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PREFACE 

The magic of the Macintosh is its graphics and sound. The Macintosh's 
ease of use and its appeal to nonprogrammers depend on its graphics. 
Anyone who writes programs for the Macintosh quickly finds that learning 
how to generate and manipulate images is an absolute must; you can't do 
anything on the Macintosh until you can understand and use the Quick­
Draw graphics package. 

This book was written to introduce programmers with little or no 
graphics background to Macintosh graphics and sound. The book has a 
fair amount of technical material, but there's also a lot of fun with graphics 
and sound. 

The early chapters are very basic and deal with graphics fundamen­
tals, QuickDraw, making images on the Macintosh, and drawing text in 
various type fonts. The later chapters address more technical subjects but 
always with the understanding that the reader may be able to program but 
has no prior experience with computer graphics. 

The material is ordered so that a user can start writing programs 
immediately without having to understand all of the details of QuickDraw 
coordinates and mathematics. Those kinds of details are covered in later 
chapters. 

The emphasis is on explaining by example. I felt it important to 
provide a concise example for each concept that is explained in the text, 
so The Magic of Macintosh is filled with programming examples and 
illustrations. The examples are designed so that the reader can take parts 



of the programs and transfer them to his or her own applications. They are 
a set of pretested parts for the software builder. 

The example programs are written in Macintosh Pascal. To keep them 
as simple as possible, I did not use any toolbox routines except those 
directly associated with graphics and sound. 

Chapter 1 introduces the reader to computer graphics and their 
implementation on the Macintosh. Chapter 2 explains the fundamentals of 
drawing in two dimensions and coordinate systems and begins introduc­
ing QuickDraw topics. Chapter 3 goes into more detail on drawing shapes 
and patterns with QuickDraw. Chapter 4 introduces the reader to text 
fonts and how they are drawn on the Macintosh with tools from the 
QuickDraw package. Chapter 5 deals with the mouse, the cursor, and 
more advanced tools in QuickDraw, as well as pictures, polygons, and 
regions. Chapter 6 leads the reader into the more technical subjects 
through an understanding of the fundamental concepts behind Quick­
Draw, its coordinate systems and data structures. 

From chapter 7 on, the topics are not strictly limited to the Macintosh 
and QuickDraw but range over a variety of technical methods used in 
computer-aided design systems and other graphics programs. Chapter 7 
discusses how to draw and store objects. Chapter 8 takes us into the exotic 
climes of spline curves and fractals. 

Chapter 9 brings the book to a close with explanations and examples 
of how to produce complex sounds on the Macintosh. 

Writing a technical book is a demanding task, but along with the work 
on this book, there was a lot of fun doing graphics and sound with the 
magical Macintosh. I hope that you have as much fun with this book as 
I did. 

Programmers new to the Macintosh will find the first book in this 
series, Programming the Macintosh: An Advanced Guide, to be another 
useful addition to their library. 

Many people helped to create and produce this book. Among them 
are the folks at Apple Computer who provided information and technical 
advice and my editor at Scott, Foresman, Richard Swadley, who had more 
patience than one could reasonably expect. A special thank-you goes to 
Jeanine Johnson, who put in many editing hours helping to make sense out 
of my technical ramblings and fumble-fingered typing. 
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2 UNLEASHING THE MAGICIAN 

THE MAGIC IN YOUR 
11111111111111111111111111111111 MACINTOSH 

A magician is someone who performs supernatural and astonishing feats 
through the mastery of secret and mysterious forces. And what could be 
more magical than a tan-colored box that draws pictures and makes music 
by its own hand? Your Macintosh computer is like a magician, accom­
plishing tasks that no small computer could before. However, the real 
magic within the Macintosh lies in the programs that produce the pictures 
and sound. 

Writing programs for sound and graphics may seem an arcane art 
calling for secret knowledge, but taken step by step, it's really very simple. 
When you learn the basics of computer graphics with examples pro­
grammed for the Macintosh, you are on your way to unleashing the 
magician in your Macintosh. 

The Macintosh produces pictures of striking quality for an inexpen­
sive computer. The basis of this high quality is the high-resolution display, 
which produces finely detailed images. The inexpensive high-resolution 
graphics open up many new possibilities for graphics on personal 
computers. 

The high-resolution display provides the fine artist with an entirely 
new medium in which to work and a new set of tools as well. Every 
medium has its own characteristics, and artists have been quick to capi­
talize on the Macintosh's. Commercial artists were not caught napping 
either. Some of the first third-party products for the Macintosh were disks 
containing pictures that any nonartist could use to add spice to proposals, 
newsletters, circulars, or other types of documents produced on the 
Macintosh. 

Business people use the graphics capabilities of the Macintosh to 
prepare for presentations and illustrate financial data. Engineers now have 
a tool for quickly producing graphs and charts based on engineering 
calculations. There are a number of low-cost computer-aided design 
programs on the market that will do everything from lay out printed circuit 
boards to help you design a garden. Of all the new application programs 
for personal computers, the most exciting are the ones designed specially 
for the Macintosh. They relate pictures to information in new and inno­
vative ways. Some are so new in concept that old labels no longer apply. 

Commercial packages provide graphics-based tools for doing a job. In 
this book we are more interested in the fun of graphics and sound on the 
Macintosh. We don't have any specific goals to produce a useful program. 
We're in it for the fun. Along the way we will learn a lot about graphics and 
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how to write programs that do useful work, but that's more a side effect 
than a goal. 

Some of the more basic graphics software techniques that we explore 
are useful for creating paint-type programs, sometimes called graphics 
editors. These programs allow you to create pictures by drawing on the 
Macintosh screen. You can manipulate the pictures only as if they were on 
a piece of paper. The tools the program provides are similar to the 
drawing, cutting, and pasting tools that artists use. You will also learn 
about more advanced techniques that let you store a mathematical 
description of an object. You can then manipulate the object as its picture 
is displayed, moving it, changing the scale, or rotating it. These are the 
kinds of techniques used in writing computer-aided design programs, 
used for such things as architectural drawing or laying out printed cir­
cuit boards. 

The remainder of this chapter covers some very basic information 
about computer graphics. If you already understand bit-mapped displays, 
pixels, aliasing, and halftone images, you should skip to the beginning of 
the next chapter. 

11111111111111111111111111111111 THE MACINTOSH DISPLAY 

The Macintosh has a high-resolution bit-mapped display. When you draw 
a picture on the Macintosh, it creates the image by lighting small discrete 
squares on the screen. If you draw a line, the Macintosh turns on each little 
square that falls along the course of the line (figure 1.1 ). These small 
squares are called pixels (a contraction of picture elements). A pixel is the 
smallest portion of the screen that you can control. You can turn a pixel 
on (make it black) or turn it off (make it white). All images that you create 

111111111111111111111111111111111 Figure 1.1 A line on a bit-mapped display 
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on the screen are made up of sets of pixels turned on or off. It sounds like 
a crude way to create a picture, but if the pixels are small enough, they 
blend together, and the picture appears more a continuous range of gray 
colors than a collection of individual pixels. 

Each pixel has an exact location on the screen and never moves. If 
you turn on a pixel, it will remain on until you turn it off. A display that 
is composed of pixels is called a bit-mapped display because each pixel 
corresponds to 1 bit in the computer's random access memory (RAM). 

11111111111111111111111111111111 PIXEL COORDINATES 

Since each pixel has a discrete, dedicated location on the display, it stands 
to reason that we have a method of selecting exactly which pixel we will 
turn on or off. You select a pixel by specifying the vertical and horizontal 
coordinates of its position on the screen. The coordinate system is like the 
Cartesian coordinate system that you learned about in high school algebra. 
Each point has a vertical coordinate that specifies its location in the vertical 
direction and a horizontal coordinate that specifies its location in the 
horizontal direction. 

Figure 1.2 shows a portion of the display (the upper left corner) 
somewhat enlarged so that we can identify individual pixels. Note how the 
horizontal and vertical coordinates uniquely identify a pixel. 

By turning sets of pixels on and off, we can draw lines, circles, or 
objects of any shape. Figure 1.3 shows a small square, a circle, and a text 
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D 0 .a 
111111111111111111111111111111111 Figure 1.3 Pixels and shapes 

character. Each is shown enlarged so that you can see the individual pixels 
and also at normal size so that you can see the blending effect. 

When you draw a picture by setting pixels, you can either draw a 
black image against a white background, as in figure 1.3, or do the 
opposite, drawing a white image on a black background. Most Macintosh 
software draws black images on a white background. It's more like 
drawing on a piece of paper. In the examples, I do it that way, too. When 
I talk about setting a pixel or turning it on, I mean making it black. 

When we write a program to draw a picture, the program must set 
each individual pixel that makes up the picture, specifying the coordinates 
of each pixel and whether the pixel is to be turned on or off. The range 
of values for pixel locations depends on the shape of the screen and the 
number of pixels. The Macintosh has a rectangular screen 512 pixels wide 
and 342 pixels high. The horizontal and vertical coordinates of the pixel 
in the upper left corner of the screen are both 0. The horizontal coordinate 
of the pixel in the lower right corner is 511; the vertical coordinate is 341. 

We usually write a pixel's coordinates as a pair of numbers in 
parentheses, the horizontal coordinate first. The coordinates of the upper 
left corner of the screen are thus (0, 0), and the coordinates of the lower 
right corner are (511, 341 ). Note that the coordinate numbering system 
starts with 0. 

In high school when you learned about the Cartesian coordinate 
system, higher numbers for the vertical coordinate of a point meant that 
the point was closer to the top of the graph or picture. On the Macintosh, 
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larger numbers for the vertical coordinate indicate that the pixel is closer 
to the bottom of the screen, just the opposite of the Cartesian coordinate 
system. 

We are using Macintosh Pascal for all programming examples, and it 
always draws in a window on the Macintosh screen. In most cases the 
window will be somewhat smaller than the screen. The coordinates that 
we use will be relative to the upper left corner of the inside of the window; 
that is, the coordinate of the upper left corner of the window's interior 
(not the window frame) is (0, 0). 

Let's see what a simple program to draw a line looks like (listing 1.1). 
The MoveTo statement tells the Macintosh where to start the line. The 

LineTo statement tells it the end point for the line. When we run the 
program, it draws the line shown in figure 1.4. 

111111111111111111111111111111111 Listing 1.1 DrawLine 

program DrawLine; 
{listing 1.1) 

begin 
Moveto (10, 15); 
LineTo(llO, 142) 

end. 

111111111111111111111111111111111 Figure 1.4 The line 
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11111111111111111111111111111111 JAGGIES 

The line that we drew in figure 1.4 looks a little strange. It's not exactly a 
straight line. Let's look at an enlargement (figure 1.5) and see if we can 
figure out what's wrong with it. 

The pixels that make up the line don't fall exactly on the line. More 
correctly, the line falls between the pixels. The QuickDraw LineTo routine 
turned on the pixels closest to the line. The jagged appearance of the line 
is caused by the fact that the screen is made up of discrete pixels; a line 
drawn by turning on pixels is only an approximation of a straight line 
drawn with pencil and paper. This effect is called jaggies or, if you want 
to sound more technical, aliasing. More sophisticated (and more expen­
sive) computer graphics displays can minimize the effects of aliasing by 
varying the intensity of pixels adjacent to the line. We really can't do that 
on the Macintosh. We're stuck with aliasing on some lines. 

On the Macintosh, there is no aliasing on lines that are exactly 
vertical, exactly horizontal, or at a 45-degree angle (figure 1.6). The 
only thing we can do about jaggies is to try to design our pictures with a 
minimum number of lines that are not vertical, horizontal, or at 
45 degrees. 

If you really need to have lines at other angles, don't worry about it. 
It doesn't look that bad, especially if you look from across the room and 
squint. I've been told that you can also remove jaggies by internal use of 
enough tequila, but I can't recommend that. The lines look fine, but 
walking becomes a problem. 

111111111111111111111111111111111 Figure 1. 5 The line enlarged 
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111111111111111111111111111111111 Figure 1.6 Lines and aliasing 

11111111111111111111111111111111 HALFTONE IMAGES 

So far we have seen how to draw lines by turning pixels on and off, but that 
makes our drawing capabilities pretty limited. We would like to be able to 
draw objects in various colors and shades. Even though some of the 
Macintosh's built-in software allows you to specify colors, the Macintosh 
display can show only black and white. We can, however, use a newspaper 
printing trick to make images appear to be drawn in various shades of gray. 

If you look closely at a newspaper photograph, you can see that it is 
made up of a collection of dots. Each dot is the same shade of gray 
(actually, they are all black), but they are different sizes. By varying the size 
of the small dots that make up an image, you can make the image appear 
to be drawn in shades of gray. Your eyes and brain blend the dots together. 
A picture using this method of producing shades of gray is called a 
halftone image. 

We can't draw dots of different sizes on the Macintosh because all of 
the pixels are the same size. We can do something nearly as good. We can 
vary the number of dots that we turn on in a given area of the screen. Take 
a look at figure 1. 7. You can see several shades of gray. The enlarged 

11111111111 
111111111111111111111111111111111 Figure 1. 7 Shading patterns 
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portion shows that more pixels are turned on in the darker shaded areas. 
The built-in software in the Macintosh allows you to dictate specific 
patterns that determine which dots are turned on. You can then use other 
routines to fill areas of your picture with those patterns. 

11111111111111111111111111111111 QUICKDRAW 

I've mentioned the Macintosh's built-in software several times, so let me 
talk about it in a little more detail. The Macintosh has a great deal of 
built-in software in read-only memory (ROM) chips in the machine. This 
software provides the tools for programmers to write programs that fit 
into the standard Macintosh user interface using menus, windows, text 
fonts, and so on. The section of software that provides the tools for 
drawing pictures and text on the screen is called QuickDraw. 

QuickDraw can be a complex subject if you try to learn all of it at 
once, so I will introduce QuickDraw routines and other information only 
as we need it. There's more to QuickDraw than you will see in this book, 
and if you are interested in exploring it further, you can find a copy of the 
QuickDraw manual in the Macintosh Pascal Technical Appendix or in 
Apple Computer's publication, Inside Macintosh. 

11111111111111111111111111111111 PROGRAMMING 

All of the programs that we use in this book will be in Macintosh Pascal. 
It's an interpretive language that is easy to use for experimentation. What's 
more, it can access the QuickDraw routines in the Macintosh ROM. 
Macintosh Pascal comes with a technical appendix that includes the 
complete documentation for QuickDraw. 

You can try most of these examples with any language that allows 
access to the QuickDraw routines. Some languages (Microsoft BASIC is an 
example) don't let you access QuickDraw directly but provide program 
statements or subroutines that do a subset of the QuickDraw functions. If 
you want to be able to try all of the techniques in this book, you would 
be better off using a language that allows direct access to all of the 
QuickDraw routines. 

There are other interpretive languages that allow access to the Quick­
Draw routines. FORTH is one example. Most compiled languages let you 
call QuickDraw routines, but they are somewhat more time-consuming 
and are not as well suited to experimenting and prototyping as is Macin­
tosh Pascal. 
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In this book we focus on how to do graphics and sound. There is very 
little information about how to program in Pascal or how to run the Pascal 
interpreter. If you have a copy of Macintosh Pascal, you will find that type 
of information in the documentation that comes with the software. If not, 
you may want to investigate other books on Macintosh Pascal. The first 
book in this series, Programming the Macintosh: An Advanced Guide, has 
a chapter on Macintosh Pascal that is a good introduction to the language. 
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12 DRAWING IN TWO DIMENSIONS 

11111111111111111111111111111111 DIMENSIONS 

In one sense, all of the drawing that we will do is two-dimensional; we will 
always draw on a flat surface (the Macintosh display or the printer). I 
use the term two-dimensional when talking about representing a two­
dimensional-that is, flat-image on the Macintosh. I use the term three­
dimensional when we are representing a three-dimensional image by 
drawing it in perspective views on the Macintosh display. 

In fact, the vast majority of Macintosh applications do strictly two­
dimensional drawing. Only a very specialized application will draw three­
dimensional perspective views. Two-dimensional drawing techniques are 
still the basis for three-dimensional drawing programs. In the end, they 
must represent the three-dimensional object by drawing it in two dimen­
sions on the display, and they do that by using the two-dimensional 
techniques discussed in this chapter. 

11111111111111111111111111111111 COORDINATE SYSTEMS 

All computer graphics programs are based on fundamental principles of 
mathematics and geometry. The more rigorous their application of math­
ematical tools, the better the resulting software, so QuickDraw has a very 
exactly defined mathematical basis. I will introduce the mathematical 
concepts and definitions at appropriate times in the book. Taken a piece 
at a time, the definitions may seem arbitrary or restrictive, but after I've 
explained each with examples and shown how they fit together, you'll 
appreciate their rigor. 

The first of these concepts is the QuickDraw coordinate system. In 
the preceding chapter, I discussed pixel coordinates and rather loosely 
defined the horizontal and vertical coordinates of a pixel. The QuickDraw 
coordinate definition is similar but more exact. Let's see an example. 

In figure 2 .1, we see an array of pixels on the Macintosh screen set 
into a grid, a network of horizontal and vertical lines. The lines are 
between the pixels and represent the QuickDraw coordinate system. A 
pair of QuickDraw coordinates is a pair of numbers specifying a horizontal 
and a vertical coordinate. The coordinates represent the intersection of 
two of the lines in figure 2 .1. The coordinate system actually specifies 
points between the pixels. 

That's all very nice, but what we ultimately want to do is use the 
coordinate system to specify a pixel, not a pair of intersecting imaginary 
lines. The coordinate pair in the diagram, (3, 5), identifies the intersection 
of two lines in the coordinate system, and they identify a single pixel, the 
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one immediately below and to the right of the intersecting lines (the 
darkest pixel in figure 2 .1 ). 

11111111111111111111111111111111 PIXELS AND MEMORY 

The data that turns a pixel on or off is actually stored in a section of 
memory in the Macintosh called the display RAM. There is 1 bit of display 
RAM for each pixel on the screen. The Macintosh display hardware 
automatically reads the display RAM and uses the data to turn pixels on the 
screen on and off. Turning on a bit in the display RAM causes the 
Macintosh's display hardware to light the associated pixel. 

The Macintosh's memory is organized into 8-bit bytes, but the screen 
is usually organized into windows of arbitrary size. There are other 
QuickDraw definitions that tell us how to find a pixel in the Macintosh 
memory, what the active drawing area on the screen is, and what coor­
dinate system is being used in that drawing area. For now, we'll just ignore 
all of that and assume that we are always drawing in a window in which 
the coordinates of the upper left pixel are (0, 0). 

11111111111111111111111111111111 THE PEN 

Let's take another look at the routine we used to draw a line (listing 2.1). 
You tell QuickDraw how to draw something by describing how to 

draw it as if you were using a pen on a piece of paper ruled with the 
coordinate system. You tell QuickDraw where to move the pen and 
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111111111111111111111111111111111 Listing 2.1 DrawLine 

program DrawLine; 
{listing 2.1} 

begin 
Moveto (10, 15); 
LineTo (110, 142) 

end. 

whether to put the pen down on the paper, drawing as it moves, or to lift 
the pen up and just move it without drawing. The MoveTo statement 
moves the pen to the starting point. The LineTo puts the pen down on the 
paper and moves it to the end point, drawing a line. 

Let's draw something a little more ambitious. We'll draw a square, 
this time putting the coordinates in variables instead of having the actual 
numbers in the calls to the drawing routines (listing 2.2, figure 2.2). 

By putting the coordinates in variables, we can do some processing 
on them before we call the drawing routines and vary the size, location, 
and orientation of the object we are ~rawing. 

111111111111111111111111111111111 Listing 2 .2 Draw Box 

program DrawBox; 
{listing 2.2} 
var 
vl, hl, v2, h2, v3, h3, v4, h4 

begin 
hl .- 20; 
vl := 20; 

h2 .- 20; 
v2 := 80; 

h3 := 80; 
v3 .- 80; 

h4 .- 80; 
v4 := 20; 

Moveto (hl, vl); 
LineTo (h2, v2); 
LineTo (h3, v3); 
Line To (h4, v4) ; 
LineTo (hl, vl); 

end. 

INTEGER; 
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COORDINATE 
11111111111111111111111111111111 TRANSFORMATIONS 

Suppose we wanted to draw the box again but in a different location in the 
window, stretched in one direction or rotated. We can do all of those 
things using coordinate transformation formulas . There are three basic 
coordinate transformations: translation , scaling, and rotation . Transla­
tion is moving a point (or each point in an object) from one screen location 
to another. Scaling is changing the scale in either the vertical or horizontal 
direction. Changing the scale in one direction causes the object to shrink 
or stretch in that direction. 

Let's see how we would do a coordinate translation. We will draw the 
box again but further over to the right and a little lower in the display 
window. We could figure out the new coordinates by hand and add them 
to the coordinates of each corner of the box, or we can let Pascal figure 
them out for us . We can calculate the new coordinates of a point we are 
translating (moving) by adding or subtracting the distance we want to 
move it . After we add the coordinate translation, the program is as shown 
in listing 2. 3. 

The distance to move the box (in numbers of pixels) is in the DeltaH 
and DeltaV variables. We just add DeltaH and DeltaV to the coordinates of 
each corner of the box. 

We can change the drawing scale in either the horizontal or vertical 
direction by multiplying the final coordinates of each point by the scale 
factor. If we want to shrink the box to three-fourths of its original size in 
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111111111111111111111111111111111 Listing 2.3 DrawBox with Translation 

program DrawBox; 
{Listing 2.3) 
var 
vl, hl, v2, h2, v3, h3, v4, h4 
DeltaH, DeltaV : INTEGER; 

begin 
{set initial coordinate values} 
hl .- 20; 
vl .- 20; 
h2 . - 20; 
v2 : = 80; 
h3 .- 80; 
v3 .- 80; 
h4 .- 80; 
v4 := 20; 

{set transformation parameters} 
DeltaH := 45; 
DeltaV := -10; 

{perform coordinate transformation} 
hl := hl + DeltaH; 
vl := vl + DeltaV; 
h2 .- h2 + DeltaH; 
v2 .- v2 + DeltaV; 
h3 := h3 + DeltaH; 
v3 .- v3 + DeltaV; 
h4 .- h4 + DeltaH; 
v4 := v4 + DeltaV; 
Moveto (hl, vl); 
LineTo(h2, v2); 
LineTo(h3, v3); 
LineTo (h4, v4); 
LineTo(hl, vl); 

end. 

INTEGER; 

the horizontal direction, we would modify the program to include a scale 
factor of 0.75. In the next version of the program (listing 2.4), we add scale 
factors for both directions and convert the coordinate transformation 
calculation into a subroutine. 

Note that the scale factors are real numbers (floating-point), but the 
coordinates are integers. Many of the calculations that we must do to 
transform coordinates can be done only with real numbers in Pascal, but 
the results are pixel coordinates, and they are always integers. The trans­
form routine adds two integers, the coordinate (h or v) and the translation 
value (HDelta or VDelta). The result is an integer. The routine multiplies 
that integer by a real number, and the result is a real number. The routine 
uses the Round function to convert that real number to an integer. The 
Round function returns a long integer value, but Pascal allows you to 
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111111111111111111111111111111111 Listing 2.4 DrawBox with Translation and Scaling 

program DrawBox; 
{Listing 2. 4} 
var 
vl, hl, v2, h2, v3, h3, v4, h4 INTEGER; 
DeltaH, DeltaV : INTEGER; 
ScaleH, ScaleV : REAL; 

procedure transform (var h, v : INTEGER; 
HDelta, VDelta : INTEGER; 
HScale, VScale : REAL) ; 

begin 
{do coordinate translation and scaling} 

h := Round((h + HDelta) * HScale); 
v : = Round ( (v + VDel ta) * VS ca le) ; 

end; 

begin 
{set initial coordinate values} 
hl := 20; 
vl := 20; 
h2 : = 20; 
v2 := 80; 
h3 := 80; 
v3 := 80; 
h4 .- 80; 
v4 := 20; 

{set transformation parameters} 
DeltaH := 45; 
Deltav := -10; 
ScaleH := 0.75; 
ScaleV : = 1 . O; 

{transform coordinates} 
transform(hl, vl, DeltaH, Deltav, ScaleH, ScaleV); 
transform (h2, v2, DeltaH, DeltaV, ScaleH, ScaleV); 
transform (h3, v3, DeltaH, Deltav, ScaleH, ScaleV); 
transform (h4, v4, DeltaH, DeltaV, ScaleH, ScaleV); 

{Draw a Box} 
Moveto(hl, vl); 
LineTo (h2, v2); 
LineTo (h3, v3); 
LineTo (h4, v4); 
LineTo (hl, vl); 

end. 

17 

assign a long integer value to an integer if the number is not too large to 
store in an integer. 

What we have done so far with coordinate transformation is simply to 
move an object's location on the screen. If we recalculated the position of 
every object on the screen, the effect would be the same as if we moved 
the entire picture relative to the coordinate system. In some cases we want 
to move the coordinate system but keep the picture in the same location. 
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For instance, if for some reason we needed to redefine the coordi­
nates of the upper left corner of the screen to be ( 40, 60) instead of (0, 0), 
we would in effect be moving the coordinate system to the left 40 pixels 
and up 60 pixels. Then the origin of the coordinate system, the point 
(0, 0), would not be on the screen. In figure 2.3, we see the coordinate 
system moved so that the origin is off the screen. 

The Point (0,0) The Point (40,60) 
/ The Rect8ngle(60,70,90,90) 

D 

Before Moving the Origin 

The Point (0,0) 

/ The Point (40,60) 

/ The Rectangle(60,70,90,90) 

After moving the Origin 

lllllllllllllllllllllllllllllllll Figure 2.3 Coordinate system translation 
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If we want to draw our objects in the same locations on the screen 
but using the new coordinate system, we must convert the coordinates 
of each object to the new coordinate system by adding 40 to all of the 
horizontal coordinates and adding 60 to all of the vertical coordinates. 

