and Microsoft BASIC
o briefly discusses each of the compilers available for the Macintosh
o shows how to use the system routines that control menus

and windows

and more.

Packed with useful information, this book will give you an in-depth
understanding of the inner workings of the Macintosh.

More Macintosh Books from
11111111111111111111111111111111 Scott, Foresman and Company

MacGraphics for Business

by Jerry Mar
192 pages, softbound, S 1 7 .95
Code: 18158

You don't have to be an artist or a computer expert to create high­
quality business graphics with the Macintosh.

MacGraphics for Business focuses on the practical applications of
MacPaint, MacDraw, and Microsoft Chart software. You'll learn how to

o generate graphics for business presentations
o graph numerical data using Microsoft Chart
o use Macintosh graphics as instructional aids
o create precision graphics and scale drawings
o create attention-getting graphics

and more.

This book clearly explains many basic art concepts and techniques that
can make your graphics more effective. It includes three useful graphics
programs written in Microsoft BASIC 2.0. And over 100 illustrations
and numerous business examples help you use the Mac's graphics
capabilities most productively.

More Macintosh Books from
11111111111111111111111111111111 Scott, Foresman and Company

The Complete Boak of
Macintosh Assembly
Language Programming
by Dan Weston
608 pages, softbound, $25.95
Code: 18379

Learn to program complete Macintosh applications programs in
assembly language with this definitive tutorial.

Written for experienced programmers who are new to assembly
language, this book introduces and explains key concepts with a series
of fully functional computer programs. Instead of using brief program
fragments, this book develops and builds on such useful examples as a
simple, window-based doodle program, a text editor that reads and
writes disk files, and four handy desk accessories.

When the time comes to do your own programming, you will be able
to use many of the examples in this book as the basis for your own
projects . To help you, the appendix provides complete source code for
all the programs in the book, along with debugger hints and a wealth
of other helpful technical information.

More Macintosh Books from
11111111111111111111111111111111 Scott, Foresman and Company

Leaming Macintosh Pascal:
A Programmer's Guide
by Joseph Boyle Wikert
and Sam Davis
356 pages, softbound, $19.95
Code: 18333

Macintosh Pascal is an easy-to-learn computer language, yet it is
powerful enough to create sophisticated programs. This comprehensive
tutorial helps beginning and experienced programmers master Pascal
on the Macintosh.

In an informal, readable style, the authors discuss the fundamentals of
MacPascal in detail-from the basic structure of a Pascal program to
procedures, data types, variables, and arrays.

Learning Macintosh Pascal

o focuses on the unique features of MacPascal, showing how to
create windows and program the mouse

o provides dozens of short program examples and screen displays
o explains major concepts of structured programming and top­

down design
o shows how to program graphics, animation, sound, and music
o clearly explains such advanced topics as pointers, linked lists,

trees, stacks, and recursion
o includes four useful applications programs that apply important

topics discussed in this book

More Macintosh Books from
11111111111111111111111111111111 Scott, Foresman and Company

Programming C
on the Macintosh
by Terry A. Ward
384 pages, softbound, $21.95
Code: 18274

C is rapidly becoming the language of choice for serious
microcomputer programmers. The first C book specifically for
Macintosh users, Programming Con the Macintosh offers a
thorough introduction to the C language and to important principles
of structured programming and software design.

Written for experienced programmers and for software developers using
the Macintosh, this definitive reference book

D discusses and evaluates five major C compilers for the Mac
o discusses the Toolbox in detail, including QuickDraw and routines

for menus, windows, text editing, and event management
o includes a handy resource guide to additional sources of C

products, articles, and software
o concludes with a series of applications programs that show the

Toolbox routines in action

Master C on your Macintosh with this comprehensive guide.

More Macintosh Books from
11111111111111111111111111111111 Scott, Foresman and Company

Features BASIC 2.0 and enhancements

Microsoft BASIC Programming
for the Mac

Sharon Zanletto Aker

Microsoft BASIC
Programming for the Mac

by Sharon Zardetto Aker
352 pages, softbound, $17.95
Code: 18167

Master Microsoft BASIC 2.0 with this easy-to-understand book. Sharon
Aker guides you through all the fundamentals of BASIC on the
Macintosh, including

o simple editing and formatting techniques
o managing menus, windows, and the mouse
o using loops, variables, and subroutines
o file-handling techniques
o basic graphics programming

and more.

This handbook also includes a valuable reference guide that explains all
the commands covered in the book. Numerous practical tips and
shortcuts, 125 illustrations, and 131 sample programs make this book
easy to use. And a "problems and projects" section in most chapters
helps you practice newly learned techniques .

11111111111111111111111111111111 Order Form

To order, contact your local bookstore
or send this form to

Scott, Foresman and Company
Professional Publishing Group
1900 East Lake Avenue
Glenview, IL 6002 5
(312) 729-3000

In Canada, contact
Macmillan of Canada
164 Commander Blvd.
Agincourt, Ontario
MlS 3C7

Qty Code Title

Total Order $

State and/or Local Taxes $

6 % of Total before taxes for postage* $

TOTAL $

Price

*If you enclose a check with your order, there is no charge for postage.

11111111111111111111111111111111 Please check method of payment:

D Check/Money Order (Make checks payable to Scott, Foresman
and Company)*

Amount enclosed $ ____ _

D MasterCard D VISA

Credit Card No. ------------ Exp. ____ _

Signature----------------------

Name (please print)-------------------

Address ______________________ ~

City ___________ _ State __ _ Zip ___ _

*If you enclose a check with your order, there is no charge for postage.

Full payment must accompany your order. Prices subject to change without notice.

"This is the best M~
programming b'ook that I have
read to date by any author
I have been a programmer for
many years and have worked
for Apple Computer for many
years, and this book is just
what the doctor ordered I
found myself wanting more."
-Ricky N. Kurtz

Designed for programmers with
little or no graphics experience,
this comprehensive tutorial
helps you use the QuickDraw
ROM routines to generate and
manipulate images on your
512K Macintosh.

The M agic of Macintosh will get you
started writing your own graphics
programs immediately. You'll learn how to
• draw in 2 dimensions and in different

coordinate systems
• draw text in various type fonts
• work with polygons. regions , and

data structures
• create such advanced graphics as

spline curves and fractals
• use a variety of graphics techniques

found in CAD programs
• make music on the Macintosh
and more.

The Magic of Macintosh
offers an abundance of
practical examples for each Leoding

major concept covered in
the book-there are over
50 sample programs in
Macintosh Pascal and 1 82
helpful illustrations. And
you 'll find a collection of
useful technical information
in the appendixes. Unleash • •
the magician in your
Macintosh with this •
enjoyable guide.

•

William B. Twitty is a
cofounder of a Silicon Valley
consulting firm and makes his
living consulting and writing.
He has been designing
computer hardware and

•• software for over 20 years.
A resident of Southern ••
California, Mr. Twitty is also •
the author of Programming the ••
Macintosh: An Advanced Guide • • [Scott, Foresman].

j_

T

•