Sometimes we move a coordinate system because it is more conve­
nient for doing a particular calculation. The scaling calculation that we did 
in our coordinate transformation routine doesn't really work well for 
scaling objects. The way we wrote the routine, the scale factor affects the 
object's position on the screen as well as its size. There are several 
methods that we could use to scale an object properly, but one method 
requires that the object be centered on the origin of the coordinate 
system. If we want to scale just one object, we perform a coordinate 
system translation to move the origin of the coordinate system to the 
center of the object, perform the scaling calculation, and then move the 
coordinate system back to where it was. In chapter 7 we will see how this 
same technique is used in doing the calculations to rotate an object about 
an arbitrary point. 

When we work in a window, our program draws pictures using a 
coordinate system that has the origin at the upper left pixel in the window. 
That pixel is not the origin in the Macintosh screen coordinate system. The 
Macintosh QuickDraw software translates the coordinates that we use in 
drawing commands (in the coordinate system of our window) to the 
coordinate system of the Macintosh screen. It uses methods similar to the 
method we used to move our bpx around on the screen. 

Fortunately for us, QuickDraw has a lot of built-in routines for 
handling things like converting from one coordinate system to another or 
moving an object by changing its coordinates. {For instance, we'll shortly 
be using the OffsetRect routine, instead of our own coordinate translation 
routine, to move a rectangle.) 

MapRect and MapPt are two of the QuickDraw routines that perform 
coordinate conversion. The MapRect routine performs coordinate system 
conversion doing both translation and scaling of a rectangle. 

MapPt converts the coordinates of a point in one rectangle to the 
coordinates of another rectangle. It performs translation and scaling so 
that the point ends up in the same relative location in the destination 
rectangle. If you used MapPt to convert the coordinates of a point in the 
center of a rectangle to the coordinates of a point in a destination rectangle 
that was twice the size of the source rectangle, the point's new coordi­
nates would be in the center of the destination rectangle. 

You won't find MapPt and MapRect in the section of the QuickDraw 
manual on points and rectangles; they are in the miscellaneous utilities 
section. We'll take a closer look at MapRect and MapPt in chapter 6. 
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QuickDraw has other routines for converting coordinates from the 
coordinate system of one window to the coordinate system of another 
window or a print buffer. We will take a closer look at those when we get 
into QuickDraw' s GrafPort data structure and GrafPort coordinate systems 
in chapter 6. 

11111111111111111111111111111111 POINTS AND RECTANGLES 

We have been representing a point as a pair of integers, and that would 
suffice for everything that we want to do, but it would be more convenient 
to have a data type for representing a point. QuickDraw has a data type 
called point. Its definition looks like this: 

type 
Point =record case INTEGER of 

0 : (v, h : INTEGER); 
1 : (vh : array [VHSelect] of INTEGER); 

end; 

By defining a point this way, we can refer to it as a pair of integers or 
as an integer array of size 2. If we add the point type to our program, we 
can get a better idea of how it is used. We will make a few other changes 
also. The transform routine will be split into a translation function and a 
coordinate transform routine (listing 2 .5). 

Note that we used the point data type but did not define it with a type 
definition. The program ran anyway. How can we get away with that? The 
answer is that Macintosh Pascal has all of the QuickDraw constants, types, 
procedures, and functions predefined. 

As of now, there seems little reason to split up the transform routine, 
but we will find it more useful to have it split up when we do the object 
rotation calculations. Wherever we used a point data type, we referred to 
its coordinates as parts of a record rather than as elements of an array. 
When we call the transform routine, we pass it a point, but when the 
transform routine calls the translate routine, it passes an integer that is one 
of the coordinates of a point (coord.v or coord.h). 

Anyone who has already looked at the QuickDraw documentation 
knows that we are really drawing this box the hard way. QuickDraw has a 
data structure that describes a rectangle and a routine that will draw a 
rectangle for us. Let's take a look at those. 
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111111111111111111111111111111111 Listing 2.5 DrawBox with the Point Data Type 

program DrawBox; 
{listing 2.5) 
var 

Vl t hl t 
DeltaH, 
ScaleH, 
TopLeft 
Bot Left 
TopRight 
BotRight 

v2, h2, v3, h3, v4, h4 
Del taV : INTEGER; 
ScaleV : REAL; 

point; 
point; 

point; 
: Point; 

INTEGER; 

function Translate (hv, Delta Integer; 
Scale : REAL) INTEGER; 

begin 
{do coordinate translation and scaling} 

translate := Round((hv +Delta) *Scale); 
end; 

procedure Transform (var coord : point; 
HDelta, VDelta : INTEGER; 
HScale, VScale : REAL); 

{translate each coordinate of the point} 
begin 

coord. h . - translate (coord.h, HDelta, HScale); 
coord.v .- translate (coord.v, VDelta, VScale); 

end; 

begin 
{set initial cccrdinate values} 

Top Le ft . h . - 2 O; 
TopLeft.v := 20; 
BotLeft.v := 20; 
BotLeft.h .- 80; 
BotRight.v := 80; 
BotRight.h := 80; 
TopRight.v .- 80; 
TopRight.h .- 20; 

{set transformation parameters} 
DeltaH . - 45; 
DeltaV .- -10; 
ScaleH := 0.75; 
ScaleV . - 1 . 0; 

{transform coordinates} 
transform (TopLeft, DeltaH, Deltav, 
transform(BotLeft, DeltaH, Deltav, 
transform (BotRight, DeltaH, Deltav, 
transform (TopRight, DeltaH, DeltaV, 

{Draw a Box} 
MoveTo(TopLeft.h, 
LineTo(BotLeft.h, 
LineTo(BotRight.h, 
LineTo(TopRight.h, 
LineTo(TopLeft.h, 

end. 

TopLeft.v); 
BotLeft.v); 
Bot Right. v) ; 
TopRight.v); 

TopLeft.v); 

ScaleH, 
ScaleH, 

ScaleH, 
ScaleH, 

ScaleV); 
ScaleV); 

ScaleV) ; 
ScaleV) ; 

21 
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type 
Rect =record case INTEGER of 

O : (top : Integer; 
left : Integer; 
bottom : Integer; 
right : Integer); 

1 : (TopLeft : point; 
BotRight : point); 

end; 

The Rect data type can define a rectangle two ways. The first way lists 
the vertical coordinates of the top and bottom and the horizontal coor­
dinates of the left and right sides. The other method defines the rectangle 
by giving coordinate pairs for the upper left corner and the lower right 
corner. Either way, it requires the same amount of memory to store a 
rectangle: four integers. 

QuickDraw has a collection of routines for drawing rectangles and 
performing calculations with the rectangle data type. For now, we will use 
only two in our program: 

SetRect(var theRect : Rect, top, left, bottom, right : INTEGER) 

SetRect sets the values of the fields in the rectangle data 
structure to the integer values that you supply. 

FrameRect(theRect: Rect) 

FrameRect draws the rectangle as specified by the corner 
coordinates in the rectangle data structure. 

We could get by without the SetRect routine by setting the value of 
each integer in the rectangle data structure individually, but it's a little 
easier to use the SetRect routine. Let's see what our program looks like 
now (listing 2.6). 

It doesn't look much like our old program. We've replaced most of 
our variables with a rectangle variable and most of our program statements 
with a couple of QuickDraw routines. In fact, if you look closely you will 
see that we have eliminated the lower left corner and upper right corner 
definitions from our program. They aren't in the rectangle definition 
because it doesn't need them. You can define a QuickDraw rectangle by 
specifying just two points, the upper left corner and the lower right corner. 

QuickDraw uses rectangles extensively to define rectangular shapes, 
the limits of other shapes, windows, the limits of drawing areas on the 
screen, scale changes, and coordinate conversions, to name just a few. 
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111111111111111111111111111111111 Listing 2.6 DrawBox with SetRect 

program DrawBox; 
{listing 2.6} 
var 

DeltaH, DeltaV 
ScaleH, ScaleV 
theBox : Re ct; 

INTEGER; 
REAL; 

function Translate (hv, Delta : Integer; 
Scale : REAL) : INTEGER; 

begin 
{do coordinate translation and scaling} 

translate . - Round ( (hv + Delta) * Scale); 
end; 

procedure Transform (var coord : point; 
HDelta, VDelta : INTEGER; 
HScale, VScale : REAL); 

{translate each coordinate of the point} 
begin 

coord.h := translate (coord.h, HDelta, HScale); 
coord.v := translate(coord.v, VDelta, VScale); 

end; 

begin 
{set initial coordinate values} 
SetRect (theBox, 20, 20, 80, 80); 

{set transformation parameters} 
DeltaH := 45; 
DeltaV .- -10; 
ScaleH := 0.75; 
ScaleV := 1.0; 

{trans form coordinates} 
transform (theBox. TopLeft, DeltaH, DeltaV, ScaleH, ScaleV); 
transform (theBox. BotRight, DeltaH, DeltaV, ScaleH, ScaleV); 

{Draw a Box} 
FrameRect(theBox) 

end. 

QuickDraw uses memory economically by defining a rectangle with two 
points instead of four. There is a trade-off, though; conserving memory 
places a fundamental limitation on the use of rectangles, and because 
rectangles are used for so many things in QuickDraw, this same limitation 
is placed on other things you do with QuickDraw. 

The major thing that QuickDraw does not do is rotate images. It uses 
rectangles to define the limits of all of the images it draws. It cannot rotate 
a rectangle through an angle that is not a multiple of 90 degrees because 
a rectangle that is not strictly horizontal and vertical cannot be fully 
defined by only two corners. 
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11111111111111111111111111111111 CUPPING AND WINDOWS 

A window on the Macintosh screen presents us with a limited area in 
which to draw. For that matter, the Macintosh screen itself is a limited area. 
What would happen if we drew off the screen? On some computers, a line 
drawn off the screen on one side reappears on the opposite side of the 
screen. In other computers, a line drawn off the screen is written into 
an area of memory in which it can destroy data or programs. In any 
case, writing outside a window or off the screen is something we don't 
want to do. 

We want to make sure that we prevent our program from drawing 
even part of an image outside a window. The act of limiting the drawing 
area is called clipping. We need to clip our image to make sure it fits inside 
the rectangle in which we are drawing. 

How can we draw an object like a rectangle if we move part of it 
outside the window? We could check each rectangle that we draw and 
draw only the part of it that is inside the window. That would be difficult 
with rectangles and worse with more complex objects. 

QuickDraw comes to the rescue. It has a routine called ClipRect that 
sets a clipping rectangle. The location of the clipping rectangle is stored in 
QuickDraw's internal data structures. QuickDraw then checks each pen 
motion against the limits set by the clipping rectangle and doesn't draw 
outside of the clipping rectangle. When we first start drawing in the 
Macintosh drawing window, the clipping rectangle is set to the window 
location and dimensions. We can set the clipping rectangle to any size and 
dimensions that we want in order to limit the drawing area to a portion of 
the window. 

Let's modify our program to draw several rectangles. Then we'll add 
a call to ClipRect to limit the drawing area, and see what happens. Listing 
2.7 shows the program set up to draw several rectangles. (Notice the use 
ofOffsetRect, as promised.) In figure 2.4, we see what the program draws. 

Listing 2 .8 shows where we added the ClipRect statement. Figure 2 .5 
shows the results of drawing while limited by the clipping rectangle. 
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111111111111111111111111111111111 Listing 2. 7 DrawBox Modified to Draw Several Rectangles 

program DrawBox; 
{listing 2. 7} 
var 

theBox : Re ct; 

begin 
{set initial coordinate values} 
SetRect (theBox, 20, 20, 80, 80); 

{Draw a Box} 
FrameRect(theBox); 

{translate coordinates, moving the box} 
OffsetRect (65, 0); 

{Draw it again} 
FrameRect(theBox); 

{draw more boxes at different locations} 
offsetRect (-65, 75); 
FrameRect(theBox); 
OffsetRect (65, 0); 
FrameRect(theBox); 

end. 

!U Drawing 

DD 
DD 

121 

111111111111111111111111111111111 Figure 2.4 Rectangles 
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111111111111111111111111111111111 Listing 2.8 DrawBox with ClipRect 

program DrawBox; 
{listing 2. 8} 
var 

theBox, Clipping : Rect; 

begin 
{set clipping rectangle} 
SetRect (Clipping, 40, 40, 120, 135); 
ClipRect(Clipping); 

{set initial coordinate values} 
SetRect (theBox, 20, 20, 80, 80); 

{Draw a Box} 
FrameRect(theBox); 

{translate coordinates, moving the box} 
OffsetRect (theBox, 65, 0); 

{Draw it again} 
Fr~meRect(theBox); 

{draw more boxes at different locations} 
offsetRect (theBox, -65, 75); 
FrameRect(theBox); 
OffsetRect (theBox, 65, 0); 
FrameRect(theBox); 

end. 

-o Drowing 

_JL 
II 

l2l 

111111111111111111111111111111111 Figure 2. 5 Clipped rectangles 
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11111111111111111111111111111111 COORDINATES AND THE PEN 

Remember our picture of the coordinate system and pixels from chapter 
1? The coordinates actually run between the pixels. The coordinate system 
determines where the pen goes when it draws. The pen can actually be 
larger than a pixel; you can set the size of the pen yourself by using 
QuickDraw's PenSize procedure. The pen is shaped like a rectangle, and 
each side is an integral number of pixels in length, from 0 to 32,767. 

The coordinates of the pen determine the location of the upper left 
corner of the pen's rectangular shape. You can imagine the pen as having 
a grid with squares the same size as pixels. Every time you draw with the 
pen, it stamps down on the screen's pixels like a rubber stamp and leaves 
its mark. 

Up to now, we have used the default pen size, 1 pixel by 1 pixel. It 
covered a single square, and when we positioned the pen at a particular 
pair of coordinates, it landed on the pixel below and to the right of the 
coordinate system lines (figure 3 .1 ). 

If we define a pen size of 8 by 8 pixels, the coordinates of the pen will 
determine the location of the upper left corner of the pen rectangle. The 
pen will mark the pixels in the 8-by-8 square whose upper left pixel lies 
immediately to the right and below the coordinate system lines; that is, the 
pen marks the pixels immediately under the squares in the pen rectangle 
(figure 3.2). 
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111111111111111111111111111111111 Figure 3.2 The 8-by-8 pen within the coordinate system 

11111111111111111111111111111111 THE PEN PATTERN 

We now have in our minds an image of the pen stamping its way across the 
screen, turning white pixels into black pixels, but it doesn't have to work 
that way. We can make the pen turn pixels black or white. We can do more 
than that; we can make the pen lay down a predefined pattern as it moves. 

A pattern is an 8-by-8 pixel sequence that repeats itself over some area 
of the display. The gray background of the desk top is a pattern. If you have 
used MacPaint, you have seen patterns that you can select along the 
bottom of the screen. QuickDraw has four predefined patterns that you 
can use (figure 3.3), or you can design your own. 

The actual squares that are turned on or off on the pen are not the 
same for every pen location. They change to keep the pen's pattern aligned 
with the last pattern stamped. The pen becomes more like a roller laying 
down a pattern than a stamp that stamps the same thing every time it hits 
the paper. 
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ltGroy Groy 

dkGroy Block 

111111111111111111111111111111111 Figure 3. 3 Predefined patterns 

Patterns are always aligned on 8-pixel boundaries. If you decide to 
join two patterns that you have drawn near each other, you can just fill in 
the area between them with more of the pattern. There's no problem with 
alignment. In figure 3.4, note how the two areas filled with the pattern 
have been joined with perfect pattern alignment. 

Let's run a short program (listing 3.1) that sets the pen size and draws 
some simple figures with three different pen patterns (figure 3.5). 

We can also define our own custom patterns. A pen pattern is 8 pixels 
by 8 pixels, so the first thing we should do to define a pen pattern is draw 
an 8-by-8 grid and mark the squares (pixels) that we want to set. For our 
example, we will define a pattern that can be used to draw a grid on the 
screen. Our pattern is shown on its 8-by-8 grid in figure 3.6. 

Now we need to define a variable of the type pattern. A pattern is a 
64-bit variable defined thus: 

type 
Pattern = packed array [0 .. 7) of 0 .. 255; 

It's an 8-byte array. We don't need to include the actual pattern definition 
in our program, just the variable. The pattern data type is predefined along 
with all of the other QuickDraw data types. 

In our example program, we defined a variable called grid that is of 
the pattern data type. Before we use the pattern, we must set the bits in the 
pattern variable . To set the bits, we will use a FOR loop to set each byte 
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111111111111111111111111111111111 Figure 3.4 Pattern alignment 

in the 8-byte array. Setting a byte will set all of the pixels in one row of the 
pattern; byte O sets the pixels in the top row, and byte 7 sets the pixels in 
the bottom row. The bits in each byte correspond to the pixels in the same 
order as you see them in the grid. The leftmost pixel has a bit value of 128; 
the rightmost pixel has a bit value of 1. To set the rightmost pixel in each 
of the first seven rows, we set the first 7 bytes of the array to 1. To set all 
of the pixels in the last row, we set the eighth byte to 255 (all 8 bits on). 

In the listing for the program (listing 3.2), you will see that we start 
drawing the pattern 1 pixel to the left and 1 pixel above an 8-pixel 
boundary (the boundary of a pattern on the screen). We do that in order 
to make a complete grid. If we started on 8-pixel boundaries, we would 
not include the top line and left line of the grid pattern that we draw. The 
pattern that the program draws is shown in figure 3. 7. 

11111111111111111111111111111111 DRAWING MODES 

Whether we are drawing a pattern or drawing solid black lines, we have 
another means of controlling how the pen draws on the screen. In all of 
the drawing we have done so far, the pen has either drawn a black line over 
everything it crosses or laid down a pattern over everything it crosses. The 
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111111111111111111111111111111111 Listing 3 .1 PenPatterns 

program PenPatterns; 
{Listing 3 .1} 
{Pen Pattern exercise} 

procedure DrawBox; 
begin 

moveto(90, 10); 
line (0, 20); 
line (20, 0); 
line (0, -20); 
line (-20, 0) 

end; 

procedure DrawTriangle; 
begin 

moveto(lOO, 50); 
line (-25, 50); 
line (50, 0); 
line (-25, -50); 

end; 

procedure DrawLine; 
begin 

moveto(63, 130); 
line (80, 0); 

end; 

begin 
PenSize (3, 3); 
PenPat(black); 
DrawBox; 
PenSize(8, 8); 
PenPat (ltGray); 
DrawTriangle; 
PenSize (1, 18); 
PenPat(dkGray); 
DrawLine; 

end. 

pen pattern, whether solid black or something else, was copied onto the 
pixels that the pen passed over. 

It is possible to have the existing image on the screen affect the 
drawing done by the pen. For instance, instead of copying the pattern to 
the screen pixels, the pen can do a logical OR between the pen squares and 
the screen pixels. The result would be that any black squares on the pen 
would set screen pixels to black, but any white squares on the pen would 
have no effect. 

The pen has eight writing modes that are two sets of variations on 
four basic writing modes. We've already seen the COPY mode; we've been 
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-
111111111111111111111111111111111 Figure 3.5 The result of the PenPatterns program 

111111111111111111111111111111111 Figure 3.6 A custom pattern 

using it in our programs. It is the default pen mode. We just discussed the 
OR mode. There's also an XOR mode and a BIC mode. Programmers 
should recognize the Boolean OR and XOR functions from their program­
ming experience. 

With the OR, XOR, and BIC modes, the white squares on the pen do 
not affect the pixels on the screen. In OR mode, the black squares on the 
pen set the corresponding pixels under them on the screen to black. In 
XOR mode, the black pen squares invert the pixels on the screen. BIC 
mode does not correspond to a Boolean function. Like OR and XOR it 
affects only the pixels under black pen squares. It sets the screen pixels 
under the black pen squares to white. 

We have four basic transfer modes now, COPY, OR, XOR, and BIC. 
The remaining four modes are notCOPY, notOR, notXOR, and notBIC . 
They work like the first four except that the squares on the pen are treated 
as if their values were inverted. The pen squares have an effect opposite the 
one they had in the first four modes (table 3. I). 
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111111111111111111111111111111111 Listing 3.2 PenPatterns with a FOR Loop 

program PenPatterns; 
{Listing 3.2} 
var 
grid : pattern; 

procedure InitPattern; 
var 

i : integer; 
begin 
for i := 0 to 6 do 
grid[i] := 1; 

grid[7] .- 255; 
end; 

begin 
InitPattern; 
PenSize (1, 129); 
PenPat(grid); 
MoveTo (31, 31); 
Line(128, 0); 

end. 

0 Drawing 

l2J 

111111111111111111111111111111111 Figure 3. 7 Another custom pattern 

We can see a graphic illustration of pen modes with a little program 
(listing 3.3). We'll first define two patterns. The first pattern consists of 
horizontal lines that we'll draw using COPY mode. The other pattern will 
be vertical lines, and we will draw that pattern on top of the first, using the 
various pen modes. 
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Pen mode Pen square Screen pixel Resulting screen pixel 

patCOPY Black Black Black 
patCOPY White Black White 
patCOPY Black White Black 
patCOPY White White White 

notPatCOPY Black Black White 
notPatCOPY White Black Black 
notPatCOPY Black White White 
notPatCOPY White White Black 

patOR Black Black Black 
patOR White Black Black 
patOR Black White Black 
patOR White White White 

notPatOR Black Black Black 
notPatOR White Black Black 
notPatOR Black White White 
notPatOR White White Black 

patXOR Black Black White 
patXOR White Black Black 
patXOR Black White Black 
patXOR White White White 

notPatXOR Black Black Black 
notPatXOR White Black White 
notPatXOR Black White White 
notPatXOR White White Black 

patBIC Black Black White 
patBIC White Black Black 
patBIC Black White White 
patBIC White White White 

notPatBIC Black Black Black 
notPatBIC White Black White 
notPatBIC Black White White 
notPatBIC White White White 
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111111111111111111111111111111111 Listing 3.3 ModesExperiment 

program ModesExperiment; 
{Listing 3. 3} 

var 
hStripes, vStripes : Pattern; 
GraphRect : Rect; 

procedure InitPatterns; 
var 

i : Integer; 
begin 

for i := 0 to 7 do 
vStripes[i] := 15; 

hStripes[O] := 255; 
hStripes[l] := 255; 
hStripes[2] := 255; 
hStripes [3] := 255; 

and; 

procedure DrawStrip (Modes : BOOLEAN; 
StartMode : INTEGER) ; 

var 
i : Integer; 

{the modes are numbered 8-15 starting with patCopy} 
begin 

for i := 0 to 3 do 
begin 
if Modes than 

PenMode (i + StartMode) 
else 

PenMode(patCopy); 
Line (31, 0); 
move (33, 0); 

end; 
end; 

procedure DrawStripes (DoModes 
begin 

MoveTo (8, 112); 
DrawStrip(DoModes, patCopy); 
MoveTo (8, 160); 
DrawStrip(DoModes, notPatCopy); 

end; 

procedure DrawPatterns; 
beqin 

PenPat(HStripes); 
Moveto (8, 16); 
DrawStrip(FALSE, PatCopy); 
PenPat(vStripes); 
MoveTo (8, 64); 
DrawStrip(FALSE, PatCopy); 

BOOLEAN); 

Continued 



DRAWING MODES 37 

111111111111111111111111111111111 Listing 3. 3 Continued 

end; 

begin 
SetRect (GraphRect, 50, 50, 310, 270); 
SetDrawingRect(GraphRect); 
ShowDrawing; 
InitPatterns; 
PenSize (1, 32); 
DrawPatterns; 
PenPat(hStripes); 
DrawStripes(FALSE); 
PenPat(vStripes); 
DrawStripes(TRUE); 

end. 

Looking at the first three statements in the main part of the program, 
we see a call to SetRect to set values in a rectangle data structure, followed 
by two unfamiliar statements, SetDrawingRect and ShowDrawing. We use 
those three statements to set the size of the drawing window and make it 
the active window. The default drawing window size just isn't large 
enough to display the output of our program. 

The two unfamiliar statements are Macintosh Pascal procedures that 
control the drawing window. The SetDrawingRect statement sets the size 
and location of the drawing window to the rectangle GraphRect. The 
values in GraphRect are in Macintosh screen coordinates (global coordi­
nates). The origin of that coordinate system is the upper left corner of the 
screen. 

The ShowDrawing procedure makes the Macintosh Pascal drawing 
window the active window (it overlays the other windows on the screen). 

Our program works with two patterns. It draws a series of eight 
identical copies of the first pattern (horizontal stripes). Then, with the 
pen, it draws the second pattern (vertical stripes) over the first pattern, 
using the eight different drawing modes. The program first draws four 
copies of the first pattern that we put on the screen; then, on the next line, 
it draws four copies of the second just so we can see what they both look 
like. It then draws the series of eight pattern combinations, using the eight 
pen modes. 

What interests us most about this program are the results (naturally) 
and the routine that selects which mode to use. The DrawStrip routine 
draws a strip of four patterns. It has two parameters: Modes (Boolean) and 
StartMode (Integer). If Modes is FALSE, the procedure does not use the 
various drawing modes; it just draws four copies of the current pattern, 
using the patCopy pen mode. The program uses DrawStrip with Modes = 
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FALSE for drawing the first two strips of patterns and for laying down the 
first pattern in the second two strips. 

If Modes is TRUE, the procedure draws four copies of the current 
pattern, using the four different drawing modes. The drawing mode is 
specified as an integer from 8 to 16. The StartMode parameter is an integer 
that contains the drawing mode to be used for drawing the first copy of the 
pattern. The drawing mode integer is incremented as we draw each of the 
four patterns. 

It may seem strange to start the drawing mode number with 8, but it 
works out that way because the numbers O through 7 are used for another 
type of drawing mode. PenMode uses the numbers 8 through 15. 

Drawing mode Integer 

patCOPY 8 
patOR 9 
patXOR 10 
patBIC 11 
notPatCOPY 12 
notPatOR 13 
notPatXOR 14 
notPatBIC 15 

The results of using the pen modes show up in the third and fourth 
strips of patterns (figure 3.8). The third strip has the modes patCOPY, 
patOR, patXOR, and patBIC. The fourth strip has notPatCOPY, notPatOR, 
notPatXOR, and notPatBIC. 

We would use the patCOPY mode when we want to eliminate 
whatever image we may be writing over. We use the patOR mode when we 
want to draw an image that intersects with, but does not eliminate, 
another image. A good example is drawing a grid in a computer-aided 
design program. If you give your program the capability of showing the 
grid or not showing it, the user may elect to show the grid when a drawing 
is already on the screen. Drawing the grid with pen mode patOR will put 
the grid on the screen without disturbing the existing drawing. Where the 
grid is black (at the grid lines), it turns pixels black. Where the grid is white 
(between the grid lines), it does not alter the pixels. 

If you are drawing one image over another, you may want to be able 
to identify the areas where the images intersect. If you draw one image 
over another using patXOR, in the areas where the images coincide (are 
both black) the pixel values are inverted (turned white). The intersecting 
parts of the two drawings look like a photographic negative. Sometimes it 
is useful to have a cursor behave that way. If you have a cross-hair cursor, 
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111111111111111111111111111111111 Figure 3.8 The result of the ModesExperiment program 

you still want to be able to identify the cross point even though it may be 
over a black portion of the drawing. Using patXOR to draw your cursor 
will cause the cursor to appear black against the white portions of the 
screen and white on the black areas. 

The patXOR mode has an interesting property. If you draw over 
another image with patXOR, you can restore the old image to its original 
condition by again drawing the same new image in the same location with 
patXOR. Drawing with patXOR a second time reverses the effect of the first 
drawing. If you are drawing a cursor, draw it once with XOR to put it on 
the screen, and draw it again with XOR to remove it so you can draw it in 
another location. 

MacPaint uses an XOR mode to draw the cursor and brush shapes 
when you are moving them about without pressing the mouse button. 
When you press the mouse button, MacPaint switches to COPY mode to 
draw on the screen. 

To give you another look at what the various PenModes do, I've 
modified the program slightly to change the second pattern to a set of 
small squares. The new pattern is called Blocks, and its initiation routine 
is shown in listing 3.4. The result of drawing the Blocks pattern over the 
horizontal stripes pattern with all eight modes is shown in figure 3. 9. 
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11 11 11 11 111111 11 11111 11 11 11 111111 Listing 3.4 The Blocks Initiation Routine 

{listing 3.4} 
f o r i := 2 t o 5 d o 

Blocks [i] := 60; 

D Drawing 
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11111111111111111111 1111111111111 Figure 3.9 Blocks drawn over horizontal stripes with all eight modes 
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Using QuickDraw, you can draw objects by drawing a series of line 
segments or by using the QuickDraw predefined shapes. The QuickDraw 
predefined shapes and the QuickDraw routines that manipulate them give 
you a powerful set of tools for drawing on the Macintosh. There are, 
however, several limitations inherent in the design of QuickDraw. Quick­
Draw deals strictly with two-dimensional shapes, and you cannot rotate a 
QuickDraw shape through an arbitrary angle . 

If the object you want to draw can be represented by QuickDraw 
shapes and you don't need to rotate it, the QuickDraw shapes are the way 
to go. QuickDraw has many routines for manipulating these shapes. They 
are easier to define, draw, fill, move, and otherwise manipulate than 
shapes made up of line segments. 

The QuickDraw predefined shapes are the rectangle, round rectan­
gle, oval, and wedge (arc) . QuickDraw also manipulates polygons (arbi­
trary shapes made up of line segments) and regions (objects of arbitrary 
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shape, not necessarily composed of line segments). The methods used to 
define and manipulate regions and polygons are a little more complex than 
for the other QuickDraw shapes, and I will put off discussing them until 
chapter 5. Let's take a look at the simple QuickDraw shapes (figure 3.10). 

The rectangle should be familiar by now. We define it using the same 
rectangle data structure we used before. 

The oval is a little different. It has the shape of an ellipse but is not 
defined the way you would expect an ellipse to be defined. A mathema­
tician would define an ellipse by specifying the coordinates of its foci and 
the lengths of its major and minor axes. In QuickDraw, you define an oval 
by specifying a rectangle whose sides just touch the outer limits of the oval 
(figure 3.11). Note that since rectangles cannot be specified at arbitrary 
angles to the coordinate system (they must be horizontal and vertical), an 
oval must have its major and minor axes aligned with the coordinate 
system. It cannot be tilted at an arbitrary angle. 

D 0 
Rectongle Ouol 

D C> 
Round Rectongle Rrc 

Figure 3.10 QuickDraw shapes 

The Rectongle Thot Defines the Ouol r---
Ouol 

111111111111111111111111111111111 Figure 3.11 The oval 
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What about a circle? The circle is a special case of the oval. To draw 
a circle, you specify an oval whose defining rectangle is a square. 

The round rectangle is simply a rectangle with rounded corners. You 
define a round rectangle by specifying the rectangle that just touches its 
sides and an oval that forms the shape of the rounded corners (figure 3.12). 
In this case, you specify the width and height of the oval's rectangle 
instead of using a rectangle data structure to define the oval. To draw a 
rounded rectangle, you need to pass the following data to a QuickDraw 
routine: 

Rectangle : Rect; 
OvalWidth: INTEGER; 
OvalHeight : INTEGER; 

Note that all of the corners of a round rectangle are the same. You 
cannot have different corners with different oval dimensions in the same 
round rectangle. 

Oual 
Height 

Rounded Rectangle 

I Dual I 
Width 

The Rectongle Tho~? the Round Rectongle 

f" ....... . 

:.....~ ..... --------~ ........ .! 

The Dual That Defines the Corner Curuature 

111111111111111111111111111111111 Figure 3.12 The round rectangle 



QUICKDRAW SHAPES 43 

The arc (figure 3.13) looks like the curved edge of a slice of pie. It is 
actually a section of an oval. To define an arc, you specify the rectangle 
that defines the oval, the angle at which to start drawing the arc, and the 
angle subtended by the arc. 

The point of the arc is at the center of the rectangle. The angles of the 
arc are measured relative to a vertical line from the center of the rectangle. 
Arc angles are in degrees (MOD 360), not radians. Positive angles start at 
the vertical line and go clockwise (figure 3.14). Negative angles are mea­
sured counterclockwise from the vertical line. 

Here's a Pascal versus QuickDraw incompatibility: the 
predefined trigonometric functions in Pascal (sin, cos, tan, 
and so on) measure angles in radians; QuickDraw measures 
angles in degrees. 

There you have them, the four QuickDraw shapes. Let's see how to 
draw them. 

111111111111111111111111111111111 Figure 3.13 The arc 

111111111111111111111111111111111 Figure 3.14 Arc angles 
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DRAWING QUICKDRAW 
11111111111111111111111111111111 SHAPES 

You can draw each of the QuickDraw shapes five ways. The drawing 
operations areframe,paint, erase, invert, and/ill. Frame is the most basic 
drawing operation. It draws an outline of the shape, using the current pen 
size, mode, and pattern. When the drawing has been done, the pen returns 
to the location it occupied before drawing the shape. None of the other 
shape-drawing procedures change the pen location either. 

The paint and fill operations are similar. The paint operation fills the 
interior of the shape with the current pen pattern, using the current pen 
mode. The fill operation fills the interior of the shape with a specified 
pattern, not necessarily the current pen pattern. The pen draws the pattern 
in COPY mode; that is, the pixels inside the rectangle are replaced with 
pixels from the pattern. 

Erase works like paint except that it uses the current background 
pattern instead of the current pen pattern. The default background pattern 
is white, so if you don't set the background pattern, erase fills the shape 
with white, exactly as you would expect. 

Paint Fill 

Current pen pattern Specify a pattern 

Current pen mode COPY mode 

Erase 

Current background 
pattern 

COPY mode 

The invert operation inverts every pixel inside the shape. It converts 
the interior of the shape to a negative image of itself. 

Now you have four shapes and five ways to draw each. To form the 
name of a procedure to draw a shape, you combine the name of the 
drawing operation with the name of the shape. 

A B 

Erase Arc 
Fill Oval 
Frame Re ct 
Invert RoundRect 
Paint 

Take one from column A and one from column B (no egg roll). 
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To frame a round rectangle, you use the procedure FrameRoundRect. 
When you use one of the shape-drawing procedures, you must supply it 
with the parameters that define the shape you are drawing. The list below 
shows statements that use the paint operation to paint each of the four 
shapes, and how the shape is defined in each case. 

PaintRect(aRectangle : rect); 

PaintRoundRect(aRectangle : rect; OvalWidth, OvalHeight : 
INTEGER); 

PaintOval(OvalRectangle : rect); 

PaintArc(ArcRectangle : rect; StartAngle, StopAngle : INTEGER); 

If we were using the fill procedure instead of paint, we would also 
need to supply a parameter that specifies the pattern to use, for instance: 

FillRect(aRectangle : rect, aPattern : pattern); 

To fill a rectangle called BigRect with the light gray pattern, we would 
use the statement: 

FillRect(BigRect, LtGray); 

Let's see how to use some of these procedures in a simple program 
(listing 3 .5). 

The program draws a series of figures using various pen patterns, fill 
patterns, and background patterns (for erasing). The DrawShapes routine 
accepts the parameters DrawPat, FillPat, and ErasePat, the patterns used 
for drawing, filling, and erasing. The program calls DrawShapes three 
times, each time with a different set of patterns. 

The rest of the program is straightforward. The Framelt routine 
frames each shape, using the specified pattern. The Filllt routine fills 
each shape with the specified pattern, and the Eraselt routine erases each 
shape with the specified pattern. Each of these patterns draws a rectangle, 
round rectangle, oval, and arc. Figure 3. 15 shows the drawing window 
after the shapes are framed. In figure 3.16, we see the shapes after they 
have been filled. 

One interesting thing to note when you run this program is that the 
FrameArc routine draws just the curved part of the arc while the FillArc 
and EraseArc routines draw the interior as well. 
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111111111111111111111111111111111 Listing 3.5 An Untitled Program 

program Untitled; 
{listing 3.5} 

var 
vStripes : Pattern; 
GraphRect, aRect, OvalRect, RoundRect, ArcRect 
i : INTEGER; 

procedure InitPatterns; 
var 

i : INTEGER; 
begin 

for i := 0 to 7 do 
vStripes[i] := 15; 

end; 

procedure Delay; 
var 

j : INTEGER; 
jsq : LONG INT; 

begin 
for j := 1 to 300 do 

jsq := sqr(j); 
end; 

procedure Eraseit (ErasePat pattern); 
begin 
backPat(ErasePat); 
EraseRect(aRect); 
Delay; 
EraseRoundRect (RoundRect, 32, 32); 
Delay; 
EraseOval(OvalRect); 
Delay; 
EraseArc(ArcRect, O, 90); 
Delay; 

end; 

procedure Fillit (FillPat pattern); 
begin 
FillRect (aRect, FillPat); 
Delay; 
FillRoundRect(RoundRect, 32, 32, FillPat); 
Delay; 
FillOval (OvalRect, FillPat); 
Delay; 
FillArc (ArcRect, O, 90, FillPat); 
Delay; 

end; 

procedure FrameUp; 
begin 

Rect; 

Continued 
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FrameRect(aRect); 
Delay; 
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FrameRoundRect(RoundRect, 32, 32); 
Delay; 
Frameoval(OvalRect); 
Delay; 
FrameArc (ArcRect, O, 90); 
Delay; 

end; 

procedure DrawShapes (FramePat, FillPat, ErasePat 
pattern); 

begin 
penPat(FramePat); 
FrameUp; 
Delay; 
Fillit(FillPat); 
Delay; 
Eraseit(ErasePat); 
Delay; 

end; 

begin 
SetRect (GraphRect, 50, 50, 270, 270); 
SetDrawingRect(GraphRect); 
ShowDrawing; 
InitPatterns; 
PenSize (8, 8); 
SetRect (aRect, 1'6, 16, 16 + 64, 16 + 64); 
SetRect (Roundrect, 120, 16, 120 + 64, 16 + 64); 
SetRect (OvalRect, 16, 120, 16 + 64, 120 + 64); 
SetRect (ArcRect, 120, 120, 120 + 64, 120 + 64); 
for i := 1 to 20 do 
begin 

DrawShapes(black, vStripes, DkGray); 
Delay; 
DrawShapes(LtGray, vStripes, Black); 
Delay; 
DrawShapes(DkGray, vStripes, White); 
Delay; 

end; 
end. 

Note that when we use the fill procedure, it fills all of the interior of 
the shape, even the part that the frame procedure drew. The frame 
procedure draws the outside frame of the shape, but the frame starts at the 
outside edge and extends into the interior by a distance equal to the pen 
size. The frame routine draws the shape by running the pen around the 
inside edge of the shape. 
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111111111111111111111111111111111 Figure 3 .16 Filled shapes 
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DISPLAYING TEXT WITH 
11111111111111111111111111111111 TYPE FONTS 

Most personal computers have the text character shapes defined in the 
hardware that controls the CRT display. Programs need only write the 
ASCII character codes for each character to the display controller. The 
controller takes care of drawing the characters. Macintosh programs that 
put text on the screen (or printer) must use QuickDraw to draw the text 
characters. On the Macintosh, text characters are treated as any other 
image that you want to draw on the display. 

Since the shape and appearance of text characters is under the control 
of Macintosh software, the characters can have any shape that we choose 
to define. The designers of the Macintosh came up with a set of terms and 
definitions to describe text characters. The terms they chose are com­
monly used in the printing trade. 

The term type/ ace means a set of characters all of the same general 
appearance. A type font is a complete set of characters (the alphabet, 
numbers, punctuation, and special symbols) that all belong to the same 
typeface. They have a similar appearance. 

Type fonts usually have distinctive names. Most fonts for the Macin­
tosh are named after cities. Let's see some examples (figure 4.1). 

Most of the fonts shown in figure 4 .1 are proportionally spaced fonts. 
The spaces allowed for the characters are proportional, not uniform. Each 
character in the font has a specification for the amount of space it 
occupies. The spacing varies to improve the appearance of the type. The 
Monaco font is not proportionally spaced; the space allowed its characters 

This is the Toronto font in the 1 2 point size. 
This is the Los Angeles font in the 12 point size. 
This is the Chicago font in the 12 point size. 
This is the Geneva font in the 12 point size. 
This is the New York font in the 12 point size. 
This is the Monaco font in the 12 point size. 
This is the Venice font in the 14 poi.nt si.:u. 

1lCbis is tlJe lfAnbon font in tlJe ts point si~e. 
This is the Bthens font in the 18 point size. 

111111111111111111111111111111111 Figure 4.1 Type fonts 



TYPE SIZE 51 

does not vary. It is called a monospaced font. Monospaced fonts are used 
to imitate the appearance of text printed by other computers, those that 
can print only monospaced fonts. On the Macintosh, they are sometimes 
useful in applications where data or text must be aligned in tables. 

The terms typeface, type font, and type style are used interchangeably 
in some documents. I will use the term type font to mean a complete 
collection of characters of the same appearance. When we actually draw 
a character from a type font, we can specify other attributes that affect its 
appearance: the type size and the type style. 

11111111111111111111111111111111 TYPE STYLE 

The characters of a font may be drawn in several styles other than plain. 
They still have the same general shape, but their appearance is nevertheless 
different from that of characters of the same font drawn in the plain style. 
Figure 4.2 shows examples of all of the Macintosh type styles for the New 
York type font. 

11111111111111111111111111111111 TYPE SIZE 

The size of type is measured in points. A point is approximately 1 /72 inch. 
Most application programs use 12 points as the default type size. In other 
applications, where the designers need to get more text on the page, they 

New York 18 point plain 
New York 18 point bold 
New York 18 point italic 
New York 18 point underline 
Ntew Jorrt ll~ po!mitt Ol\Jlttll!mite 
N~\W lf crrt n ~ JP)Cfimlrt ~Jhlll.«JlC\W 

N te l.'I Y lO rr t Il ~ IP lO fi ml tt !bl lO Il (cil lO lUl tt Il fi ml te 

111111111111111111111111111111111 Figure 4.2 Type styles 
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use a smaller type size-9 points in the case of MacTerminal. Figure 4.3 
shows various type sizes. 

A Macintosh type font is stored as a data file containing bit images of 
the characters in the font. The font file usually has the bit images of all of 
the characters for several different type sizes. If you want to draw char­
acters in a size that is not defined in the font file, QuickDraw will use a 
scaling algorithm to scale down a larger type size or scale up a smaller type 
size. The characters drawn on the screen will look better if you choose a 
type size that is included in the font file. Most application programs tell 
you which sizes are in the system's font file by displaying them in the 
outline style in the type size selection menu. Figure 4.4 shows the type size 
menu from MacPaint. The sizes displayed in outline style are in the font 
file; the sizes in plain text are created by scaling another size. 

New York 9 point. 
Nev York 10 point. 
New York 12 point. 
New York 14 point. 
New York 18 point. 

New York 24 point. 

New York 36 point. 
111111111111111111111111111111111 Figure 4.3 Type sizes 

9 point 
10 

..... n~ 
14 
18 
~~ 
36 
48 
72 

111111111111111111111111111111111 Figure 4.4 The MacPaint type size menu 
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11111111111111111111111111111111 FONT RLES 

The Macintosh keeps a set of fonts stored in the operating system. They are 
actually in a disk file (the system resource file), but it doesn't show up on 
the desk top or in a disk directory window. When you buy new type fonts, 
they come in a disk file. You must use the font mover utility to load them 
from the disk file into the system resource file. 

The system has a limited number of type fonts stored in the system 
resource file. A type font takes up a lot of disk space, so there's a practical 
upper limit on how many fonts you can have on a system disk. You can add 
or delete fonts from the system resource file using the font mover utility. 
If you have the latest version of the system disk, you will find a FONT/DA 
mover utility. It moves both fonts and desk accessories between the system 
resource file and external disk files. 

11111111111111111111111111111111 TEXT CHARACTER IMAGES 

We know now that the images of all of the characters of a font in a given 
size are stored in the system resource file. If we want to draw in a size that 
is not in the system resource file, QuickDraw will scale one of the existing 
sizes of that font as it draws. That takes care of the font and size, but how 
is the type style information stored? It isn't. 

All of the characters that QuickDraw gets from the system resource 
file are in the plain text style. If you specify that text will be drawn in 
another style, QuickDraw uses type style routines to change the shape of 
the plain text characters. 

Let's take a closer look at some text characters drawn by QuickDraw. 
Figure 4. 5 shows the uppercase and lowercase y in the Geneva font as 

drawn by QuickDraw on the Macintosh screen. The ascent line is the 
highest point reached by any character in the font (in the current font size). 
The base line is the lowest point for uppercase characters. Some lowercase 
characters have a descender, a part of the character that goes below the 
base line. The descent line is the lowest point reached by any character in 
the font. The font height is the maximum height of any character in the 
font, the distance between the ascent line and the descent line. 

The image width is the width of the actual image drawn by Quick­
Draw. The character width includes the image width and the spacing 
between characters. Each character is defined separately in the font file, 
and each has its own definition for the amount of space to leave before 
drawing the next character. 
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The font file also contains a specification for the amount of space to 
leave between lines of text. Typesetters call this leading. On the Macin­
tosh, the leading specification in the font file tells how many pixels to leave 
between the descent line of a line of text and the ascent line of the next 
line of text (figure 4.6). 

The outer dimensions of a character are defined by the character 
rectangle (figure 4. 7). The font rectangle is similar; its height is the 
maximum character height, and its width is the maximum image width. 

When you draw a character with QuickDraw, you first use the 
MoveTo routine to position the pen in the location where you want the 
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111111111111111111111111111111111 Figure 4. 7 Character rectangles 

character to appear. You then call the DrawChar routine to draw the 
character. It draws the character so that the character's origin point is at 
the starting pen location. The character origin is always on the base line 
and is usually on the left edge of the character rectangle (figure 4.8). 

After drawing the character, the pen is still on the base line but is to 
the right of its starting position by an amount equal to the character width 
(not the image width). 

11111111111111111111111111111111 KERNING 

Some type fonts allow the descending tail of one character to pass under 
the preceding character. Sometimes they allow a lowercase character to 
tuck itself under the roof of an uppercase character like a T. Typesetters 
call the adjusting of space between characters kerning. Figure 4.9 shows 
two kerned lowercase letters, one with a descender. 

In figure 4. 10, we see a blowup of the two characters and can see how 
the tail of the j actually passes under the right edge of the a. 

If we defined character origin and character rectangle the way we 
have so far, we could not get the tail of the j drawn under the a. After 
drawing the a, the pen would move by an amount equal to the character 
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111111111111111111111111111111111 Figure 4.10 Kerned characters enlarged 

width of the a and then start drawing the j, starting at its origin. A font 
designer can get around that limitation by offsetting the origin of the j to 
the right of the left edge of the character rectangle (figure 4.11). 

Now if we ask QuickDraw to draw an a followed by a j, it sets the 
origin of the j on the base line at the first pixel after the intercharacter 
space defined for the a (in this case, the a is followed by a 2-pixel space). 
Because the origin is offset, when QuickDraw draws the tail of the j, it 
passes back under the a. Figure 4.12 shows the two characters kerned and 
shows the locations of their origins. 

Most fonts that have kerned characters also have nonkerned versions 
of the same characters. The nonkerned characters are what you get if you 
just type the normal characters on the keyboard. Usually, to get a kerned 
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111111111111111111111111111111111 Figure 4.11 Offset character origins 
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111111111111111111111111111111111 Figure 4.12 Enlarged kerned characters with origins 

character, you must hold down the option key and type the character. 
Only a few fonts have kerned characters. When you use them, you must be 
careful not to use a kerned character next to one that it will overlay. 

A font designer must supply some kind of image for 256 possible 
characters. Besides the usual uppercase and lowercase alphabetic charac­
ters there are numbers, punctuation marks, and special characters. Even 
so, there will rarely be a need for 256 characters. The font designer can 
specify an image for a default character for the font file, and it will be used 
for any character that doesn't have its own image definition in the file. 
Most fonts use a square about the size of an average character rectangle for 
the default character image. 

QUICKDRAW AND THE 
11111111111111111111111111111111 FONT MANAGER 

Most of the routines that we will use to draw text characters are Quick­
Draw routines. There are also a few useful routines in the font manager. 
QuickDraw calls the font manager to load fonts into memory from the 
system font file, but we will occasionally use a font manager routine to do 
such things as lock a font in memory so it cannot be purged, or find out 
if a font of a particular size is in the font file. If the font file does not have 
a font in the size we want to use, QuickDraw will have to use another font 
size, scaled to the size it is trying to draw. 

QuickDraw refers to fonts by number. The font manager has routines 
to find the name of a font if we know the font number or find the number 
if we know the name. 

When we want to draw characters on some device (the ImageWriter, 
for instance), QuickDraw, the font manager, and the device driver decide 
what font size would be appropriate for drawing on the device. If we had 
some text that we drew on the Macintosh screen in the 12-point size, 
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QuickDraw and the font manager would use the 24-point size scaled down 
to 12 points for drawing on the Image Writer. The Image Writer has a higher 
resolution than the Macintosh display, and using the larger font size scaled 
down results in higher-resolution fonts on the printer. 

Normally, an application program would call the font manager rou­
tine, InitFonts, before drawing any text. We don't need to do that with 
Macintosh Pascal because the Pascal interpreter does it for us. 

11111111111111111111111111111111 QUICKDRAW ROUTINES 

QuickDraw has a set of routines for setting the font characteristics and 
another set for actually drawing the font. If you don't set the font charac­
teristics, QuickDraw uses the default settings: the application font 
(Geneva), 12-point size, and plain text. Let's start our exploration of 
QuickDraw text drawing by looking at the procedures that set the font 
characteristics. 

TextFont(font: INTEGER); 

You pass TextFont a font number, and it sets the current font to 
that number. 

TextFace(face : style); 

TextFace sets the style in which the text will be drawn. 

TextMode(mode : INTEGER); 

TextMode sets the drawing mode, much like the pen mode that 
we saw in chapter 3. 

TextSize(size : INTEGER); 

The TextSize procedure sets the font size for drawing text. If the 
font you specified is not in the font file, QuickDraw will scale 
another size. 

After setting the font characteristics, we will need the QuickDraw 
procedures that draw the text. 

DrawChar(textChar: char); 

DrawChar draws a single character with its base line at the 
current pen location. 
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DrawString(textString : Str255); 

Drawstring draws a string of characters with the base line at the 
current cursor location. 

Both DrawChar and Drawstring advance the pen by the character's 
width after drawing each character. Neither will do a carriage return, line 
feed, or form feed or perform any other automatic formatting. The most 
you can expect them to do is leave a space when they encounter a space 
character. 

11111111111111111111111111111111 DRAWING TEXT 

Let's take a look at a simple program that uses the QuickDraw procedures 
to put some text on the screen (listing 4.1). 

The InitText procedure sets the font characteristics. The InitDrawing­
Window procedure sets up the drawing window the same way we did in 
chapter 3. The main part of the program draws a text string in the drawing 
window. We see the result in figure 4.13. 

111111111111111111111111111111111 Listing 4.1 DrawFont in Preliminary Form 

program DrawFont; 
{Listing 4 .1} 

procedure InitDrawingWindow; 
var 

GraphRect : Re ct; 
begin 

SetRect (Graphrect, 50, 50, 310, 270); 
SetDrawingRect(GraphRect); 
ShowDrawing; 

end; 

procedure InitText; 
begin 

TextFont(3); 
TextF ace ( [ ] ) ; {normal} 
TextMode(srcOR); 
TextSize(12); 

end; 

begin 
!nit Text; 
InitDrawingWindow; 
MoveTo (10, 20); 
Drawstring ('The Macintosh Character Set') ; 

end. 
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111111111111111111111111111111111 Figure 4.13 The result of the preliminary DrawFont program 

Note that before drawing, we set the pen location to (10, 20). Your 
first thought might be to set it at (0, 0). That would work for the horizontal 
coordinate; it would make the first character flush with the left edge of the 
window. It wouldn't be beautiful, but it would be readable. The problem 
is with the vertical coordinate. Remember, the vertical coordinate of the 
pen becomes the base line for drawing characters. If we set the vertical 
coordinate to 0, only the descenders on the lowercase characters would be 
visible in the window. 

One problem with this program is that we hard-coded the font number 
in the InitText procedure (we used a number instead of a symbol). Not only 
is this a bad practice but we would like to know the names of the fonts we 
are using. We will add a string array that defines the font name for each font 
number, but first we need the following list of font names and numbers. 

Font number Font name 

0 System Font 
1 Application Font 
2 New York 
3 Geneva 
4 Monaco 
5 Venice 
6 London 
7 Athens 
8 San Francisco 
9 Toronto 
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We will also define font names as constants so that when we look at 
the listing of the section of our program that sets the font type, we can tell 
what it's doing. We also add a few lines of code to write the font name on 
the screen below the title string (listing 4.2). 

Look at the end of the main section of the program, and you will see 
that we put the starting location for the pen in a pair.of variables so we can 
manipulate the pen location when starting a new line of text. When we run 
the program, we get the result shown in figure 4.14. 

GETIING INFORMATION 
11111111111111111111111111111111 ABOUT THE FONT 

Looking at what the program drew, we see that the two lines of text are 
quite far apart. How did we know how far down to move the pen before 
drawing the second line? It was pure guesswork. We need to know how 
far to move the pen between lines. The font definition in the font file has 
that information, and QuickDraw has a procedure, GetFontlnfo, that will 
get it for us. It returns the information about the font in a record called a 
Fontinfo record. 

type Fontinfo = record 
ascent: INTEGER; 
descent: INTEGER; 
widMax: INTEGER; 
leading : INTEGER 

end; 

Ascent is the distance from the base line to the ascent line, the highest 
point reached by any character in the font. Descent is the distance from 
the base line to the descent line, the lowest point reached by a descending 
portion of a character. WidMax is the maximum character width of the 
characters in the font (not the maximum character image width). Leading 
is the distance from the descent line of one line of characters to the ascent 
line of the line of characters below it. 

QuickDraw has other routines that get information about text char­
acters in a particular font. Two of them are: 

function CharWidth(ch : char) : INTEGER; 

CharWidth returns the width of the specified character using the 
current font, font size, and style. 



62 DRAWING TEXT 

111111111111111111111111111111111 Listing 4.2 DrawFont Revised 

program DrawFont; 
{Listing 4. 2) 

con st 
SystemFont = O; 
ApplicationFont 1; 
NewYork = 2; 
Geneva 3; 
Monaco 4; 
Venice 5; 
London 6; 
Athens 7; 
SanFrancisco 8; 
Toronto = 9; 

var 
FontNum, StartH, StartV : INTEGER; 
FontName : array [ 0 •. 9 J of Str255; 

procedure InitDrawingWindow; 
var 

GraphRect : Rect; 
begin 

SetRect (GraphRect, 50, 50, 310, 270); 
SetDrawingRect(GraphRect); 
ShowDrawing; 

end; 

procedure InitText; 
begin 

FontName [ 0 J : = 'System Font'; 
FontName [1) := 'Application Font'; 
FontName[2J := 'New York'; 
FontName[3) := 'Geneva'; 
Font Name [ 4 J : = 'Monaco'; 
FontName [5) := 'Venice'; 
Font Name [ 6 J : = 'London'; 
Font Name [ 7 J : = 'Athens'; 
FontName[SJ := 'San Francisco'; 
FontName [ 9 J : = 'Toronto'; 
TextFont(FontNum); 
TextFace ( [ J); {normal) 
TextMode(srcOR); 
TextSize(12); 

end; 

begin 
FontNum : = NewYork; 
InitText; 
InitDrawingWindow; 
StartH := 10; 
StartV := 20; 
MoveTo(StartH, StartV); 
DrawStr ing ('The Macintosh Character Set') ; 
MoveTo (StartH, StartV + 20); 
DrawString(FontName[FontNum]); 

end. 
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1111111111111111 11 11 11 11111111111 Figure 4.14 The result of the revised DrawFont program 

function StringWidth(string : Str255) : INTEGER; 

StringWidth returns the width of the specified string using the 
current font , font size, and style. 

Both CharWidth and StringWidth are useful when you want to see if 
a character or string will fit on a line before you attempt to draw it. In the 
next version of our program, we add a variable of the Fontinfo type and 
a call to GetFontlnfo. We use the font information to calculate how far 
down to move the pen before drawing the font name. (Listing 4.3 shows 
just the sections that we changed.) 

We did not need to define the Fontinfo data type in our program 
because Macintosh Pascal already has that definition as part of its Quick­
Draw data types. 

A PROGRAM TO DRAW 
11111111111111111111111111111111 A FONT'S CHARACTER SET 

In the last version of our program, we added a section to draw the entire 
character set of the font in a matrix (shown in figure 4.15). The small 
rectangles are used for characters that have no image defined in the font. 

Listing 4.4 shows DrawFont in final form. We add two statements to 
put the title in boldface and then to return the type style to plain text . We 
also add two nested FOR loops to increment the character number. We use 
a DrawChar procedure to draw each individual character. Note that we 
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111111111111111111111111111111111 Listing 4.3 DrawFont Further Revised (Variables and Main Program) 

{listing 4.3, Variables and Main Program Only) 
var 

FontNum, StartH, StartV, LineH ; INTEGER; 
Font Name : array [ 0 .. 9] of Str255; 
FontStuff : Fontinfo; 

begin 
FontNum : = NewYork; 
InitText; 
InitDrawingWindow; 
GetFontinfo(FontStuff); 
StartH := 10; 
StartV := 20; 
LineH := FontStuff.ascent + FontStuff .descent + 

FontStuff.leading; 
MoveTo (StartH, StartV); 
Drawstring ('The Macintosh Character Set'); 
StartV := StartV + LineH; 
MoveTo ( StartH , StartV); 
DrawString(FontName[FontNum]); 

end. 

D Drtlwing 
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111111111111111111111111111111111 Figure 4.15 A character set matrix 
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111111111111111111111111111111111 Listing 4.4 DrawFont 

program DrawFont; 
{Listing 4. 4} 

con st 
SystemFont = O; 
ApplicationFont 1; 
NewYork = 2; 
Geneva 3; 
Monaco 4; 
Venice 5; 
London 6; 
Athens 7; 
SanFrancisco 8; 
Toronto = 9; 
LMargin = 40; 
Offset = 30; 
TMargin = O; 

var 
FontNum, StartH, StartV, LineH, v, h, n, CharWidth 

INTEGER; 
FontName : array[0 •. 9] of Str255; 
FontStuff : Font Info; 
HexConv : array [ 0 .• 15 J of char; 

procedure InitDrawingWindow; 
var 

GraphRect : Rect; 
begin 

SetRect (GraphRect, 20, 40, 380, 330); 
SetDrawingRect(GraphRect); 
ShowDrawing; 

end; 

procedure InitText; 
begin 

FontName [ 0 J : = 'System Font'; 
FontName [ 1 J : = 'Application Font' ; 
FontName[2] := 'New York'; 
FontName[3) := 'Geneva'; 
FontName [ 4] : = 'Monaco' ; 
FontName[5) := 'Venice'; 
FontName [6) := 'London'; 
FontName [ 7] : = 'Athens' ; 
FontName [ 8 J : = 'San Francisco'; 
FontName [ 9 J : = 'Toronto'; 
TextFont(FontNum); 
TextFace ( []); {normal} 
TextMode(srcOR); 
TextSize(12); 

end; 

function HexChar (num INTEGER) Char; 

65 

Continued 



61 DRAWING TEXT 

111111111111111111111111111111111 Listing 4.4 Continued 

begin 
if ((num > 15) or (num < 0)) then 

HexChar : = 32 
else if num < 10 then 

HexChar := chr (num + 48) 
else 

HexChar : = chr (num + 55) ; 
end; 

begin 
FontNum : = NewYork; 
InitText; 
InitDrawingWindow; 
GetFontinfo(FontStuff); 
FontStuff.Leading := FontStuff.Leading - 1; 
LineH := FontStuff.ascent + FontStuff.descent + 

Fontstuff.leading; 
StartH := LMargin - Offset; 
StartV := TMargin + LineH; 
MoveTo(StartH, StartV); 

{put the title in bold face} 
TextFace([Bold]); 
Drawstring ('The Macintosh Character Set, '); 
DrawString(FontName[FontNum]); 
Drawstring(' Font'); 
CharWidth : = Font Stuff. widMax + 2; 

{draw the top line of hex numbers} 
StartV := StartV + LineH; 
StartH := LMargin + CharWidth; 
MoveTo(StartH, StartV); 
for h := 0 to 15 do 
begin 

DrawChar(HexChar(h)); 
StartH := StartH + CharWidth; 
MoveTo(StartH, StartV); 

end; 
{set starting location to draw characters} 
StartV : = StartV + LineH; 
StartH := LMargin; 
MoveTo(StartH, StartV); 

{draw the character matrix} 
TextFace ( [ l); 
for v := 0 to 15 do 
begin 

TextFace([bold]); 
DrawChar(HexChar(v)); 
StartH := StartH + CharWidth; 
MoveTo(StartH, StartV); 
TextFace ( [] ) ; 
for h := O to 15 do 
begin 

Continued 
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111111111111111111111111111111111 Listing 4.4 Continued 

DrawChar(chr(v + (h * 16))); 
StartH := StartH + FontStuff.widMax + 2; 
MoveTo(StartH, StartV); 

end; 
StartH := LMargin; 
StartV : = StartV + LineH; 
MoveTo(StartH, StartV); 

and; 
end. 

have had to convert the character number from an integer to the CHR data 
type. Instead of using the font's proportional spacing between characters, 
we put them in a matrix so they all line up in columns and rows. This 
allows us to put the hex equivalents of the character numbers across the 
top and down the left side of the matrix, making it possible to locate any 
character on the basis of its hex value. The HexChar function returns the 
hex character (actually, its character number) for an integer that specifies 
a row or column (the v and h variables). 

We also have some additional code to put in the column and row 
numbers (hex numbers) in boldface. It turns out that with the leading 
specified in the New York font's definition, there isn't quite enough room 
to draw the entire matrix and still be able to see the drawing window 
borders at the top and bottom. Right after the call to GetFontlnfo, there is 
a statement to subtract 1 from the leading. Note that changing the leading 
variable doesn't affect the font definition; it's just an internal variable that 
we use to figure out how far to move the pen. 

Try changing the font that the program draws to see what some of the 
special characters look like in different fonts. If you choose a font that is 
not installed in your system disk, QuickDraw will draw the text in the 
application font (Geneva). 



11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

CHAPTER 

5 MORE TOOLS FOR 
THE MAGICIAN 

The Cursor 

The Mouse 

Pictures, Polygons, and Regions 

Creating QuickDraw Pictures 

QuickDraw Polygons 

Using Regions 

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

69 



70 MORE TOOLS FOR THE MAGICIAN 

11111111111111111111111111111111 THE CURSOR 

The cursor is the image that moves around on the screen when you move 
the mouse. It's used to relate the mouse position to a point on the screen. 
Most Macintosh documentation calls the cursor a pointer because its 
function is to point to things on the screen. We will call it a cursor so that 
we do not confuse it with a Pascal pointer data type. As you have used the 
Macintosh, you have probably seen the cursor change shape depending on 
what the machine is doing. When a program starts a task that takes some 
time, it will change the cursor to an image of a watch to let you know that 
you will have to wait. In a program like MacPaint, the cursor shape 
indicates what kind of tool you are using. 

In your own programs, you control the cursor with QuickDraw 
procedures. You can set the cursor shape, hide the cursor, show the 
cursor, or hide the cursor until the next mouse button click. 

The cursor image is a 16-by-16-pixel square. As you move the cursor 
around on the screen, it appears to overlay parts of the image on the 
screen. When you move the cursor, the parts of the image that were 
beneath it are restored. 

When you define a cursor, you specify the cursor image (16 by 16 
pixels), a cursor mask, and the hot spot. The cursor image is the image that 
appears on the screen and follows the mouse's movement. The cursor 
mask determines which parts of the cursor image appear on the screen. 
Usually, you will want the cursor mask to match the cursor image's 
outline. Thus, the pixels in the cursor image that are not part of the cursor 
shape will allow the existing pixels on the screen to show through. 

In figure 5 .1 we see three cursors and their masks. The mask for the 
left cursor covers the cursor and goes 1 pixel beyond the cursor in all 
directions to create a cursor outline. When the cursor is over a white area 
of the screen, it puts a black image of the arrow on the screen. When it is 
over a black area of the screen, the combination of black mask pixels in the 
cursor outline and white pixels in the same locations in the cursor 
definition causes a white outline of the cursor to appear. 

The mask for the middle cursor matches the black pixels in the 
cursor. When the cursor is over a white area of the screen, it appears as a 
black cross. When it is over a black area of the screen, it is not visible. It 
is still turning screen pixels black, but since it is surrounded by black 
pixels, you cannot see it. 

The mask on the right cursor covers just the outside edges of the 
cursor. The outside edges act like the cross in the middle cursor; they are 
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111111111111111111111111111111111 Figure 5.1 Three cursors and masks 

visible as black against white but cannot be seen against a black back­
ground. The cross in the third cursor inverts the image on the screen. It 
is always visible, no matter what the background. 

Note the difference in the way the left and right cursors make 
themselves visible against a black background. The left cursor produces a 
I-pixel-wide white outline, leaving the rest of the cursor with its normal 
appearance. The right cursor inverts the background to produce an image 
of itself, not an outline. Figure 5.2 shows the three cursors against white, 
black, and mixed backgrounds. 

111111111111111111111111111111111 Figure 5.2 Three cursors on the screen 
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The following table gives you a compact listing of the effects of the 
cursor mask. 

Cursor image Mask Screen Result 

White 1 White White 
Black 1 White Black 
White 0 White White 
Black 0 White Black 
White 1 Black White 
Black 1 Black Black 
White 0 Black Black 
Black 0 Black White 

The cursor hot spot is the point on the cursor that corresponds to the 
mouse location. If your cursor is a pointer of some kind, you will want the 
hot spot to be at the tip of the pointer. The data structure that defines the 
cursor is: 

type 
Cursor = record 

data : array [O .. 15] of INTEGER; 
mask: array [0 .. 15] of INTEGER; 
hotspot : Point 

end; 

The data array defines the cursor image; the mask array defines its 
mask. When we use the cursor data structure in our Macintosh Pascal 
programs, we will not have to define it. It's another of those QuickDraw 
data structures that is already defined in Macintosh Pascal. 

You don't have to read the mouse position and draw the cursor on the 
screen. In fact, you have no control over the cursor position. Macintosh 
system routines read the mouse position periodically and set the cursor 
position for you. 

Before we examine a program that manipulates the cursor, let's take 
a look at the QuickDraw routines that we will use. 

procedure InitCursor; 

Initialize the cursor. Set the cursor image to the arrow, and make 
it visible. 
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procedure SetCursor(aCursor : cursor); 

Set the cursor to the shape defined by the data structure 
aCursor. Set the cursor's 16-by-16-pixel image, the mask, and 
the hot spot. 

procedure HideCursor; 

Decrement the cursor level. 

procedure ShowCursor; 

Increment the cursor level. 

procedure ObscureCursor; 

Make the cursor invisible until the mouse button is pressed. 

The cursor level is a number that QuickDraw uses to keep track of 
calls to ShowCursor and HideCursor. When you initialize the cursor (with 
InitCursor), QuickDraw sets the cursor level to zero. When you call 
HideCursor, QuickDraw decrements the cursor level, and when you call 
ShowCursor, it increments the cursor level. ShowCursor does not incre­
ment the cursor level beyond zero. As long as the cursor level is less than 
zero, the cursor is invisible. If it is zero, the cursor is visible. This 
technique allows you to have nested calls to HideCursor and ShowCursor. 
If you call HideCursor five times in succession, the cursor will stay 
invisible until you make five calls to ShowCursor. 

We're going to use some of the cursor routines in a program to move 
a cursor around on a grid and detect its position when the mouse button 
is pressed. In listing 5.1, we have the beginnings of our program. It 
initializes the drawing window, draws a grid, and creates a cursor. At the 
end, it goes into an infinite loop (the repeat-until statement) so that we can 
see our cursor and move it around. When you are ready to quit the 
program, choose Halt from the Pause menu. 

Before initializing the drawing window and drawing the grid, we set 
the cursor data, mask, and hot spot. Our cursor is a 9-by-9-pixel rectangle 
with cross hairs in the center. The mask corresponds only to the cross 
hairs inside the rectangle (figure 5.3). 

The result is that the cursor's rectangle causes underlying pixels in 
the screen image to be inverted, but the cursor's cross hairs overlay 
whatever is underneath. The cursor rectangle is the same size as the boxes 
in the grid. When the cross hairs are exactly in the center of a grid box, the 
cursor rectangle and grid box disappear (figure 5.4). The cross hairs, 
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111111111111111111111111111111111 Listing 5 .1 Grid in Preliminary Form 

program Grid; 
(Listing 5.1} 

var 
CrossHairs : cursor; 
i : INTEGER; 
done : BOOLEAN; 
GridRect Rect; 

procedure InitGrid; 
var 

GridPat : Pattern; 
i : INTEGER; 

begin 
GridPat[O) := 255; 
for i := 1 to 7 do 
GridPat [i) := 1; 

SetRect (GridRect, 8, 8, 264, 264); 
FillRect (GridRect, GridPat); 
SetRect (GridRect, 7, 8, 264, 265); 
FrameRect(GridRect); 

end; 

procedure InitDraw; 
var 

GraphRect : Re ct; 
begin 

SetRect (GraphRect, 40, 40, 330, 330); 
SetDrawingRect(GraphRect); 
ShowDrawing; 

end; 

begin 
CrossHairs.data[4) := 8176; 
CrossHairs.data[12J .- 8176; 
for i := 5 to 11 do 
begin 
CrossHairs.data[i) := 4368; 
CrossHairs.mask[i] .- 256; 

end; 
CrossHairs.data(8J := 8176; 
CrossHairs.mask[8) := 4064; 
CrossHairs.hotspot.v := 8; 
CrossHairs.hotspot.h .- 8; 
InitDraw; 
InitGrid; 
InitCursor; 
SetCursor(CrossHairs); 

(Do this forever} 
repeat 
until done = TRUE; 

end. 
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Cursor Mask 

111111111111111111111111111111111 Figure 5.3 A cursor and its mask 

111111111111111111111111111111111 Figure 5.4 The cursor on the grid 

however, stay visible. We end up with a cursor that makes it very easy to 
position the mouse exactly in the center pixel of a small rectangle. 

How did we figure out what numbers to use when we initialized the 
cursor data structure? If you look at the 16-by-16-pixel matrix that defined 
the cursor image and the one that defines the mask, you can see that each 
row is 16 pixels wide. An integer is 16 bits. Each integer of the cursor 
image's integer array corresponds to one row of pixels. The rows are 
numbered from the top to the bottom, 0 to 15, corresponding to the index 
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to locate integers in the array (0 to 15 also). To set pixels in the top row, 
we set bits in the first integer in the array (index = 0). 

We can now relate a row of pixels to an integer, but we need to figure 
out how to set an individual pixel in a row. The pixels line up with bits in 
the integer and take on the values of those bits. The rightmost pixel has a 
value of 1, the next one to the left has a value of 2, the next 4, and so on 
to the last, which has a value of 32,768 (figure 5.5). 

To programmers, this should be a pretty familiar procedure. To set 
several bits in a row, we add the bit values and set the integer for that row 
to the resulting value. 

Now that we can set the cursor, let's do something more interesting 
with it. If we are going to do anything else with the cursor, our program 
will need to read the mouse button state. 

11111111111111111111111111111111 THE MOUSE 

In normal Macintosh Pascal, we cannot get quite as sophisticated in the 
way we handle mouse events as we can in other languages. Other lan­
guages allow you to specify a routine that executes automatically when 
there is a mouse event (the mouse button goes down or comes up). The 
only way to do that in Macintosh Pascal is to use the InLine facility to 

11 

16 by 16 PiHel 
Cursor 

_ 120 
_256 
- 512 
- 1024 
- 2048 

4096 
- 8192 

16384 
....__ _______ 32768 

111111111111111111111111111111111 Figure 5.5 Pixel values 



THE MOUSE 77 

directly call the event manager routines in the Macintosh ROM. Besides 
being somewhat cumbersome, that's dangerous in Macintosh Pascal. Us­
ing InLine turns off all type checking for your entire program. If you have 
an assignment or range error, you get a system error message instead of a 
warning from the Pascal interpreter. The only way to recover from those 
system errors is to reboot the system. 

Macintosh Pascal does have some predefined routines that let you 
check the state of the mouse button. They don't work like an interrupt 
handler, though. You must continually poll the mouse button state in a 
program loop. 

function Button: BOOLEAN; 

The Button function returns the current state of the mouse 
button: TRUE if the button is down, FALSE if it is up. 

procedure GetMouse(var h, v : INTEGER); 

GetMouse sets the variables to the coordinates of the cursor 
hot spot. The coordinates are in the coordinate system of the 
drawing window. 

The first routine that we will use is the GetMouse procedure. In 
listing 5.2, we have added a point variable and put a few statements in the 
infinite loop to check the cursor position and see if it is inside the grid 
rectangle. If the cursor is inside the grid rectangle, we set the cursor to the 
cross-hair cursor that we created. If it is outside, we set the cursor to the 
arrow. 

We did not define the arrow cursor in our program. It's a predefined 
data structure. The PtlnRect function tells us if the point we supplied, the 
mouse point, is inside the rectangle we specified. Try this program, and 
move the mouse around. You will see that when the cursor hot spot hits 
the edge of the grid rectangle, the cursor changes shape. 

Let's add one more modification to the program. This one will invert 
a box in the grid if we click inside of it with the mouse. We add a section 
of code to the infinite loop that tests the mouse button. If the button is 
down inside the grid rectangle, we find out which box it is in and invert 
the box. We also set a member of a Boolean array that corresponds to the 
grid boxes. 

At the end of the code that inverts the box in the grid, we wait for the 
button to be released. If we did not, the next time we executed the infinite 
loop, we would find the button still down and invert that same box again. 
We use the Button function to see if the button is still down. 
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111111111111111111111111111111111 Listing 5. 2 Grid Revised 

program Grid; 
{Listing 5.2} 

var 
CrossHairs : cursor; 
i, h, v, hbox, vbox : INTEGER; 
done : BOOLEAN; 
GridRect, BoxRect, DisplayRect Rect; 
MousePoint : point; 

procedure InitGrid; 
var 

GridPat : Pattern; 
i : INTEGER; 

begin 
GridPat[O] := 255; 
for i := 1 to 7 do 

GridPat[i] := 1; 
SetRect(GridRect, 8, 8, 264, 264); 
FillRect(GridRect, GridPat); 
SetRect(GridRect, 7, 8, 264, 265); 
FrameRect(GridRect); 

and; 

procedure InitDraw; 
var 

GraphRect : Rect; 
begin 

SetRect(GraphRect, 40, 40, 430, 330); 
SetDrawingRect(GraphRect); 
ShowDrawing; 

end; 

begin 
CrossHairs.data[4] := 8176; 
CrossHairs.data[12] := 8176; 
for i := 5 to 11 do 
begin 

CrossHairs.data[i] := 4368; 
CrossHairs.mask[i] := 256; 

and; 
CrossHairs.data[8] := 8176; 

Continued 
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111111111111111111111111111111111 Listing 5.2 Continued 

CrossHairs.mask[8] := 4064; 
CrossHairs.hotspot.v := 8; 
CrossHairs.hotspot.h := 8; 
InitDraw; 
InitGrid; 
InitCursor; 
SetCursor(CrossHairs); 

{Do this forever} 
done := FALSE; 
repeat 
begin 

GetMouse(MousePoint.h, MousePoint.v); 
{if the mouse is outside the grid, set cursor to arrow} 

if PtinRect(mousePoint, GridRect) then 
SetCursor(CrossHairs) 

else 
SetCursor(arrow); 

end; 
until done = TRUE; 

end. 

One additional feature is the display rectangle in the upper right 
portion of the expanded drawing window (figure 5.6). It shows an image 
in which the pixels correspond to the boxes in our grid. If you count the 
boxes in the grid, you will see that it is a 32-by-32 array-exactly the 
dimensions of an icon. An icon is a special Macintosh graphics element 
used by the Finder and application programs to represent files, application 
programs, and so on. You see icons on the desk top and sometimes in 
menus. Icons are so widely used in the Macintosh that it has special 
routines to make it easy to deal with them. Since our program allows us to 
set individual pixels in a 32-by-32-pixel array, it could be the basis for an 
icon editor. 

The final version of our program is shown in listing 5.3. 

PICTURES1 POLYGONS1 

11111111111111111111111111111111 AND REGIONS 

QuickDraw pictures, polygons, and regions are very similar in the ways 
that you create and use them. Each is a variable-sized data structure that 
describes a graphic image or area of the screen. You don't need to worry 



80 MORE TOOLS FOR THE MAGICIAN 

0 Drawing 

•• •• •• •• ••• • • • • •• •• •• •• •• •• •• •• •• ••• 
~ •• •• • • • • • • • • • • • • • • • •• ••• • • ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • •• •• • • • •• • • • • • •• • • •• ••• 

'2:J 

111111111111111111111111111111111 Figure 5.6 A grid and a 32-by-32 image 

about allocating a variable-sized memory area and tracking whether or not 
you need to allocate additional memory; QuickDraw handles that for you. 
You just define the data structure and then issue normal QuickDraw 
drawing commands. QuickDraw works like a tape recorder, recording the 
information from the drawing commands and putting that information in 
a variable-sized data structure. 

You reference each of these structures with a handle, but you use the 
handle only to identify the data structure to QuickDraw. You never need 
to directly reference one of these data structures. You use QuickDraw 
routines for all of the manipulations that you must do to them. 

A picture is a recording of QuickDraw drawing activity from the time 
you open the picture until you close it. Instead of creating a bit image of 
the drawing, QuickDraw records all of the calls you made to drawing 
routines. By reading them back, it can recreate the image that you drew. 
By recording the QuickDraw calls instead of the bit image, QuickDraw can 
recreate the image on devices other than the Macintosh display. If you 
send a QuickDraw picture to the printer, QuickDraw tailors the drawing 
activities for the resolution of the printer instead of the Macintosh display. 

QuickDraw pictures are used to transfer graphics from one program 
to another via the clipboard and scrapbook. Some programs store graph­
ics data in files as QuickDraw pictures. 
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111111111111111111111111111111111 Listing 5 .3 Grid 

program Grid; 
{Listing 5.3} 

var 
CrossHairs : cursor; 
i, h, v, hbox, vbox : INTEGER; 
done : BOOLEAN; 
GridRect, BoxRect, DisplayRect : Rect; 
MousePoint : point; 
Box : array [ 0 .• 31, 0 .. 31) of BOOLEAN; 

procedure InitGrid; 
var 

GridPat : Pattern; 
i : INTEGER; 

begin 
GridPat [OJ := 255; 
for i := 1 to 7 do 
GridPat [i) := 1; 

SetRect (GridRect, 8, 8, 264, 264); 
FillRect(GridRect, GridPat); 
SetRect (GridRect, 7, 8, 264, 265); 
FrameRect(GridRect); 
SetRect (DisplayRect, 319, 32, 353, 65); 
FrameRect(DisplayRect); 

end; 

procedure DisplayBit (hbit, vbit 
State : BOOLEAN) ; 

begin 

INTEGER; 

81 

MoveTo(DisplayRect.Left + hbit + 1, DisplayRect.top + vbit + 
1) ; 

if State then 
PenPat(black) 

else 
PenPat(white); 

LineTo(DisplayRect.left + hbit + 1, DisplayRect.top + vbit + 
1); 

end; 

procedure InitDraw; 
var 

GraphRect : Rect; 
begin 

SetRect (GraphRect, 40, 40, 430, 330); 
SetDrawingRect(GraphRect); 
ShowDrawing; 

end; 

begin 
CrossHairs.data[4) := 8176; 
CrossHairs .data [12) := 8176; 

Continued 



82 MORE TOOLS FOR THE MAGICIAN 

111111111111111111111111111111111 Listing 5. 3 Continued 

for i := 5 to 11 do 
begin 
CrossHairs.data[i] := 4368; 
CrossHairs.mask[i] := 256; 

end; 
CrossHairs.data[8] := 8176; 
CrossHairs .mask [8] := 4064; 
CrossHairs.hotspot.v .- 8; 
CrossHairs.hotspot.h := 8; 
InitDraw; 
InitGrid; 
InitCursor; 
SetCursor(CrossHairs); 

{Do this forever} 
done : = FALSE; 
repeat 
begin 

GetMouse(MousePoint.h, MousePoint.v); 
{if the mouse is outside the grid, set cursor to arrow} 

if PtinRect (mousePoint, GridRect) then 
SetCursor(CrossHairs) 

else 
SetCursor(arrow); 

end; 
if Button then 
if PtinRect (mousePoint, GridRect) then 

{we got a mouse hit, invert a box} 
begin 

h := MousePoint .h - 8; 
v : = MousePoint. v - 8; 
hbox := h div 8; 
vbox := v div 8; 
Box [hbox, vbox] := not Box [hbox, vbox]; 
DisplayBit (hbox, vbox, Box [hbox, vbox]); 
BoxRect.Left := (hbox * 8) + 9; 
BoxRect. Right : = BoxRect. Left + 5; 
BoxRect.Top := (vbox * 8) + 10; 
BoxRect.Bottom := BoxRect.top + 5; 
InvertRect(BoxRect); 
repeat 
until not Button 

end; 
until done = TRUE; 

end. 

Polygons are graphics elements (objects) that you use much the same 
way you use a rectangle, rounded rectangle, or oval. A polygon is an object 
made up of three or more line segments. You create a QuickDraw polygon 
by drawing line segments while a polygon data structure is open. You can 
do anything with the polygon that you can do with rectangles: fill, erase, 
frame, and paint. 
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A region is an arbitrarily shaped area of the screen or other drawing 
coordinate system. Regions are created the same way as polygons. The 
difference is that a region can have any arbitrary structure. While a 
polygon is composed of line segments, a region may be defined by line 
segments or curves of any shape. The only restriction is that the lines and 
curves that define the borders of a region must create a closed region. A 
region can even consist of two or more discontiguous areas. 

You can define pictures, polygons, and regions without drawing 
them on the screen. You need to make the calls to QuickDraw drawing 
routines, but the image can be created in an off-screen buffer and not 
displayed. That way, your program can define the pictures, polygons, or 
regions that it wants to use and then reference them later the same way it 
references the other common QuickDraw objects. 

CREATING QUICKDRAW 
11111111111111111111111111111111 PICTURES 

QuickDraw has an internal data structure for storing pictures, but you 
don't have to know anything about it. In your programs, you will use a 
handle to the picture data structure to identify it to QuickDraw. To start 
recording a picture, you call the function OpenPicture. You pass Open­
Picture a rectangle that defines the limits of the drawing area for the 
picture. OpenPicture allocates the space for the picture data structure, 
returns a handle to it, and starts the process of recording calls to Quick­
Draw drawing routines. OpenPicture hides the pen, so if you want the 
picture to appear on the screen as you record it, you will need to call 
ShowPen after calling OpenPicture. 

After you call OpenPicture, QuickDraw will record picture informa­
tion in the picture data structure until you call ClosePicture. ClosePicture 
closes the picture data structure and makes it available for displaying the 
recorded picture. It also calls ShowPen because OpenPicture hid the pen. 

Every call to OpenPicture should be followed by a single call to 
ClosePicture. You cannot have more than one picture open, nor can 
you close a picture twice. Since only one picture can be open at any 
given time, you do not need to identify the picture to ClosePicture. It 
requires no parameters. QuickDraw already knows which picture you 
opened. After all, it allocated the picture data structure and gave you the 
handle to it. 

After recording the picture, you can draw it by calling DrawPicture. 
You pass the DrawPicture procedure a handle to identify the picture and 
a rectangle that defines where you want the picture drawn. DrawPicture 
will scale the picture to make it fit exactly inside the rectangle. 
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When you have finished using a picture, you should call KillPicture to 
deallocate the data structure and free its memory for other uses. 

function OpenPicture(picFrame : Rect) : picHandle; 

Allocate a picture data structure, start recording the picture, and 
hide the pen. 

procedure ClosePicture; 

Stop recording the picture, and show the pen. 

procedure DrawPicture(aPicture : picHandle; destination: Rect); 

Draw the picture previously recorded in the picture data 
structure identified by picHandle. Draw the picture in the 
destination rectangle, and scale it to fit the rectangle. 

procedure KillPicture(aPicture : picHandle); 

Deallocate the picture data structure identified by picHandle. 

Our picture demonstration program (listing 5.4) draws and records a 
picture (figure 5.7) and then waits for you to press the mouse button. The 
program erases the old copy of the picture from the screen and redraws it 
at the mouse location. It redraws the picture from the picture data 
structure instead of repeating the calls to the QuickDraw drawing routines 
that drew it the first time. 

If you run the program, you will see that the process of drawing a 
recorded picture is very fast. Try moving the mouse around and pressing 
the button. 

The program uses the picture-recording and picture-drawing rou­
tines just the way we described. Before it does anything else, it initializes 
the drawing window and draws a frame around the area where it will draw 
the picture. The program opens the picture and puts the handle to it in a 
variable called Snapshot. The routine that draws the picture (Drawlt) calls 
ShowPen so that we can see the picture drawn on the screen as it is being 
recorded in the picture data structure. After drawing the picture, the 
program calls ClosePicture and enters an infinite loop, waiting for you to 
press the mouse button. 

When the program detects that the mouse button is being pressed, it 
checks to see if the cursor is inside the drawing window. If it is, the 
program erases the old image of the picture, sets the destination rectangle 
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111111111111111111111111111111111 Listing 5 .4 Pictures 

program Pictures; 
{Listing 5. 4} 

uses 
QuickDraw2; 

var 
Snapshot : PicHandle; 
GraphRect, PicFrame, aRect : Rect; 
h, v, height, width, FrameWidth, FrameHeight 
done : BOOLEAN; 
b : point; 

procedure InitDraw; 
begin 

SetRect (GraphRect, 10, 40, 500, 335); 
SetDrawingRect(GraphRect); 
ShowDrawing; 

{convert to drawing window coordinates} 
OffsetRect(GraphRect, -10, -40); 

end; 

procedure Drawit; 
begin 

ShowPen; 
Moveto (20, 20); 
TextFont(2); 
TextFace([bold]); 
Drawstring ('Some Graphics for a Picture'); 
height := 30; 
width := 30; 
h := 75; 
v := 65; 
SetRect(aRect, h, v, h +width, v +height); 
FillRect (arect, ltGray); 
h := h + width + 10; 
SetRect(aRect, h, v, h +width, v +height); 
FillRect(aRect, dkGray); 
h := 60; 
v := 30; 
height := 100; 
width := 100; 
SetRect(aRect, h, v, h +width, v +height); 
FrameOval(aRect); 

end; 

procedure Frameit; 
begin 

FrameWidth := 220; 
FrameHeight := 130; 

INTEGER; 

SetRect(PicFrame, 10, 5, 10 + FrameWidth, 5 + FrameHeight); 
framerect(PicFrame); 

end; 

Continued 
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111111111111111111111111111111111 Listing 5.4 Continued 

begin 
InitDraw; 
Frame It; 
Snapshot := OpenPicture (PicFrame); 
Drawit; 
ClosePicture ; 
done := false; 
repeat 
repeat 
until button; 
GetMouse (b. h, b. v) ; 

{mouse in the drawing window ? ) 
if PtinRect (b, GraphRect) then 
begin 

EraseRect(PicFrame); 
SetRect(PicFrame, b.h, b.v, b.h + FrameWidth, b.v + 

FrameHeight); 
DrawPicture (Snapshot, PicFrame); 

end; 
repeat 
until not button; 

until done 
end. 

Drawing 

Some Graphics for a Picture 

111111111111111111111111111111111 Figure 5. 7 The result of the Pictures program 
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for the new image, and draws the picture in the destination rectangle. In 
this version, the destination rectangle is the same size as the original 
picture rectangle (PicFrame). The program waits for you to release the 
mouse button before testing again to see if it has been pressed. 

The program stays in an infinite loop, so there is no way for it to stop 
itself. When you are ready to exit the program, stop it by choosing Halt 
from the Pause menu. 

Looking at the beginning of listing 5.4, we see something new, the 
statement: 

uses QuickDraw2 

That statement causes the interpreter to load the QuickDraw2 library. 
The library contains the definitions of all of the data structures and 
routines in QuickDraw for doing pictures, polygons, and regions as well as 
more advanced QuickDraw routines. The routines and data structures that 
we have used up until now are all in the QuickDrawl library. You don't 
need the uses statement for the QuickDraw 1 library because Macintosh 
Pascal automatically loads it. 

I would also like to demonstrate the scaling that DrawPicture can do 
when it draws the picture in the destination rectangle. In the next version 
of the program (listing 5.5), we add two lines at the end of the infinite loop 
to make the destination rectangle a little wider and shorter each time we 
redraw the picture. 

All we had to do to get DrawPicture to scale the picture was to specify 
the size and location of the rectangle that we wanted it drawn in. We didn't 
need to figure out any scale factors or do any coordinate conversion. 
DrawPicture did all of that for us. 

If you move the mouse around and press the button several times, 
you will see the picture grow short and wide (figure 5.8). 

11111111111111111111111111111111 QUICKDRAW POLYGONS 

A picture contains an image that we draw with QuickDraw drawing 
routines. A polygon is one of the objects that we draw with QuickDraw 
routines, and we create it the same way we create a picture. You can use 
it any time you want to create a specially shaped polygon for your own 
application. For example, if you are defining specially shaped objects for 
a CAD program, polygons would be just the thing to use. 

A polygon is made up of line segments drawn with the LineTo 
procedure. Like the picture, a polygon occupies a variable-sized data 
structure that is maintained for us by QuickDraw. To create a polygon, you 
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111111111111111111111111111111111 Listing 5.5 Pictures with Scaling 

{listing 5.5} 
{Pictures with Scaling} 
repeat 
repeat 
until button; 
GetMouse (h, v) ; 
EraseRect(PicFrame); 
SetRect(PicFrame, h, v, h + FrameWidth, v + FrameHeight); 
DrawPicture(SnapShot, PicFrame); 
repeat 
until not button; 
repeat 
repeat 
until button; 
GetMouse (b.h, b.v); 
if PtinRect (b, GraphRect) then 
begin 

EraseRect(PicFrame); 
SetRect(PicFrame, b.h, b.v, b.h + FrameWidth, b.v + 

FrameHeight); 
DrawPicture(SnapShot, PicFrame); 

end; 
repeat 
until not button; 
FrameWidth := FrameWidth + 4; 
FrameHeight .- FrameHeight - 4; 

until done 

open the polygon data structure and call the LineTo procedure to draw 
each side. QuickDraw records the calls to LineTo in the polygon data 
structure. When you have finished drawing the polygon, you call Close­
Poly to close the data structure and make it available for use with the 
polygon routines. 

Like the data structure of a picture, a polygon's data structure is 
internal to QuickDraw. You identify it to QuickDraw with a handle but 
never access it directly. 

function OpenPoly : polyHandle; 

OpenPoly allocates the polygon data structure and starts 
recording calls to LineTo to define the polygon. OpenPoly hides 
the pen. 

procedure ClosePoly; 

ClosePoly closes the polygon data structure and makes it 
available for use by other QuickDraw procedures. ClosePoly 
shows the pen. 
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111111111111111111111111111111111 Figure 5.8 A scaled picture 

procedure KillPoly(aPolygon : polyHandle); 

KillPoly deallocates the polygon data structure. 

procedure OffsetPoly(aPolygon : polyHandle, deltaH, deltaV: 
INTEGER); 

OffsetPoly recalculates the locations of the sides of the polygon, 
moving it horizontally by deltaH and vertically by deltaV. 

OpenPoly hides the pen, and ClosePoly shows the pen. If you want 
to display the polygon as you draw it, you must call ShowPen after calling 
OpenPoly. You can have only one polygon open at a time. Each call to 
OpenPoly must be balanced by one call to ClosePoly. 

The OffsetPoly procedure works like the OffsetRect procedure. You 
specify a polygon and the distance you want to move it. OffsetPoly doesn't 
redraw the polygon; it just recalculates its position so that it will appear at 
the new position the next time you draw it . 

Once you have created a polygon, you can use it the same way you 
would use a rectangle, oval, or rounded rectangle. QuickDraw has rou­
tines to frame a polygon, fill it, paint it , erase it, or invert it. 
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procedure FramePoly(aPolygon : polyHandle); 

FramePoly draws the outside edges of the polygon, using the 
current pen size, pattern, and mode. 

procedure PaintPoly(aPolygon : polyHandle); 

PaintPoly draws the current pen pattern in the interior of 
the polygon, using the current pen mode. It does not draw 
the frame. 

procedure ErasePoly(aPolygon : polyHandle); 

ErasePoly draws the current background pattern in the 
polygon interior, in effect erasing it. 

procedure InvertPoly(aPolygon : polyHandle); 

InvertPoly inverts all of the pixels inside the polygon, setting 
formerly black pixels white and formerly white pixels black. 

procedure FillPoly(aPolygon: polyHandle; pat : pattern); 

FillPoly fills the interior of the polygon with the specified 
pattern. The pattern overlays the pixels in the polygon (COPY 
mode) and ignores the current pen mode and pattern. 

That's quite a collection of routines. Let's see how to use some of 
them. In our example, we will let the user draw a polygon with the mouse. 
The program (listing 5 .6) will then let the user select any location on the 
screen and redraw the polygon there. To do the redrawing, the program 
doesn't draw every edge; it just calls one of the polygon-drawing routines. 

The user first clicks the mouse at the point where he or she wants to 
start the polygon and releases the button. The program leaves a dot at the 
starting location. The user then clicks the mouse at the point where he or 
she wants the first line to end, and the routine draws the first edge of the 
polygon. Then the user clicks at the end point for the next edge, and the 
program draws that edge. This process continues until the user clicks 
the mouse at the starting point, closing the polygon. Not everyone 
can locate the cursor exactly on a specific pixel, so the program assumes 
that the polygon is closed if the cursor is clicked within 2 pixels of the 
starting point. 

While the user is creating the polygon (figure 5.9), the program just 
draws lines 1 pixel wide for the edges. When it draws the completed 
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111111111111111111111111111111111 Listing 5.6 Polygon 

program Polygon; 
{Listing 5. 6} 

uses 
QuickDraw2; 

var 
Poly : PolyHandle; 
GraphRect : Rect; 
done : BOOLEAN; 
origin, ButtonPt : point; 

procedure InitDraw; 
begin 

SetRect (GraphRect, 10, 40, 500, 335); 
SetDrawingRect(GraphRect); 
ShowDrawing; 

{convert to drawing window coordinates} 
OffsetRect(GraphRect, -10, -40); 

end; 

procedure MakePoly (var StartPt 
var 

Mouse : Point; 
StartRect : Rect; 
DrawDone : BOOLEAN; 

begin 
ShowPen; 
repeat 
until Button; 
GetMouse(StartPt.h, StartPt.v); 

point); 

91 

SetRect (St art Re ct, Start Pt. h - 2, Start Pt. v - 2, StartPt. h + 
2, StartPt.v + 2); 

MoveTo(StartPt.h, StartPt.v); 
Line To ( StartPt .h, Start Pt. v) ; 
DrawDone : = FALSE; 
repeat 
until not Button; 
repeat 
repeat 
until Button; 
GetMouse(Mouse.h, Mouse.v); 
if PtinRect (Mouse, StartRect) then 
begin 

DrawDone : = TRUE; 
Mouse := StartPt; 

end; 
LineTo(Mouse.h, Mouse.v); 
repeat 
until not Button; 

until DrawDone; 
end; 

Continued 
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111111111111111111111111111111111 Listing 5.6 Continued 

procedure DrawPoly (polyH, polyV INTEGER) ; 
begin 

OffSetPoly(poly, polyH, polyV); 
FillPoly (Poly, Gray); 
PenSize(3, 3); 
FramePoly(Poly); 

end; 

begin 
InitDraw; 
Poly := OpenPoly; 
MakePoly(origin); 
ClosePoly; 
DrawPoly(O, 0); 
done := false; 
repeat 
repeat 
until button; 
GetMouse(ButtonPt.h, ButtonPt.v); 

{mouse in drawing window?} 
if PtinRect (ButtonPt, GraphRect) then 
begin 

ErasePoly(Poly); 
PenPat(white); 
FramePoly(Poly); 
PenPat(black); 
DrawPoly(ButtonPt.h - origin.h, ButtonPt.v - origin.v); 
origin.h := ButtonPt.h; 
origin.v := ButtonPt.v; 

end; 
repeat 
until not button; 

until done 
end. 

polygon, the program fills it with a pattern and frames it with a wide 
border like the one in figure 5.10. 

In the main part of the program, we initialize the drawing window, 
open the polygon, and call the routine that allows the user to draw the 
polygon with the mouse. The program then closes the polygon data 
structure, draws the completed polygon, and enters an infinite loop, 
waiting for the user to click the mouse again. 

The next time the user clicks the mouse, the program checks to see 
if the mouse is in the drawing window. If the mouse is in the window, the 
program erases the existing image of the polygon and draws it again at the 
mouse location. 
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Drawing 

111111111111111111111111111111111 Figure 5.9 A polygon being created 

Drawing 

111111111111111111111111111111111 Figure 5 .10 A framed and filled polygon 
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The Draw Poly routine uses OffsetPoly to position the polygon at the 
chosen spot before drawing it. The caller keeps track of the old location 
of the polygon and the new location that the user has selected, and 
computes the offset. It passes the offset to DrawPoly. The first time the 
main program calls DrawPoly, it passes an offset of zero to make DrawPoly 
put the polygon at the point where the user created it. 

MakePoly is the procedure that uses the user's mouse movements to 
create the polygon. The first time the user clicks the mouse, MakePoly 
records the starting point and creates a 4-by-4 rectangle (StartRect) around 
it. MakePoly checks StartRect each time the user clicks the mouse to see 
if the mouse point is within 2 pixels of the starting point. If the mouse 
point is within StartRect, the routine draws a line from the last point 
clicked to the starting point, completing the rectangle. It then sets the 
done flag, allowing the program to exit the MakePoly procedure. 

llllllllllllllllllllllllllllllll USING REGIONS 

A region is an arbitrary closed shape. It can be an object that you want to 
draw or just a definition of an area of the screen. A region can be any shape 
or a collection of shapes. It can even have a hole in the middle that is not 
part of the region. 

The window manager uses regions to keep track of what portions of 
a window need to be updated. QuickDraw and the window manager 
together use a region to define what portion of a window is visible. 

Most of the Macintosh ROM routines use rectangles extensively, so 
QuickDraw provides a lot of routines for doing calculations with rectan­
gles. Regions are not used as often as rectangles, but they are important for 
defining nonrectangular shapes. Those same ROM routines need to do 
many calculations with regions. For most of the rectangle calculation 
routines, QuickDraw has equivalent routines for doing calculations with 
regions. There are routines to find out if a point is in a region, detect 
region intersections, join regions, offset regions, inset regions, and so on. 

In addition to the region calculation routines, Quick.Draw has the 
usual set of drawing routines for regions: Frame, Fill, Paint, Erase, and 
Invert. 

A region is defined in a variable-sized data structure. You create a 
region by allocating the region, opening the data structure, calling Quick­
Draw drawing routines, and closing the data structure. QuickDraw 
records the actions of the drawing routines and adds the areas that they 
draw to the region definition. You can have only one region open at a time. 
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Unlike OpenPoly and OpenPicture, which allocate memory for their 
own data structures, OpenRegion does not allocate any memory. You must 
call NewRegion to allocate the space for the variable-sized data structure 
before you call OpenRegion. If you try to use a region that has not been 
allocated, the program will take a wild branch. The results of this crashing, 
bombing, going into the ozone, running off into the weeds, or whatever 
you choose to call it range from entertaining (strange things appear on the 
display) to tragic (the system takes a wild branch into the disk driver code 
and eats the directory on your last working copy of Macintosh Pascal). So 
be careful, and call NewRegion for each region you define. 

The routines listed below are just a sample of the region calculation 
routines. You can find full definitions of all of the region procedures and 
functions in the QuickDraw section of Inside Macintosh or the Macintosh 
Pascal Technical Appendix. 

function NewRgn : RgnHandle; 

NewRgn allocates the data structure in which a region 
definition will be stored and returns a handle to the region 
data structure. You must call NewRgn to allocate a region 
before using the region. 

procedure OpenRgn; 

OpenRgn tells QuickDraw to start recording a region definition. 
The areas of the coordinate system that are affected by 
subsequent calls to QuickDraw drawing routines are added to 
the region. OpenRgn allocates a temporary space to record the 
region definition. CloseRgn assigns the region definition to a 
region allocated by NewRgn. 

procedure CloseRgn(aRegion: RgnHandle); 

CloseRgn stops the region-recording process and puts the region 
definition in the region identified by aRegion, a handle to a 
region defined by NewRgn. 

procedure OffsetRgn(aRegion : RgnHandle; deltaH, deltaV : 
INTEGER); 

OffsetRgn recalculates the position of a region, moving it by an 
amount specified by deltaH and deltaV. 
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procedure DisposeRgn(aRegion: RgnHandle); 

DisposeRgn releases the memory allocated to a region's data 
structure. DisposeRgn destroys a region definition. Do not 
reference a region that has been disposed. 

function EmptyRgn(aRegion: RgnHandle): BOOLEAN; 

EmptyRgn checks the region identified by the region handle 
aRegion. It returns TRUE if the region is empty, that is, if the 
region has not been recorded or consists of merely a point or 
a line. 

Our region program (listing 5. 7) is very similar to the polygon 
program. It allows you to draw the outline of a region with the mouse and 
then move the region to different locations by clicking the mouse in the 
drawing window. A region has an arbitrary shape, so we don't use straight 
lines to draw its outline. The region outline starts at the point where you 
press the mouse button. You hold the button down and move the mouse 
to draw the region's shape. When you release the mouse button, the 
program draws a line from the point where you released the button to the 
starting point. 

Like the polygon program, the region program redraws the shape that 
you drew with the mouse, using a wide border and filling it with a pattern 
(figure 5.11). 

The main part of the program is very similar to the polygon program. 
It first allocates memory for a region data structure, opens the data 
structure, starts recording, calls a procedure to let the user draw the region 
outline, redraws the region, and enters the infinite loop. In the infinite 
loop, the program waits for you to press the mouse button; then it erases 
the old drawing of the region and redraws it at the mouse location. 

The routine that allows the user to draw the outline of the region is 
MakeRgn. It's much simpler than the equivalent routine in the polygon 
program. It just waits for the first mouse button press and then follows the 
mouse motion, drawing as it goes, until the button is released. When it 
detects that the button has been released, MakeRgn draws a line to the 
starting point. MakeRgn returns the starting point to the caller. The main 
part of the program uses the starting point to calculate the offset to the 
new location when redrawing the region. 

The DrawRgn routine uses OffsetRgn to recalculate the region's 
location. Like OffsetPoly, it needs to be passed the handle to the data 
structure (aRegion) and the amount to move the region (the offset). 
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program Region; 
{Listing 5. 7} 

uses 
QuickDraw2; 

var 
aRegion : RgnHandle; 
GraphRect : Rect; 
done : BOOLEAN; 
origin, ButtonPt : point; 

procedure InitDraw; 
begin 

USING REGIONS 

SetRect(GraphRect, 20, 40, 500, 335); 
SetDrawingRect(GraphRect); 
ShowDrawing; 
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{convert to drawing window coo rd so we can check if mouse in 
window} 

OffSetRect(GraphRect, -20, -40); 
end; 

procedure MakeRgn (var StartPt 
var 

Mouse : Point; 
begin 

ShowPen; 
repeat 
until Button; 
GetMouse ( StartPt. h, Start Pt. v) ; 
Move To ( StartPt. h, Start Pt. v) ; 
Line To ( StartPt. h, Start Pt. v) ; 
repeat 

GetMouse(Mouse.h, Mouse.v); 
LineTo(Mouse.h, Mouse.v); 

until not Button; 
Line To ( StartPt. h, Start Pt. v) ; 

end; 

point); 

procedure DrawRgn (RgnH, RgnV : INTEGER) ; 
begin 

OffSetRgn (aRegion, RgnH, RgnV); 
FillRgn (aRegion, Gray); 
PenSize (3, 3); 
PenPat(Black); 
FrameRgn(aRegion); 

end; 

begin 
InitDraw; 

{allocate region) 
aRegion : = NewRgn; 

{create a Region shape} 

Continued 
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111111111111111111111111111111111 Listing 5. 7 Continued 

OpenRgn ; 
MakeRgn(origin); 
CloseRgn(aRegion); 

{now erase the lines that created the region) 
EraseRect(GraphRect); 

{draw the region) 
DrawRgn(O, 0); 

{do an infinite loop} 
done : = false; 
repeat 
repeat 
until button; 
GetMouse (ButtonPt .h , ButtonPt .v); 
if PtlnRect (ButtonPt, GraphRect) then 
begin 

EraseRgn(aRegion); 
DrawRgn(ButtonPt.h - origin.h, ButtonPt .v - origin.v); 
origin.h := ButtonPt.h; 
origin.v := ButtonPt.v; 

end; 
repeat 
until not button; 

until done 
end. 

~D 

111111111111111111111111111111111 Figure 5.11 A region 

Drowing 
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As you try the program, note how fast it redraws the region compared 
to the redrawing speed of the polygon program. Also try some strange 
region shapes. Try a figure eight. It works! 

As it stands, the program has a bug. More correctly, it has at least one 
bug. If you draw a region that is one point or just one line, the program 
accepts that region definition but cannot really draw it because it isn't 
really a region. In listing 5 .8, you can see the fix for that bug. 

We put the section of the main program that creates the region and 
calls MakeRgn in a loop. It repeatedly creates a region and tests it with the 
EmptyRgn function until it has created one that is not empty. 

111111111111111111111111111111111 Listing 5.8 Region Revised 

(listing 5.8} 
(revised region} 
begin 

InitDraw; 
(allocate region} 
aRegion : = NewRgn; 

{create a Region shape} 
repeat 
EraseRect(GraphRect); 
OpenRgn; 
MakeRgn(origin); 
CloseRgn(aRegion); 

until not EmptyRgn (aRegion); 
(now erase the lines that created the region} 
EraseRect(GraphRect); 

(draw the region} 
DrawRgn(O, 0); 
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COORDINATES AND DATA 
11111111111111111111111111111111 STRUCTURES 

The QuickDraw coordinate systems have very rigorous mathematical 
definitions. For a mathematician, they are, no doubt, a thing of beauty. For 
us, they have a more practical use. We need to be able to draw and relate 
objects in various coordinate systems. As long as we are using just Macin­
tosh Pascal for our drawing programs, we can get by with a minimal 
knowledge of QuickDraw coordinates and data structures. If you want to 
use other compilers and languages, you will need a sound knowledge of 
QuickDraw coordinates and data structures. 

11111111111111111111111111111111 QUICKDRAW COORDINATES 

The various coordinate systems that QuickDraw uses and the way they are 
mapped to memory areas can be confusing. If you read the QuickDraw 
manual several times and let things simmer between readings, you will 
eventually figure it out. In this chapter I'll present some examples and, I 
hope, make it easier. 

Why do we need different coordinate systems, and how are they 
different? We don't really need different coordinate systems, but it's very 
convenient to have them. Sometimes it is easier to do certain calculations 
on the objects (scaling and rotation) if we move the coordinate system. 
Also, it's convenient for each window to have its own coordinate system 
separate and distinct from the Macintosh screen. A graphics document 
(file) might also have its own coordinate system. The only real difference 
among these coordinate systems is in the locations of the origins. You will 
find that most windows have the origin of the coordinate system in the 
upper left corner, but this is not a requirement. The origin for a window's 
coordinate system can be anywhere, at any convenient location. 

Up until now, we haven't needed to deal with coordinate systems in 
our drawing programs. In almost every program, though, we used two 
coordinate systems. Each of our programs had a procedure called 
InitDraw that sets the size of the drawing window and brings it to the front 
of the stack of windows on the screen. The listing below shows the 
InitDraw procedure from listing 5.7, the program that works with Quick­
Draw regions. 

procedure InitDraw; 
begin 

SetRect(GraphRect, 20, 40, 500, 335); 
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SetDrawingRect(GraphRect); 
Show Drawing; 
OffsetRect(GraphRect, -20, -40); 

end; 

The first thing that we did in that procedure was put some numbers 
in a rectangle data structure. The numbers that we used for the rectangle's 
coordinates are in the coordinate system of the desk top (the coordinate 
system for the entire screen). The origin of that coordinate system is at the 
upper left corner of the screen. We used the coordinates of that rectangle 
as the coordinates of the drawing window when we used SetDrawingRect 
to set that rectangle's size and location. The ShowDrawing procedure 
makes the drawing window visible and brings it to the front of the stack 
of windows on the screen; it becomes the frontmost window, overlaying 
all of the others. 

The last thing we did in the InitDrawing procedure was to offset 
GraphRect. We wanted to use it to check the limits of drawing in the 
drawing window. It had the right size, but the coordinates of its corners 
were in the coordinate system of the screen, not the coordinate system of 
the window. 

The drawing window has its own coordinate system. The origin is the 
upper left corner of the window. When our program draws in the drawing 
window, it uses the coordinate system of the window, not the screen 
coordinate system. If we want to be able to use the GraphRect rectangle 
to find the edges of the window, we need to convert it to the coordinate 
system of the window. That's what the OffsetRect procedure did. 

This is only one example of different coordinate systems used in 
QuickDraw and drawing programs. If we are drawing in several windows, 
each will have its own coordinate system. If we want to move an object 
from one window to another, we must convert its coordinates to coordi­
nates in the destination window's coordinate system. 

In addition to the coordinate systems of the screen and windows, our 
program may be creating a document larger than any of our windows or 
even larger than the Macintosh screen. For instance, MacPaint documents 
are 81/2 by 11 inches, but only a portion of that can be displayed on the 
screen. A program that works with large documents stores the descrip­
tions of objects in the coordinate system of the document. 

Let's take a look at the example in figure 6.1. The program draws 
objects much as a CAD system does. It is used to create flowcharts and 
other diagrams. Before we go any further with this example, let me use it 
to define some terms that I will be using in this chapter. An object is a 
single entity that is drawn on the screen on the basis of data in the 
document file. Examples of objects are points, lines, rectangles, ovals, and 
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~D Window t Window 2 

Ports of the Document Disployed in Windows 

The Document 

111111111111111111111111111111111 Figure 6.1 A document and two windows 

round rectangles. The term document refers to a complete drawing of all 
of the objects described in the file. When we draw the objects on the 
screen, we create an image of part of the document. 

The document that we are working with is much larger than the 
screen and is stored in a file. The document has its own coordinate system, 
with the origin in the upper left corner of the document. There's nothing 
magic about the location of the origin; it could have been in the middle of 
the document, anywhere else in the document, or even outside of the 
document. It can be anywhere as long as we have some way to relate the 
coordinates of a point to their place in the document. 
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Moving the origin changes the coordinates of every point in the 
document. The relative positions of various parts of the document are not 
changed. 

In this example, the program draws images in two windows that can 
be scrolled. The areas of the document shown in the two windows in 
figure 6.1 are overlapped. A line leaving the central decision box (the 
central diamond shape) and the box itself appear in both windows. The 
coordinates are listed on the diagram for the starting point of the line in 
each of the coordinate systems: the document coordinate system, the 
window 1 coordinate system, and the window 2 coordinate system. Each 
time we draw that line, we convert the line's coordinates from the 
document coordinate system to the coordinate system of the window in 
which we are drawing it. 

We use the coordinates in the window coordinate system in the 
parameters that we pass to the QuickDraw drawing procedures. Quick­
Draw converts the coordinates from the window's coordinate system to 
the coordinate system of the screen. QuickDraw then relates the screen 
coordinates to the memory addresses for the memory bits that correspond 
to the pixels that will be changed on the screen. 

When we draw on another device-the ImageWriter, for instance­
QuickDraw draws in a memory buffer instead of on the screen. It is then 
up to the software that operates that device to convert the image in the 
buffer to drawing commands for the device. If we had been drawing on the 
ImageWriter instead of the screen, QuickDraw would have related the 
coordinates' drawing procedure parameters to the memory addresses of 
the bits in the print buffer. 

Let's review what we know about QuickDraw coordinate systems and 
coordinate transformations. 

QuickDraw uses a Cartesian coordinate system. The lines of the 
coordinate system pass between pixels. A coordinate system point exists 
where two coordinate system lines intersect. Each point in the coordinate 
system has a horizontal coordinate and a vertical coordinate. Each co­
ordinate is stored in an integer and can have a value between -32,767 
and +32,767. A coordinate system point addresses the pixel to its lower 
right. 

QuickDraw can draw images on the screen or in a memory buffer that 
can be used for storing the image in a file or printing on the ImageWriter. 
In order to draw images, QuickDraw must also relate coordinates to the 
memory locations of the screen or a memory buffer where the drawing 
takes place. QuickDraw has the ability to deal with different coordinate 
systems, convert from one coordinate system to another, and relate the 
various coordinate systems to memory locations. 

Reasons for converting to different coordinate systems are that: 



108 QUICK.DRAW COORDINATES AND DATA STRUCTURES 

1 A document, a window, and the screen each have their own 
coordinate system. We must convert from one to another in order 
to draw an image. 

2 Some calculations are easier if we can put the origin of the 
coordinate system where we want it. Scaling calculations are easier 
if the origin is at the center of the object we are scaling. Rotation 
calculations are easier if the origin of the coordinate system is at 
the center point for the rotation. 

Several coordinate system transformations are necessary to draw 
parts of a document: 

1 The application program reads a description of the image from the 
document's file and converts from document coordinates to 
coordinates in the coordinate system of the window. 

2 The program calls QuickDraw drawing procedures, passing them 
coordinates in the coordinate system of the window. 

3 QuickDraw converts from coordinates in the window's coordinate 
system to coordinates in the screen's coordinate system. 

4 QuickDraw relates the pixels in the screen's coordinate system 
to the memory addresses of the corresponding bits in the 
display memory. 

We used the flowchart application and its coordinate trans~ormations 
to illustrate coordinate transformations between windows and between a 
document and a window. It made a good example, but it is possible to 
simplify the process. If we set the window coordinate system origins 
properly, we don't need to convert from the document coordinate system 
to the window coordinate system. We'll see how to do that later in this 
chapter when we take a look at QuickOraw's SetOrigin procedure. 

11111111111111111111111111111111 PIXELS AND MEMORY 

If we are going to draw an image on the screen, we need to relate points 
in the coordinate system to pixels on the screen and the memory address 
of the memory bit assigned to each pixel. The QuickDraw construct that 
does that is the bit image. Display memory bits correspond to pixels and 
are arranged in bytes. If you start at the left corner of the screen and look 
at the row of pixels across the top of the screen, grouping these pixels into 
groups of 8, you will find that these groups correspond to bytes in the 
display memory (figure 6.2). Also, each pixel in a group of 8 corresponds 



PIXELS AND MEMORY 107 

~:~~~,'~rt, rt 0 

1·i·l·l·l·l·l·l·1·i·l·l·l·l·l·l·1·i·l·l·l·l·l·l·1·i·l·l·i·l·l·l·1·!·!·!·!·!·i·l·1·i·I·~ 
Byte O Byte 1 Byte 2 Byte 3 Byte 4 

111111111111111111111111111111111 Figure 6.2 Display memory bits 

to a bit in the same relative position in a byte of display memory. The 
leftmost pixel on the screen corresponds to the high-order bit in the first 
byte of the display memory (see figure 6.2). 

Technically, the bit image is defined to be a set of bytes in memory 
that correspond to pixels on the screen. It is a set of bytes in display 
memory that corresponds to rows of 8-pixel groups on the display. The 
number of bytes (or 8-pixel groups) in one row is called the row width. 
The Macintosh screen is 512 pixels wide, so its row width is 64. 

A set of pixels is on the screen; a bit image is in memory. A bit map 
makes the connection between the two. A bit map is a data structure that 
relates an area of memory defined by a bit image to an area of the screen. 
It defines a QuickDraw coordinate system for the bit image. Let's see 
what's in that data structure. 

type 
BitMap = record 

baseAddr: QDPtr; 
rowBytes: integer; 
bounds: Rect; 

end; 

The first field in the data structure, baseAddr, is the memory address 
of the bit image (a pointer to the first byte of the bit image). The next field, 
rowBytes, is the row width of the bit image. The last field, bounds, is a 
rectangle that defines the outside edges of the bit image and defines its 
coordinate system. The bit image is an integral number of bytes, but the 
bit map rectangle may limit the bit map to a smaller area. The bit map is 
not restricted to an integral number of bytes, but it must fall inside the bit 
image. 

By defining a QuickDraw coordinate system for a bit image, the bit 
map has established the relationship between memory bytes and Quick­
Draw coordinates. A bit map relates a memory area to a QuickDraw 
coordinate system. It could be a memory area that is used to store an image 
created by QuickDraw. That image could later be printed on the printer or 
some other device or moved to the screen. The memory area that the bit 
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map defines could be the display memory in the Macintosh. If it is, 
everything that QuickDraw draws in that bit map appears on the screen. 

When you call a QuickDraw drawing procedure, it uses the coordi­
nates that you give it, looks in the bit map for the drawing area to find the 
right place in memory to do the drawing, and turns bits on and off in the 
bit image in memory. 

QuickDraw now has a lot of information to keep track of when it is 
drawing an image: the bit image, the bit map, the origin of the coordinate 
system, and the relationship between the local coordinate system of the 
window in which it is drawing and the screen coordinate system. That's 
only part of the data that QuickDraw must manage when drawing. Quick­
Draw keeps that data in a structure called the GrafFort. 

11111111111111111111111111111111 THE GRAPH PORT 

Conceptually, a GrafFort is a drawing area, but to the programmer, it is a 
data structure that defines the drawing area and a set of drawing param­
eters. In previous chapters I talked about text-drawing parameters (font, 
size, and style), the pen pattern, the pen location, the pen mode, the pen 
size, the background pattern, and the fill pattern. QuickDraw keeps all of 
that information in the GrafFort. That means that each drawing area 
defined by a GrafFort has its own pen, patterns, and text parameters. 

Each Macintosh window created by the window manager has its own 
GrafFort, so each window has its own pen, patterns, and text parameters. 
Almost every time you use a GrafFort, it will be a GrafFort assigned to a 
specific window. 

Let's take a closer look at what's in the GrafFort data structure. 

type 
GrafFort =record 

device: 
portBits: 
portRect: 
visRgn: 
clipRgn: 
bkPat: 
fillPat: 
pnLoc: 
pnMode: 
pnPat: 
pnVis: 
txFont: 

integer; 
BitMap; 
Rect; 
RgnHandle; 
RgnHandle; 
Pattern; 
Pattern; 
Point; 
integer; 
Pattern; 
integer; 
integer; 



txFace: 
txMode: 
txSize: 
spExtra: 
fgColor: 
bkColor: 
colrBit: 
patStretch: 
picSave: 
rgnSave: 
polySave: 
gratProcs: 

end; 

Style; 
integer; 
integer; 
integer; 
integer; 
integer; 
integer; 
integer; 
QDHandle; 
QDHandle; 
QDHandle; 
QDProcsPtr; 
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That's quite a lot of stuff, but most of it looks familiar. We can see that 
there are definitions for all of the patterns that we have discussed, the pen 
parameters, the text parameters, and the recording areas for pictures, 
polygons, and regions. 

We do see a few new parameters, though: the background color, the 
foreground color, and the color plane (colrBit). Future versions of the 
Macintosh may be able to display images in color. The black-and-white 
Macintosh cannot display color images, but it can create them and repro­
duce them on color devices (a plotter, for instance). 

There are two regions defined in the GratPort. The visRgn is the 
portion of the area defined by the BitMap that is visible on the screen. If 
the window with which the GratPort is associated is overlaid by another 
window, part of it may not be visible. The visRgn defines the part that is 
visible (not overlaid). 

The clipRgn is the GratPort's clipping region. It is an area of the 
rectangle defined in the BitMap. QuickDraw will not draw outside of the 
clipping region. You can call QuickDraw routines and specify drawing 
both inside and outside the clipping region. The images will be drawn 
only inside the clipping region, but if you attempt to draw outside the 
region, QuickDraw will not take that as an error. The clipping region is 
there as a convenience. It allows you to limit the size of your drawing area 
without having to check each object or each call to a QuickDraw drawing 
procedure to see if it falls within the drawing area. QuickDraw does all the 
checking for you. 

Let's go through each field in the GratPort record in detail and see 
how each is used. · 

device The device field identifies the device for which the 
drawing is intended. It's required because type fonts 
are drawn differently for different devices. 
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portBits 

portRect 

visRgn 

clipRgn 

bkPat 

fillPat 

pnLoc 

pnSize 

pnMode 

pnPat 

pnVis 

txFont 

txMode 

txSize 

spExtra 

fgColor 

bkColor 

colrBit 

patStretch 

picSave 

PortBits is the bit map for this GrafPort. It defines 
the memory area for the bit image and its 
coordinate system. 

We have a rectangle in the BitMap that defines the 
drawing area; why another? The portRect defines an 
area of the BitMap that is wholly contained within the 
BitMap. It limits drawing to that area of the BitMap. 

The visRgn defines the area of the GrafPort drawing 
area that is visible, the area not overlaid by another 
window. It is a region and may have any shape. 

The clipRgn limits the drawing area to the region 
that it defines. 

The background pattern is the pattern painted by 
the QuickDraw erase procedures. 

The fill pattern is used by the QuickDraw fill 
procedures. 

The current pen location. 

The current pen size. 

The current pen mode. 

The current pen pattern. 

The current pen visibility, 0 if the pen is visible, 
negative if it is invisible. HidePen decrements pnVis. 
ShowPen increments it. 

The current text font. 

The current text mode. 

The current text size. 

The current setting of extra space for justified text. 

The current foreground color. 

The current background color. 

The current color plane. 

Used by the printer software to expand patterns to 
fit the printer's resolution and aspect ratio. 

The area of memory in which the current picture 
definition is being recorded. 



rgnSave 

polySave 

gratProcs 
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The area of memory in which the current region 
definition is being recorded. 

The area of memory in which the current polygon 
definition is being recorded. 

A pointer that is used for defining custom 
QuickDraw drawing procedures. 

11111111111111111111111111111111 MORE ON COORDINATES 

The portions of the GratPort data structure that relate to coordinates are 
important and bear reviewing. Each GratPort has its own local coordinate 
system. A GratPort is almost always associated with a window, so the 
GratPort's coordinate system becomes the window's local coordinate 
system. The bit image defines a memory area to be used for storing or 
displaying graphics. The bit map relates the bit image to a drawing area and 
establishes the coordinate system of the drawing area. More specifically, 
the portBits.bounds field in the bit map defines the coordinate system. 
The portRect field in the GratPort defines a part of the coordinate system 
that will be used for drawing (a subset of the coordinate system). 

The clipRgn and visRgn fields in the GratPort further limit the 
drawing area. The clipRgn limits drawing in the portRect to an area that 
you specify. The visRgn is the unobscured part of the portRect. Quick­
Draw sets and uses the visRgn. Your program may read the visRgn field but 
should not alter it. QuickDraw limits drawing to areas that are in both 
clipRgn and visRgn. 

The table below describes typical uses of the GratPort fields that 
relate to the coordinate system, but you are by no means limited to using 
them this way. If you plan to deviate from these guidelines, however, you 
should be thoroughly familiar with QuickDraw coordinates, data struc­
tures, and procedures. 

Graf Port field Function Typically set to: 

portBits. bounds Define coordinate The screen 
system 

portRect Define drawing area The window 

clipRgn Limit drawing area The window's interior 
(portRect - frame) 

visRgn Limit drawing area The unobscured part of 
the window 
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When you have more than one window open, you may want to relate 
or convert the coordinates of an object in one window to the coordinate 
system in the other. Suppose that you have the two windows shown in 
figure 6.1. The coordinate systems have different origins, so a point at the 
same relative position in each window would have different coordinates. 
The same would be true of the coordinates that define an object, for 
example, the coordinates of the two points that define a rectangle. You 
might have this situation if you were using the two windows to display 
slightly different but overlapping portions of the document. 

We would like to draw a line starting at the same point in both 
windows, so we need to convert the coordinates of the point from one 
window to the other. Assuming that we know the coordinates of the point 
in the left window, we first convert its coordinates to a global coordinate 
system and then convert to the local coordinate system of the window on 
the right. 

We use two QuickDraw procedures to do the conversion, LocalTo­
Global and GlobalToLocal. The global coordinate system is a coordinate 
system with its origin at (0, 0). Local coordinate systems can have their 
origin anywhere. We could convert the coordinates of the point from the 
left window to the coordinate system of the right window with the 
program below. 

var 
LeftPort, RightPort : Gra{Ptr; 
thePoint : Point; 

begin 
SetPort(LeftPort); 
LocalToGlobal(thePoint); 
SetPort(RightPort); 
GlobalToLocal(thePoint); 

end. 

LeftPort and RightPort are pointers to the Gra{Port data structures for 
the two windows. The coordinates of the point are stored in a data 
structure called thePoint. SetPort sets the current Gra{Port to the data 
structure identified by the pointer (QuickDraw drawing occurs in the 
current Gra{Port). 

You can use GlobalToLocal to convert from document coordinates to 
window coordinates if you are relating points in a window to points in a 
document whose coordinate system's origin is at (0, 0). 

Using the LocalToGlobal procedure is equivalent to subtracting the 
local coordinate system's origin from the point's coordinates. The 
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GlobalToLocal procedure does just the opposite: it adds the local coor­
dinate system's origin to the point's coordinates. You could accomplish 
the same conversion with simple addition, as in the following example. 
The coordinates of the left window's origin are in the point LWOrigin. The 
right window's origin is in RWOrigin. 

var 
thePoint, LWOrigin, RWOrigin : point; 

begin 
{convert thePoint from left window to right window coordinates} 

thePoint.h : = thePoint.h + RWOrigin.h - LWOrigin.h; 
thePoint.v : = thePoint.v + RWOrigin.v - LWOrigin.v; 

end; 

If you want to convert the coordinates of a rectangle, you can use the 
GlobalToLocal and LocalToGlobal routines to convert both points that 
define a rectangle (TopLeft and BotRight), or you can do the same thing by 
using simple addition for each of the four coordinates. It's easier, however, 
to use the OffsetRect routine. Let's see how OffsetRect could convert from 
the left window coordinates to the right window coordinates. 

OffsetRect(theRect, RWOrigin.h - LWOrigin.h, RWOrigin.v -
LWOrigin. v); 

Most of the objects that you will want to draw can be described in 
terms of points, lines, and rectangles, but for other objects, you can use 
the appropriate Offset procedures. The table below lists graphic objects 
and the routines that you can use to convert their coordinates. 

Object Routine 

Point GlobalToLocal, LocalToGlobal, addPt, subPt, addition 

Line GlobalToLocal, LocalToGlobal, addPt, subPt, 
OffsetRect 

Rectangle OffsetRect 

Region OffsetRgn 

Polygon OffsetPoly 

We could have listed the simple addition technique in the table for the 
line and rectangle, but it's a little easier to use the routines indicated. 
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That last entry for converting a line looks like a mistake. It isn't, 
though. If you think about it, you will realize that a line is defined by two 
points, just as a rectangle is. If you store the coordinates of a line's end 
points in a rectangle data structure, you can use OffsetRect to convert its 
coordinates. You could use the same technique if you just wanted to draw 
a line in a different location in the same window. 

We have been working with two windows with different coordinate 
system origins but have not said how those origins came to be different, 
how they were originally set. We know that when the windows were 
opened, the origin in each window was set to (0, 0) by the system. We were 
assuming that some time after opening the windows, the program set the 
origins to other values. A program uses the SetOrigin procedure to set a 
GrafPort's origin. 

The SetOrigin procedure has to change the portBits.bounds field in 
the GrafPort because it is this field that defines the origin. SetOrigin also 
changes the portRect and visRgn fields. It does so to keep the various 
parameters that describe the drawing area compatible. 

SetOrigin does not change the clipping region (clipRgn) or the pen 
location (pnLoc). The clipping region's position will be moved in the 
window by the amount that the origin was offset by SetOrigin. Actually, 
the coordinates of clipRgn do not change, but the coordinate system has 
moved, so clipRgn moved with it. The same is true of the pen. 

The things that SetOrigin changed are closely associated with the 
definition of the window. The window did not move, so the portRect 
should not move. Presumably, any windows overlaying our window did 
not move, so the visRgn should not move either. We can see the logic in 
that, but why should the clipping region and pen move? Why don't they 
stay in the same place in the window? To understand the reason that the 
clip region and pen move, we need to see why we would want to change 
the origin to begin with. 

If all we did was have our program synthesize images, building images 
from QuickDraw objects like points, lines, rectangles, round rectangles, 
ovals, wedges, polygons, and regions, we would never need to change the 
origin. The real need to change the origin arises when we have an image 
that is bigger than the window in which we display it. We want to be able 
to move the image under the window so that we can look at various parts 
of it. There are two ways we could approach that task: 

1 Store the descriptions of the objects in a data structure and then, 
when we want to scroll the image, recalculate the coordinates of 
every object and redraw the image. 
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2 Change the origin of the window's coordinate system and then 
redraw the image, using the original coordinates of all of its 
objects. 

You can see that the second method is much easier, particularly if the 
image definition comes from a document file that contains a very large 
data structure describing the image. 

If we are changing a window's origin so that we can scroll the image 
displayed in it, we want the pen to follow the document, not the window. 
By not changing pnLoc, SetOrigin makes the pen remain at the same point 
in the document but not the same point in the window. 

ClipRgn is usually used to limit the drawing area to a portion of the 
image that the program wants to change. The program can set the clipping 
region and then execute a procedure that redraws the entire document. 
Only the portion that falls inside the clipping region will change on the 
screen. With that kind of function for the clipping region, it makes a lot of 
sense to allow it to move with the document and not remain in the same 
location in the window. 

If you are dealing with a large document, you can use the SetOrigin 
procedure very effectively to move around in the document and display 
different parts of it. First, you need a procedure that, when called, redraws 
the entire document in the coordinate system of the document. You set 
the clipping region to something reasonable, usually the inside dimen­
sions of the window. You can now look at any portion of the document 
by just making a call to SetOrigin followed by a call to the document­
drawing routine. 

You set the origin of the window's coordinate system to the upper left 
corner of the area of the document you want to display. The document­
drawing routine tries to draw the entire document, but QuickDraw actu­
ally draws in just the areas that are inside clipRgn and inside visRgn. The 
big advantage of doing it this way is that your program doesn't have to 
keep track of what portion of the document is displayed in the window. 
It also doesn't have to check each object before drawing it to see if part of 
the object will appear on the screen. If you have a large document that 
takes a very long time to draw, it's a little bit wasteful to use this procedure 
because it spends time calling QuickDraw routines that don't draw any­
thing on the screen. 



116 QUICKDRAW COORDINATES AND DATA STRUCTURES 

11111111111111111111111111111111 TRANSLATION AND SCALING 

Up until now, we have talked about converting from one coordinate 
system to another with the same scale. If we want to change the scale of 
an object, stretching or shrinking it, we can use several QuickDraw 
routines designed for that purpose. All of these routines do both transla­
tion (moving) and scaling (changing the size). They aren't designed spe­
cifically for converting between coordinate systems but could be used for 
that purpose. They are more appropriate, however, for changing the 
location and size of an object without moving to another coordinate 
system. 

You specify the amount to move and the scale factors by supplying a 
source rectangle and a destination rectangle. The scaling routines figure 
out the scale factors by comparing the dimensions of the source and 
destination rectangles. A good way to think of what they do is to imagine 
that they grasp the source rectangle, copy it to another location, and 
stretch (or shrink) it to fit the destination rectangle. Back in chapter 5 
when we took a look at the DrawPicture procedure, we saw how to scale 
a picture. QuickDraw has other procedures that move and scale points, 
rectangles, regions, and polygons. 

ScalePt(var thePoint : Point; sourceRect, destRect : Rect); 

ScalePt moves the point to the equivalent point in the 
destination rectangle but only if the point is specified not in 
the local coordinate system but relative to the upper left corner 
of the source rectangle. ScalePt is also useful for scaling the 
dimensions (height and width) of objects or the pen. 

MapPt(var thePoint : Point; sourceRect, destRect : Rect); 

MapPt calculates the position the point would occupy in the 
destination rectangle if everything in the source rectangle were 
scaled to fit in the destination rectangle. 

MapRect(var theRect : Rect; sourceRect, destRect : Rect); 

MapRect calculates the position the rectangle would occupy in 
the destination rectangle if everything in the source rectangle 
were scaled to fit in the destination rectangle. 
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MapRgn(region : rgnHandle; sourceRect, destRect : Rect); 

MapRgn calculates the position that all of the points in 
the region would occupy in the destination rectangle if 
everything in the source rectangle were scaled to fit in 
the destination rectangle. 

MapPoly(polygon : polyHandle; sourceRect, destRect : Rect); 

MapPoly calculates the position that all of the points in 
the polygon would occupy in the destination rectangle if 
everything in the source rectangle were scaled to fit in 
the destination rectangle. 
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11111111111111111111111111111111 WHAT'S AN OBJEcn 

Computer graphics programs store information about their images in 
radically different ways. In this book, we deal with two types of graphics 
programs, those that store their images as a collection of pixel values and 
those that store images as a set of object descriptions. Programs of the 
first type are called paint programs. The others are usually called CAD 
(computer-aided design) programs. 

MacPaint is a paint program. It stores an image as a set of pixel values. 
Once you draw an object with MacPaint, you cannot separate that object 
from its background. If you drew a picture of a bolt against a grid 
background, you could not then move the bolt to another location 
without moving part of the background with it. MacPaint doesn't know 
anything about your bolt. It just knows that you turned some pixels on and 
turned others off. The fact that paint programs do not store object 
descriptions somewhat limits their utility but makes them much simpler 
and faster. 

MacDraw is a CAD program. It stores graphic data as a collection of 
object descriptions. When you draw an object, MacDraw creates a de­
scription of the object and adds it to the data structure describing the 
drawing. MacDraw draws the drawing by going through the collection of 
object descriptions and drawing each object on the screen. If you move an 
object, MacDraw just changes the location of the object in the object's 
description and redraws the picture. 

Defining an image as a collection of objects enables us to manipulate 
the objects in powerful ways. We can group a set of objects and then treat 
the group as one object. We can move an object, replicate it, rotate it, or 
change its size. Our ability to change an object's size lets us display our 
drawing in different scales. 

Our object descriptions are not related to the resolution of the 
display. A square is a square whether you display it on a 50-pixel-per-inch 
display or a 300-pixel-per-inch display. If we want to draw our picture on 
paper, we can use the maximum resolution of the drawing device. The 
drawing will come out on the ImageWriter printer at the maximum 
resolution that the printer can handle. If we produce the same drawing on 
a plotter that has three times the resolution of the Image Writer, it will be 
drawn with the full resolution of the plotter. You can verify this for 
yourself by drawing two identical pictures, one in MacPaint and the other 
in MacDraw, and printing both on the Image Writer. The MacPaint drawing 
will be printed with the resolution of the Macintosh screen (about 72 dots 
per inch). The MacDraw drawing will be printed with the full resolution 
of the ImageWriter (about 150 dots per inch). 
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USING DATA STRUCTURES TO 
11111111111111111111111111111111 DERNE OBJECTS 

The data structure that describes an object will contain all of the infor­
mation that we need to draw the object at the proper location and 
orientation. Let's make a list of the kinds of information that we will want 
to store for an object. We want to draw the object at a particular location, 
so we will need to store its x-y coordinates. We will probably want to 
define the object's location in the document, not where it falls on the 
screen. The object's screen location will change as we scroll the window 
or change the scale of the drawing. We will have two coordinate systems, 
one defining the coordinates in the document, the other defining 
the coordinates in the display window. An object's data structure will 
contain the document coordinates of the object. When the program 
draws the object, it will convert the document coordinates to window 
coordinates. 

We may also want to store the orientation of the object. For this 
discussion, we will assume that we are representing two-dimensional 
objects, so we need to store just an angle that describes how much the 
object is rotated. 

In some types of drawing programs, we will want to draw the same 
object with different sizes. We may want the object's data structure to also 
contain its size. Depending on what kind of application program we are 
writing, we may want to store other information about the object, a fill 
pattern to use when drawing the object, or the object's plane. (A CAD 
system used for drawing printed circuit board layouts will need to repre­
sent objects in several planes. Even the simplest printed circuit board can 
have three layers: the component side, the opposite side of the board, and 
possibly a silk-screen layer used for making the board.) Specialized CAD 
applications may store other information about the object. 

Let's see what we have so far. 

Object Definition: 
Location in document coordinates 
Rotation angle 
Size 
Fill pattern or plane 
Shape 

The last item in the list is the object's shape. The program must 
eventually draw the object and must have some way to find out what shape 
to draw. 
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AN OBJECT AS A COLI.ECTION 
11111111111111111111111111111111 OF SHAPES 

Our program will need to draw the object, so we somehow need to 
describe the shape of the object. Most CAD programs describe an object's 
shape in terms of predefined graphics elements: line segments, circles, 
rectangles, arcs. These graphics elements represent the object as a collec­
tion of predefined shapes. 

Our first inclination would probably be to define objects in terms of 
the predefined QuickDraw shapes: rectangle, rounded rectangle, oval, arc, 
and line. That would work, but if we want to be able to rotate objects, we 
can't use the QuickDraw oval, rectangle, or rounded rectangle shapes. An 
alternative would be to define every shape in terms of line segments and 
arcs. This would take more processing at run time and more memory to 
store the object definitions but would allow us to do rotation. 

We can see already that the best method to use for representing 
shapes in our data structure depends a lot on our application program and 
what we expect it to do. Some of the things that we want to consider in 
making a decision about how to represent shapes are whether we need to 
rotate the object, how much memory it takes to store the object, how long 
it takes the program to draw the object, and whether we need to represent 
any arbitrary shape or just a small set of shapes. Let's take a look at some 
of the methods that we can use to represent shapes. 

We've already discussed representing objects as a collection of shapes 
we can draw with QuickDraw. Another method would be to assign a 
QuickDraw picture data structure for each type of object. We could define 
and fill each picture data structure at initialization time, or we could allow 
the user to define the shape of each object with the mouse, much as we 
did in chapter 5. 

If you are working with a limited set of objects and do not allow the 
user to define new objects, you can simplify the shape definition. One 
method of doing that is to provide a subroutine to draw each type of 
object that you define for your program. The object's data structure could 
contain an integer that represents the object type. The drawing section of 
the program uses that integer as the control variable of a Case statement 
and executes the proper drawing routine. 

Another method that is a little faster and takes even less storage is to 
define a type font, similar to the Cairo font, that consists of pictures of the 
objects that you will be drawing. Your object definition then consists of 
just a single byte, indicating which of the 256 possible characters you will 
draw. This method is sometimes used in animation because it is faster than 
drawing with QuickDraw. It is faster because the type font is loaded into 



AN OBJECT AS A COLLECTION OF SHAPES 123 

memory at initialization time, and QuickDraw merely copies the object's 
bit pattern from the font definition to the screen. 

Let's look at an example of an application that uses a limited set of 
objects to create a useful drawing. Suppose that you are writing a CAD 
program to be used by office designers. You want to make a drawing of an 
office area showing the walls and doors and then place drawings of 
furniture or other fixtures on the drawing. Each object in the drawing will 
be represented by an object record. 

type 
Object = record 

position: Point; 
type: CHAR; 

end; 

Line = record 
start: 
stop: 
width: 

end; 

Point; 
Point; 
INTEGER; 

This looks pretty good. We will end up with two major data struc­
tures in our program. One consists of line records that define the walls, 
doors, and the like in our drawing. The other consists of object records 
that define the objects in the drawing. Each object record takes only 3 
bytes of storage, and each line takes only 6 bytes. On a 512K Macintosh, 
if we assume that only 128K is used for storing variables, we could store 
43,690 objects or 21,845 lines or some combination of the two. In 
practice, we might require additional storage to differentiate between lines 
and objects, or we could extend the range of objects by using an additional 
3 bytes and make the line and object records the same size. Our definition 
would then look something like this: 

type 
{Picture element definition} 
Element = record 

ElementType: BOOLEAN; 
Case isLine: BOOLEAN of 

TRUE: (start, stop: Point, width: INTEGER); 
FALSE: (Location: Point, ObjectType: CHAR, Set: INTEGER) 

end; 
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We defined something new, a picture element. Each element is either 
a line or an object, so we added a Boolean variable to each record to tell 
us whether the record contains a line or an object. 

We could put all of the elements of a drawing in a large array. When 
we want to draw the picture, we would cycle through the array, drawing 
each element in turn. We would want to have some means of identifying 
elements that should no longer be drawn (elements cut or deleted from the 
drawing). One way would be to make ElementType an enumerated data 
type with three possible values: Line, Object, and Null (for deleted 
elements). 

There are more elaborate methods of storing and keeping track of our 
element or object records. The usual one is to set up a singly linked list of 
element records, each record containing a pointer to the next record. 
Using such an approach adds another field to the element record and 
greatly increases its size (from 8 bytes to 12 bytes) but is sometimes worth 
the extra memory because it gives you more flexibility in allocating 
memory and keeping track of deleted elements. 

type 
ElementPtr = "Element; 
Element = record 

nextElement: ElementPtr; 
ElementType: BOOLEAN; 
Case isLine: BOOLEAN of 

TRUE: (start, stop: Point, width: INTEGER); 
FALSE: (Location: Point, ObjectType: CHAR, Set: INTEGER) 

end; 

This method of storing object descriptions (characters in a custom 
type font) lacks flexibility, but its advantage is its low cost. We are talking 
cheap. You can store an object in a very small space, and that lets you do 
something useful on a small machine. And the program is going to be 
simple, too. Once you have the program working, you can take the same 
program, supply a font with trees and shrubs instead of office furniture, 
and have a custom CAD program for doing landscape layouts. Create a font 
consisting of circuit symbols, and you have a program for drawing sche­
matic diagrams. 

Now let's look at a more flexible method of storing objects. Assume 
that we want to create a general-purpose CAD program that will store 
objects made up of line segments and arcs. We will not be using fill 
patterns. Our element record could look like this: 
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type 
Object = (Line, Arc); 
Element = record 

nextElement: INTEGER; 
location : point; 
ElementType : Object; 
Case Object of 

Line (stop : Point, width : INTEGER); 
Arc (radius, startAngle, stopAngle : INTEGER) 

end; 

var 
Drawing: ARRAY [0 .. 999] of Element; 
Free : INTEGER; {index of first free element} 
Drawn : INTEGER; {index of first drawing element} 
Selected : INTEGER; {index of first selected element} 
Cut : INTEGER {index of first cut or copied element} 

Note that we are not using the standard QuickDraw method of 
defining an arc. We want to be able to rotate our objects, so we are limiting 
arcs to being portions of circles, not portions of ovals. When we call the 
QuickDraw routine that draws an arc, we must supply the rectangle that 
encloses the oval that defines the shape of our arc. We limit that oval to 
being a circle; hence the two sides of the enclosing rectangle are of equal 
length. We have enough information to calculate the rectangle and the 
QuickDraw arc angles. 

We are defining an integer in the element record that identifies the 
next element in the list. Our data structure will consist of a linked list of 
elements. The link to the next element is not a pointer; it is an integer that 
is used as an index into the drawing data structure. It identifies another 
element record. 

We will keep track of these element records by maintaining four 
linked lists: a list of free elements, a list of elements that are part of the 
drawing, a list of selected elements, and a list of elements cut or copied 
from the drawing (figure 7 .1 ). All of the members of all of the lists come 
from the drawing array. 

We can draw almost any kind of object that we want by using just 
lines and arcs. We can even draw arbitrarily shaped curves by making a 
curve out of a large number of short line segments or arcs. 

One more thing we would like to do is to group a number of elements 
together and treat them as a single object. We do this by making use of our 
linked list of elements. We define a new object type that is simply an index 



126 DRAWING OBJECTS 

.-------t- Selected 
....-----+- Cut 

Drawn 
Free 

111111111111111111111111111111111 Figure 7 .1 Linked lists 

that identifies another linked list, the list of elements that contain our 
group of elements. 

type 
Object = (Line, Arc, Group); 
Element = record 

nextElement: INTEGER; 
location : point; 
ElementType : Object; 
Case Object of 

Line (stop : Point, width : INTEGER); 
Arc (radius, startAngle, stopAngle : INTEGER); 
Group (INTEGER); 

end; 
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Our variables would be the same as before, the array of elements and 
a set of indexes, one for the start of each linked list. Our linked lists would 
look a little different, though. Now we have the capability of creating a 
branch in a list that points to a group of elements, actually another linked 
list (figure 7 .2). 

It takes several steps to create a group of objects. First the user must 
select each of the objects that will be in the group. The program should 
allow the user to do that by clicking the mouse on an object, much the 
same way you select an icon on the desk top. The program should identify 
each of the selected objects in some way: blinking them, drawing them in 
a lighter shade of gray, drawing a dotted box around them, or the like. As 
each object is selected, it is moved from the Drawn linked list to the 
Selected linked list. The program should provide a menu item that the user 

....----+- Selected 
~-~Cut 

Drawn 
Free 

111111111111111111111111111111111 Figure 7 .2 Linked lists with a branch 



128 DRAWING OBJECTS 

can select to group all of the currently selected objects. When the user 
selects the Group item from the menu, the program moves the selected 
linked list, converts it to a branch, and puts an element in the Drawn list 
that points to the grouped list. The program's last duty is to redraw the 
grouped objects so that they no longer appear to be selected. 

Note that when we talk about moving an element, a group of 
elements, or an entire linked list, we don't really mean that they get moved 
around in memory. We just change the element indexes to point to 
different elements. 

11111111111111111111111111111111 BASIC TRIGONOMETRY 

This is where you might get a cold feeling in your stomach ... at the sight 
of equations and Greek letters. Don't freak out! If you had algebra and 
trigonometry in high school, it will all come back quickly, particularly 
when you see some of the neat things we can do with trigonometry in 
computer graphics. If you haven't had trigonometry yet, pick up a trig 
textbook, and read up on the basics. If you understand programming 
enough to get this far, trig will be no sweat. 

Before we can rotate objects, we need to review some basic high 
school trigonometry. The remainder of this chapter will use trigonometric 
functions to perform rotation in two dimensions. If your mathematical 
background is skimpy, you may want to skip these sections. You can pick 
up the discussion again with chapter 8. If you want to skip this material, 
you don't need to feel left out. You can still do interesting things with 
Macintosh graphics. Virtually all of the commercial applications for the 
Macintosh rely heavily on QuickDraw, and it is unusual to find one that 
supports rotation. 

Take a look at figure 7.3. It shows how the sine (sin) of an angle is 
calculated. Notice that the triangle shown is a right triangle, one with a 
90-degree angle. All trigonometric functions are based on right triangles. 

The sine of an angle is the ratio of the side of the triangle opposite 
the angle to the hypotenuse (the long side of the triangle). It is useful 
in calculating the new coordinates of a rotated object because it relates 
the dimensions of two sides of a triangle to the angle. Note that the size of 
the triangle has no effect on the value of the sine function. For a given 
angle, the ratio of the sides b and c is always the same, regardless of how 
large or small the triangle. (In all of my discussions of trigonometric 
functions, I abide by the convention used in most trigonometry text­
books: angles are represented by Greek letters, and linear measure (dis­
tance) by Roman letters.) 
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si,n(e) = b/c 

a 

111111111111111111111111111111111 Figure 7 .3 The sine function 

The trigonometric equations for cosine (cos), tangent (tan), and 
cotangent (cot) are also useful. Using these four trigonometric equations, 
if we know any two of the four parameters that define a triangle (one angle 
and three sides), we can calculate the other two. 

sin(<fl) = blc 
cos(<fl) = ale 
tan(cfl) = bla 
cot(<fl) = alb 

If we look at our box before and after rotation, we can see how the 
sine and the triangle come into play. 

In figure 7.4, we see a triangle formed by one side of the box 
(formerly the bottom side), the x axis, and they axis. If we know the angle 
of rotation and the length of any one side of the triangle, we can find the 
length of any other side of the triangle. If we are rotating a box, we already 
know the length of the side of the box (c) and the angle (<fl). We use the sine 
formula to find a and b. Since we know the coordinates of the bottom left 
corner of the box before rotation, we can use those coordinates and the 
values of a and b to calculate the new coordinates of the other four 
corners. 

111111111111111111111111111111111 Figure 7.4 The angle of a box's rotation 
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When we are rotating objects, we will make extensive use of these 
trigonometric functions to calculate new coordinates. How do we calcu­
late the sine of an angle? We don't have to. Most compilers have built-in 
trigonometric functions. 

We may also use some of the following trigonometric identities. We 
won't go into a lengthy explanation of how these identities are derived. 
You can find that in any trigonometry book. We'll just take them on faith 
and use them to calculate coordinates. (Note that sin2(c/>) means the square 
of the sine, that is, (sin( cf> ))2 .) 

sin2( cf>) + cos2( cf>) = 1 
tan( cf>) = sin( cf> )/cos( cf>) 
cot( cf>) = cos( cf> )/sin( cf>) 
sin( a + /3) = sin( a )cos(/3) + cos( a )sin(/3) 
sin( a - {3) = sin( a )cos(/3) - cos( a )sin(/3) 
cos( a + {3) = cos( a )cos(/3) - sin( a )sin(/3) 
cos( a - {3) = cos( a )cos(/3) + sin( a )sin(/3) 
tan(a + {3) = (tan(a) + tan(/3))/(1 - tan(a)tan(/3)) 
tan(a - {3) = (tan(a) - tan(/3))/(1 + tan(a)tan(/3)) 

11111111111111111111111111111111 ROTATION 

When we rotate an object, we calculate the new coordinates of all of the 
points in the object and then redraw it. In most cases, we don't have to 
recalculate every point, just the ones that we need in order to draw the 
object. If the object is a box, we could just recalculate the four corners and 
connect them with straight lines. If it is a circle, we could get away with 
recalculating just the center of the circle. The radius and shape of a circle 
are unaffected by rotation. I usually make it a point to design my objects 
so that they are easy to rotate. If we can compose an object from a set of 
line segments and arcs, rotation becomes simply the task of recalculating 
the points that define all of the line segments (their end points) and the 
arcs (their radii, center points, and start and stop angles). 

When we rotate an object, we must know not only the angle of 
rotation but also the axis of rotation. In two-dimensional images, the axis 
of rotation is the point about which we rotate the object (figure 7.5). 

In figure 7.5, we see the same box rotated about several different axes. 
If we rotate the box about its own center, it stays in the same location, but 
if we rotate it about any other point, its x and y coordinates change. We 
can come up with a separate formula for rotating the box about each of 
these axes, but what we would really prefer is one formula that handles the 
general case, rotation about an arbitrary point (figure 7 .6). 
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Rotated About 
Top Left Corner 

111111111111111111111111111111111 Figure 7 .6 Rotation about an arbitrary point 

The calculations for rotation about an arbitrary point are more 
complex than those for rotating about the origin. Let's look at the simple 
case before going to the more complex calculations. 

We know that to rotate an object about a point, we must rotate each 
point in the object that defines the object's shape. In figure 7.7, we see an 
object rotated about a point and can see that each point in the object is 
now in a new location. What was originally the bottom left corner is no 
longer the leftmost corner, but it still has the same relationship to the other 
points. 

Let's see how to rotate a point about the origin. We will start with the 
point p and rotate it through an angle 8 (figure 7 .8). 

Note that our coordinate system looks a little different from the 
Cartesian coordinate system that we usually see. This coordinate system 
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111111111111111111111111111111111 Figure 7 .8 A point rotated about the origin 

has they axis inverted. They values increase as you go down, not up. This 
is the coordinate system used by the Macintosh display. The origin (the 
point 0, 0) is at the upper left corner. 

We rotated the point p through the angle 8 about the origin and gave 
it a new name at its new location, p' . The point p' is the same distance 
from the origin as p. 

We would like to come up with a formula that will convert the 
coordinates of p to the coordinates of p' if we know the angle 8. In order 
to develop that formula, we will temporarily use another angle, </>. When 
we are finished, </> will not appear in the formula. Let's see what the 
situation looks like with both angles in the diagram as well as the radius of 
the points (the distance to the origin) and the coordinates of the points 
(figure 7 .9). 
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11. 11.' 

111111111111111111111111111111111 Figure 7 .9 Measuring the rotation of a point about the origin 

The vertical coordinate of p is v, and the horizontal coordinate is h. 
The coordinates of p' are v' and h' . The radius is the same for both 
points, r. Now that we have all of the necessary variables, we can derive 
the formula that we need. 

The definitions of the sine and cosine functions tell us that: 

v = r cos(c/>) 
h = r sin(c/>) 

We can use the same definitions to relate the coordinates of p' to an 
angle, but in this case, the angle is the sum of 8 and c/>. 

v' = r cos(8 + c/>) 
h' = r sin(8 + cl>) 

If we use the identity for the sum of two angles (see page 130), we get 
two new formulas for v' and b'. 

v' = r cos(c/>)cos(8) - r sin(c/>)sin(8) 
b' = r cos(c/>)sin(8) + r sin(c/>)cos(8) 

Now we get rid of all instances of q, by substituting the formulas for 
v and b wherever we see r cos( c/>) or r sin( c/> ). The result is the pair of 
formulas that we wanted. 

v' = v cos(8) - h sin(8) 
b' = v sin(8) + b cos(8) 
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Now to rotate the box in figure 7.7, we just do the transformation 
defined by the formulas on each of the four corners of the box and then 
draw lines connecting the corners. 

Pretty neat, you say. But wait-there's more. 

ROTATION ABOUT AN 
llllllllllllllllllllllllllllllll ARBITRARY POINT 

Now we can gleefully spin our picture around the origin, but what if we 
want to rotate an object about its own center or some other point? We can 
use the formulas we've developed so far to derive a pair of formulas for 
rotating about an arbitrary point. We know how to rotate about the origin, 
so we can cheat and move the origin to the rotation point, rotate the 
object, and then move the origin back. In figure 7 .10, we see the point p 
rotated to point p' about the point q. 

The horizontal coordinate of point q is hq; the vertical coordinate is 
v q. Moving the origin is the same as a coordinate system translation, so our 
formula will do a coordinate system translation and then rotate the point 
and do another coordinate system translation. The resulting formulas are: 

v' = (v - vq)cos(O) - (h - hq)sin(O) + vq 
h' = (v - vq)sin(O) + (h - hq)cos(O) + hq 

Looking at the formulas, we see that for the rotation point at the 
origin(vq = Oandhq = 0), theformulasbecomethesameoneswehadbefore. 

! 
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vq ............................................. . 
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• 
P' 

•p 

111111111111111111111111111111111 Figure 7 .10 Rotation of a point about an arbitrary point 
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Now that we've got some rotation formulas, we could go and write 
some programs to use them, but we have just a few more things to deal 
with before we do that. We still need to be able to scale an object. 

11111111111111111111111111111111 SCALING AN OBJECT 

Scaling an object is changing its size. Sometimes scaling is used to change 
the shape of an object by stretching or squeezing it in one direction. Our 
first attempt at scaling an object would be to multiply the coordinates of 
its points by a scale factor. Let's see what happens when we do that. We 
start with the box in figure 7 .11. It's a 20-by-20 square with the upper left 
corner at the coordinates (20, 20). 

We multiply the horizontal and vertical coordinates of each corner by 
the scale factor 0.50. The results are in figure 7.12. We accomplished our 
objective; the box is half the size that it was before. We got an undesirable 
side effect, though. The box's location changed by the same factor. Its 
upper left corner is now at (10, 10). We would like to scale an object 
without moving it, so we obviously must do something else. 

It turns out that scaling is much like rotation: it must be done at the 
origin. In order to scale an object, we must mathematically move it to the 
origin (centering the object on the origin), perform the scaling calculation, 
and move it back. The scaling calculation is just multiplication by a scaling 
factor, so the whole set of calculations consists of a translation (to the 
origin), multiplication by the scaling factor, and another translation (back 
to the original point). 

(20,20) 

D 
(40,40) 

111111111111111111111111111111111 Figure 7 .11 A box before scaling 
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(10,10) 

D 
(20,20) 

111111111111111111111111111111111 Figure 7 .12 The scaled box 

To scale an object, we scale each point that defines the shape of the 
object. We are working with a box in our examples, so we need to scale 
each corner of the box. We will start with the box in figure 7 .13. To make 
sure that we don't design this calculation for the special case of a box 
aligned with the horizontal and vertical axes, we use a box rotated to a 
30-degree angle. 

We want to end up with the box centered on the origin, so we must 
subtract the horizontal coordinate of the center of the box from the 
horizontal coordinate of each corner. The equations for the coordinates of 
the center of the box are: 

he = b 1 + (b2 - b1)/2 
Ve = V1 + (v2 - Vi)/2 

(150,100) 
h1 

(190,180) 
v2 

(230,60) 
v1 

(270,140) 
h2 

111111111111111111111111111111111 Figure 7 .13 A box before translation and scaling 
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where be and v e are the horizontal and vertical coordinates of the center 
of the box. 

Subtracting the box center coordinates from the point that we are 
scaling, we get the equations for the coordinates of the point with the box 
moved to the origin. 

b' = b - he 
v' = v - Ve 

or, using the formulas for the box center coordinates: 

b' = b - (h1 + (h2 - h1)12) 
v' = v - (v1 + (v2 - v1)/2) 

Remember, we have to do this for each corner of the box. 
If we draw the box at the origin, it looks like figure 7 .14. 
In practice, we don't draw the box at this time but wait until we've 

moved it back to its original location. Once the box is at the origin, we 
multiply the coordinates of the box corner points by the scale factor. Note 
that we could have used different scale factors for the horizontal and 
vertical coordinates if we wanted to stretch or squeeze the box. The 
formulas for the new corner coordinates are: 

b I = Sb(b - (b1 + (b2 - h1)12)) 
v' = sJ..v - (v1 + (v2 - v1)/2)) 

where sb and sv are the horizontal and vertical scale factors. 

111111111111111111111111111111111 Figure 7 .14 The box at the origin 
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We used a scale factor of 0. 5 for both the horizontal and vertical 
scaling, and the resulting box is half the size of the original. If we drew the 
box at this point, it would look like the one shown in figure 7.15. 

If we had wanted to make the box larger, we would have used a scale 
factor greater than 1. 

Now we need to move the box back to its original position. We move 
it by adding the distance by which we moved the box to get it to the origin. 

b I = Sb(b - (b1 + (b2 - h1)/2)) + h1 + (b2 - h1)/2 
v' = sJ.v - (v1 + (v2 - v1)/2)) + v1 + (v2 - v1)/2 

The scaled box looks like the one shown in figure 7 .16. 

111111111111111111111111111111111 Figure 7 .15 The scaled box at the origin 

(210,120) 

(220,90) .. ·········· 

(180,110)0 .......... 
+ 

(240,130) 

(200,150) 

111111111111111111111111111111111 Figure 7 .16 The scaled box back in position 
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We can use this method for scaling any object. We just run every point 
used in defining the object through the formula to get the new coordinates 
of the point and draw the object with its new coordinates. For a box, we 
need to perform the scaling calculations on each of the four corners and 
then draw lines between the corners. If the object were a line, we'd do the 
calculations on just the end points. For a hexagon, we'd have to calculate 
new coordinates for each of the six corners. If the object has an irregular 
shape, we will need to calculate every point in the object. 

We could clean up our formula a little for use with objects other than 
boxes. The expression (h2 - h1)/2 is the horizontal coordinate of the 
center of the object. If we replace the box's calculated center point with 
the coordinates for any object's center point, we have a general-purpose 
scaling formula. 

h' = sb(h - he) + he 
V' = Sv(V - Ve} + Ve 

To review, the variables are: 

h the horizontal coordinate of the point to be scaled 
v the vertical coordinate of the point to be scaled 
h' the horizontal coordinate of the scaled point 
v' the vertical coordinate of the scaled point 
sh the horizontal scale factor 
Sv the vertical scale factor 
he the horizontal coordinate of the object's center 
Ve the vertical coordinate of the object's center 

11111111111111111111111111111111 A PROGRAM Wmt OBJEClS 

The program at the end of this chapter has some examples of how to 
manipulate and draw objects in a way that would be useful in a CAD 
program. It's a large program, but don't let its size put you off. It's really 
not very complicated. 

There are as many methods of storing information about objects as 
there are programmers. The method that you choose depends on the 
purpose of your program and a lot of design trade-offs. Some object 
storage formats take less memory than others but require longer to draw 
the object. Others are more suited to moving, rotating, and scaling 
objects. 

In the program in this chapter, we chose a compromise that illustrates 
several methods. It requires calling a different routine to draw each object 
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type but allows the moving, rotating, and scaling of the objects. It 
combines QuickDraw's method of·dimensioning. objects (by rectangles) 
with our need to know the center, angle, and scale factors of the object. 

Let's take a look at the object description record (listing 7.1). 
We have six types of object in the program: line, rectangle, triangle, 

circle, half circle, and quarter circle. In the program, we have an array 
whose elements are object records. Each array element describes one 
object. The ObjectType field identifies the type of object. The Center field 
defines the center of the object. The XLength and YLength fields define 
the dimensions of the object, and the Angle field defines the object's angle 
relative to the horizontal axis. 

After investigating how to operate the program, we'll look at its 
internals and see how it works. The program gives us a drawing area, a 
palette at the right edge of the window, and a palette along the bottom 
edge of the window (figure 7 .17). 

The palette at the right shows the objects that the program can draw. 
We select an object by clicking in that object's palette box. The box 
changes to white on black to indicate selection. You use the mouse to 
draw the selected object in the window much as in MacPaint: you click the 
mouse in the drawing window, and the program draws the object as you 
drag the mouse. You can determine the shape of the object by the way you 
drag the mouse. The circle object may actually be an ellipse if you drag 
more along one axis than the other. For example, in figure 7.18, the 
triangle is elongated in the horizontal direction, and the ellipse is longer 
in the vertical direction. Once you set the shape of the figure in this way, 
it stays that shape. You can rotate it, move it, or change its size, but the 
shape and aspect ratio remain the same. 

The top box in the palette of objects doesn't contain an object. It's 
the selection box. If you select the selection box, clicking the mouse near 
the center of an object on the screen will select that object. The program 
redraws the selected object in gray instead of black. In figure 7.19, the 
rectangle near the center of the screen is selected. 

111111111111111111111111111111111 Listing 7 .1 The Object Description Record 

{listing 7. 1} 
type 

Object = record 
ObjectType : Integer; 
Center : point; 
XLength : Integer; 
YLength : Integer; 
Angle : Integer; 

end; 
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111111111111111111111111111111111 Figure 7 .19 A selected object 

Once you have selected an object, you can use the control palette 
boxes along the bottom of the screen to manipulate the object. To 
manipulate an object, just click in one of the four control palette boxes. 
Clicking in the CUT box erases the object and removes it from the 
program's object list. Clicking the SCALE box increases the size of the 
object by 1 pixel in the horizontal direction and 1 pixel vertically. In figure 
7.20, the box we selected in the previous diagram has been enlarged with 
the SCALE control. 

Clicking the ROT box rotates the object 1 degree counterclockwise. 
In figure 7 .21 , that same object has been rotated by the repeated clicking 
of the ROT control. 

Rotating a circle has no effect, even if the circle is elliptically shaped. 
Rotating a half or quarter circle doesn't have the effect you would expect. 
The arc retains its elliptical shape, and the orientation of the ellipse is the 
same. The program just draws a different portion of the ellipse. In figure 
7.22, the upper portion of an ellipse was rotated through 90 degrees to 
form the lower portion of an ellipse. 

When you click in the MOVE box, the program erases the object. 
Then when you next click in the drawing area, the program redraws the 
object with its center at the spot you clicked. 
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The program effectively demonstrates one method of dealing with 
objects but is far from being a complete CAD program. If you are inclined 
to experiment, you can improve it by making some of the suggested 
modifications listed toward the end of this chapter. 

The program begins by initializing some variables, setting the draw­
ing window size, drawing the palettes, and setting the cursor shape. In the 
program, boxes in the bottom palette are called controls. I will generally 
use the term palette to refer to the palette on the right side. The dimen­
sions of the palettes and their boxes are determined by constants. It's easy 
to change the size of the palette boxes or to add new ones. 

The main loop of the program is shown in listing 7.2. It consists of 
an endless repeat-until loop. Inside the loop, the program gets the mouse 
location and sets the cursor to the appropriate shape. It continues that 
activity until the user presses the mouse button. 

When the user presses the mouse button, the program checks the 
mouse location and calls the proper routine to handle the mouse event, 
depending on whether the mouse was in the control area, the palette area, 
or the drawing area. The DoControl and DoPalette routines are similar. 
They determine which control or palette block the cursor was in when the 
user pressed the button and call the appropriate routine. 



A PROGRAM WITH OBJECTS 145 

111111111111111111111111111111111 Listing 7 .2 The Main Loop of CheapCAD 

{listing 7. 2} 
begin 

init; 
repeat 
repeat 

GetMouse(mousePt.h, MousePt.v); 
if Ptinrect(MousePt, DrawRect) than 

SetCursor(CrossHairs) 
else 

SetCursor(arrow); 
until button; 
GetMouse(MousePt.h, MousePt.v); 
if PtinRect(MousePt, PalRect) than 

DoPalette 
else if PtinRect(MousePt, ControlRect) than 

DoControl 
else if PtinRect(MousePt, DrawRect) than 

DoDraw; 
until Done; 

and. 

Let's see how the palette box routines work by looking at an example. 
Listing 7 .3 shows the DoRect routine. It is called when the user clicks the 
mouse in the rectangle palette. 

The DoRect routine calls PalOff to deselect the formerly selected 
palette box. Then it sets the Palette variable to indicate that the rectangle 
palette box is selected and inverts the palette box (called RectRect) to 
indicate selection. Nothing else happens until the user presses the mouse 
button in the drawing area and drags the mouse to create a rectangle. 

111111111111111111111111111111111 Listing 7 .3 The DoRect Routine 

{listing 7.3} 
procedure DoRect; 
begin 

PalOff; 
Palette := Rectangle; 
InvertRect(RectRect); 

and; 
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When the program detects the mouse button down in the drawing 
area, it calls DoDraw, which checks the Palette variable and calls a routine 
to make an object. If the rectangle palette box is selected, DoDraw calls 
MakeRect. 

Note the first branch of the case statement in DoDraw (listing 7.4). If 
the SEL palette box is currently selected, it doesn't call a make-object 
routine; it calls DoSelect to select an object. 

MakeRect is a good example of a routine to make an object, so let's 
see how it works (listing 7 .S). MakeRect and all of the other make-object 
routines draw the object in gray as you drag the mouse. 

The first thing the routine does is set the pen mode and pen pattern. 
It then waits in a repeat-until loop until the user moves the mouse or 
releases the mouse button. If the user released the button without moving 
the mouse, the routine does nothing else. If the user moved the mouse 
with the button down, the routine calls FRect to draw the rectangle and 
enters a loop in which it continually checks to see if the mouse has moved. 
If the mouse has moved, the routine erases the old rectangle and redraws 
it. The first call to FRect erases the old rectangle; the second call redraws 
it with the new mouse coordinates. 

111111111111111111111111111111111 Listing 7.4 The DoDraw Routine 

{listing 7. 4} 
procedure DoDraw; 
begin 

StartPt := MousePt; 
case Palette of 

NotDraw : 
DoSelect; 

Line : 
MakeLine; 

Rectangle : 
MakeRect; 

Triangle : 
MakeTri; 

Circle : 
MakeCirc; 

Circle2 : 
MakeCirc2; 

Circle4 : 
MakeCirc4; 

end; 
end; 
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111111111111111111111111111111111 Listing 7 .5 The MakeRect Routine 

{listing 7. 5} 
procedure MakeRect; 
var 

OldPoint, tempPt : point; 
XLen, YLen : integer; 

begin 
PenMode(patXor); 
PenPat(dkGray); 
repeat 

GetMouse(MousePt.h, MousePt.v); 
until (MousePt.h <> StartPt.h) or (MousePt.v <> StartPt.v) 

or not Button; 
if Button then 
begin 

FRect(StartPt, MousePt); 
OldPoint := MousePt; 
repeat 
begin 

GetMouse(MousePt.h, MousePt.v); 
if (MousePt. h <> OldPoint. h) or (MousePt. v <> 

OldPoint.v) then 
begin 

FRect (StartPt, OldPoint); 
FRect(StartPt, MousePt); 
OldPoint : = MousePt; 

end; 
end 

until not Button; 
begin 
end; 
SortRect (StartPt .h, StartPt. v, OldPoint .h, OldPoint. v); 
Objects[NextObject].ObjectType :=Rectangle; 
Xlen := (OldPoint .h - StartPt .h); 
YLen := (OldPoint.v - StartPt.v); 
Objects[NextObject] .Center.h := Xlen div 2 + StartPt.h; 
Objects[NextObject] .Center.v := Ylen div 2 + StartPt.v; 
Objects[NextObject].Xlength := Xlen; 
Objects[NextObject].YLength := YLen; 
Objects[NextObject] .Angle := O; 
FRect (StartPt, OldPoint); 
PenPat(Black); 
PenMode(patCopy); 
DrawRObject(NextObject); 
if NextObject <> MaxObjects then 

NextObject := NextObject + l; 
end; 

end; 

When the user releases the mouse button, the routine calculates the 
center of the rectangle and its dimensions and adds it to the object list. It 
then erases the rectangle and calls DrawRObject to draw it in black. 
DrawRObject is the routine that draws a rectangle object after moving, 
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scaling, or rotating it. We use it here because a rounding error causes it to 
draw the rectangle 1 pixel smaller than FRect draws it. 

Now that we know how objects are created, it's time to see how the 
program manipulates them. The first step in manipulating an object is to 
select it. If the SEL box in the palette is selected and the program detects 
a mouse button event in the drawing area, it calls DoSelect to select an 
object (listing 7 .6). 

DoSelect first checks to see if an object is selected. If there is already 
an object selected, it deselects that object and calls the DrawObject 
routine to redraw it in black. DoSelect then scans all of the objects in the 
object list to find the one whose center is closest to the mouse point. It 

111111111111111111111111111111111 Listing 7 .6 The DoSelect Routine 

{listing 7. 6} 
procedure DoSelect; 
var 
r, BestR, i, BestObject Integer; 

begin 
repeat 
until not button; 
if SelectedObject <> 0 then 
begin 
PenPat(black); 
DrawObject(SelectedObject); 
SelectedObject := O; 

end; 
BestObject := O; 
BestR := 724; 
if NextObject > 1 then 
begin 
for i := 1 to NextObject - 1 do 
begin 

r := Length(MousePt, Objects[i].Center); 
if r < bestR then 
begin 

bestR := r; 
bestObject := i; 

end; 
end; 

end; 
if BestR > 50 then 
BestObject := O; 

if BestObject <> 0 then 
begin 

PenPat(dkGray); 
DrawObject(BestObject); 
SelectedObject := BestObject; 
PenPat(Black); 

end; 
end; 
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selects that object and draws it in gray. If no object is closer than 50 pixels 
to the selection point, DoSelect doesn't select an object. 

When you click the mouse in one of the control boxes in the bottom 
palette, the program calls DoControl, and DoControl calls one of the 
following procedures to take action: DoCut, DoRot, DoMove, or DoScale. 
These four routines manipulate the selected object, so if no object is 
selected, they don't do anything. 

The DoCut routine erases the object and removes it from the object 
list. DoRot erases the object, increments its Angle parameter by 1 degree, 
and redraws it. DoScale works the same way except that it increments the 
object's XLength and YLength parameters. DoMove erases the object and 
waits for a mouse click in the drawing area. When it detects that mouse 
event, it sets the object's center to the mouse coordinates and redraws the 
object. 

All of the routines that we've looked at so far have been routines that 
set up the user interface and change the object's parameters. Now it's time 
to get to the heart of the program, the routines that draw the objects 
and do the scaling and rotation. In listing 7. 7 we see the DrawObject 
routine. When any routine needs to draw an object and doesn't know 
what type of object it is drawing, it calls DrawObject. All of the control 
routines, DoCut, DoRot, DoMove, and DoScale, use DrawObject to do 
their drawing. 

111111111111111111111111111111111 Listing 7. 7 The DrawObject Routine 

(listing 7.7} 
procedure DrawObject (Object : Integer); 
var 

OType : Integer; 
begin 

OType := Objects[Object].ObjectType; 
case OType of 

Line : 
DrawLObject(Object); 

Rectangle : 
DrawRObject(Object); 

Triangle : 
DrawTObject(Object); 

Circle : 
DrawCObject(Object); 

Circle2 : 
DrawArcObject (Object, 180); 

Circle4 : 
DrawArcObject (Object, 90); 

end; 
end; 
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DrawObject just finds out what kind of object is to be drawn and calls 
a specialized drawing routine to handle it. DrawRObject (listing 7 .8) is a 
good example. It draws a rectangle object. 

It is the task of DrawRObject to calculate the points of the rectangle 
given the center, width, height, and angle relative to the x axis. Calculating 
the corners of the unrotated rectangle is a simple task. The routine just 
adds and subtracts half of the length of each side from the rectangle's 
center. It then calls the Rotate routine for each corner to calculate the 
corner's position after rotating the rectangle through the angle specified in 
the object record. 

Note that the routine doesn't actually draw the rectangle until it has 
rotated it. The user never sees the unrotated rectangle. The actual drawing 
is done by DrawARect. It moves the pen to the upper left corner and then 
draws a line between each pair of corners in succession. 

The scaling of objects in this program is almost transparent. It is done 
when the user selects the SCALE control, not when the object is drawn. 
Instead of scaling each object at drawing time, the program stores the 
scaling information in the XLength and YLength fields in the object 
record. 

111111111111111111111111111111111 Listing 7 .8 The DrawRObject Routine 

{listing 7.8) 
procedure DrawRObject (Object : integer) ; 
var 

UpperLeft, UpperRight, LowerLeft, LowerRight point; 
begin 

with Objects [Object] do 
begin 

UpperLeft.h := center.h - (XLength div 2); 
UpperLeft.v := center.v - (YLength div 2); 
LowerRight.h := center.h + (XLength div 2); 
LowerRight.v := center.v + (YLength div 2); 
UpperRight.h := LowerRight.h; 
UpperRight.v := UpperLeft.v; 
LowerLeft.h := UpperLeft.h; 
LowerLeft.v := LowerRight.v; 
if Angle <> 0 then 
begin 

Rotate (UpperLeft, Center, Angle); 
Rotate(UpperRight, Center, Angle); 
Rotate(LowerLeft, Center, Angle); 
Rotate(LowerRight, Center, Angle); 

end; 
DrawARect (UpperLeft, UpperRight, LowerLeft, LowerRight); 

end; 
end; 
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The rotation is done exactly as described earlier in the chapter. The 
Rotate routine (listing 7 .9) first translates a point to the origin and then 
rotates it through the specified angle and translates it back. In this program 
we always rotate an object about its own center, so the axis of rotation 
passed to Rotate is the center of the object. 

Note that the angle is stored in the object record in degrees but is 
converted to radians before the rotation calculations. While the Quick­
Draw arc-drawing routines specify angles in degrees in the clockwise 
direction, the Sin and Cos functions require angles in radians in the 
counterclockwise direction. The program stores angles as degrees in the 
counterclockwise direction. 

The line and triangle object-drawing routines, DrawLObject and 
DrawTObject, are very similar to DrawRObject-in fact, almost identical 
to it. The circle-drawing routine, DrawCObject, is just like DrawRObject 
except that it doesn't do rotation. Draw ArcObject (listing 7 .10) is similar, 
but it doesn't use the Rotate routine to rotate the corners that define the 
object. It uses the QuickDraw routine FrameArc to draw a half or quarter 
circle. It passes FrameArc the object angle from the object record to use 
as the starting point for drawing the arc. It passes FrameArc either 90 
degrees or 180 degrees as the length of the arc. 

111111111111111111111111111111111 Listing 7 .9 The Rotate Routine 

{listing 7. 9} 
procedure Rotate (var thePoint 

axis : point; 
angle : integer) ; 

var 
temp : point; 
theta : real; 

begin 

point; 

theta := 2 * 3.1415926 * angle I 360; 
temp.v := round((thePoint.v - axis.v) * cos(theta) -

(thePoint.h - axis.h) * sin(theta) + axis.v); 
temp.h := round((thePoint.v - axis.v) * sin(theta) + 

(thePoint.h - axis.h) * cos(theta) + axis.h); 
thePoint.v := temp.v; 
thePoint.h := temp.h; 

end; 
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111111111111111111111111111111111 Listing 7 .10 The Draw ArcObject Routine 

{listing 7 .10} 
procedure DrawArcObject (Object, Arc : integer}; 
var 

UpperLeft, LowercRight point; 
OvalRect : Rect; 

begin 
with Objects [Object] do 
begin 

UpperLeft .h := center.h - (XLength div 2); 
UpperLeft.v := center.v - (YLength div 2); 
LowerRight .h := center.h + (XLength div 2); 
LowerRight.v := center.v + (YLength div 2); 
SetRect(OvalRect, UpperLeft.h, UpperLeft.v, LowerRight.h, 

LowerRight.v); 
FrameArc(OvalRect, -Angle, Arc); 

end; 
end; 

MODIFYING THE OBJECT-
11111111111111111111111111111111 DRAWING PROGRAM 

There's room for improvement in this program, but there are limitations 
on what you can do with Macintosh Pascal. We didn't create any menus 
because we didn't want to use the InLine routine to call toolbox proce­
dures (InLine turns off all error checking in the Pascal interpreter). Instead 
of menus, we used the control boxes in the bottom palette. They are not 
elegant but are adequate for an example program. 

In modifying the program, you will quickly run up against another 
Macintosh Pascal limitation. The program is very near the limit of the size 
that Macintosh Pascal can handle. Adding more text, even comments, will 
cause the interpreter to crash with a system error. 

You can get around the problem by reorganizing part of the program. 
Much of the code in the palette initialization section could be put into one 
subroutine. There are several other areas where something similar could 
be done to cut down on program size. Once you are over the program size 
hurdle, there are several interesting things you might want to do: 

1 Have two rotate controls, one for each direction. 

2 Instead of incrementing the angle of rotation every time the user 
clicks in the ROT box, continue to increment it as long as the 
mouse button is down in the ROT box. 
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3 Add more scale controls so the user can scale up or down in either 
the horizontal or vertical direction. 

4 When the user cuts an object, store a copy of the object record 
and have a paste control that lets the user paste it back later. 

5 For the really ambitious: provide a method of grouping objects so 
that they can be treated as one object for moving, scaling, and 
rotation. Hint: define an object type called Group. The Group 
object record must identify a linked list that has the object 
numbers of members of the group. 

If you are interested in finding out more about how CAD programs 
draw objects, a good place to start is the book Fundamentals of Interac­
tive Computer Graphics by J. D. Folley and A. Van Dam, particularly· 
chapter 9. 

The entire CheapCAD program is shown in listing 7 .11. 
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111111111111111111111111111111111 Listing 7 .11 CheapCAD 

program CheapCAD; 
{Listing 7 .11 } 
con st 

NotDraw = l; 
PSelect = l; 
Line = 2; 
Rectangle = 3; 
Triangle = 4; 
Circle = 5; 
Circle2 = 6; 
Circle4 = 8; 
Draw = l; 
Stop = 2; 
MaxLength = 512; 
MaxObjects = 50; 

type 
Object = record 

ObjectType : Integer; 
Center : point; 
XLength : Integer; 
YLength : Integer; 
Angle 

end; 

var 

Integer; 

controlrect, palrect, DrawRect : rect; 
CutRect, MoveRect, ScaleRect, RotRect rect; 
TempRect, CancelRect : rect; 
PSelRect, RectRect, TriRect, LineRect Rect; 
CircRect, Circ2Rect, Circ4Rect : Rect; 
CrossHairs : cursor; 
done : BOOLEAN; 
MousePt, StartPt : point; 
Palette, Control : Integer; 
Objects : array[l •• MaxObjects] of Object; 
NextObject, SelectedObject : Integer; 

procedure SortRect (var UpperLeftH, UpperLeftV, LowerRightH, 
LowerRightV: Integer); 

var 

Continued 
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Temp : Integer; 
begin 
if UpperLeftH > LowerRightH then 
begin 

Temp := UpperLeftH; 
UpperleftH := LowerRightH; 
LowerRightH := Temp; 

end; 
if UpperLeftV > LowerRightV then 
begin 

Temp := UpperLeftV; 
UpperLeftV := LowerRightV; 
LowerRightV := Temp; 

end; 
end; 

procedure Rotate (var thePoint 
axis : point; 
angle : integer); 

var 
temp point; 
theta : real; 

begin 

point; 

theta := 2 * 3.1415926 * angle I 360; 

155 

temp.v := round((thePoint.v - axis.v) * cos(theta) - (thePoint.h -
axis.h) * sin(theta) + axis.v); 

temp.h := round((thePoint.v - axis.v) * sin(theta) + (thePoint.h -
axis.h) * cos(theta) + axis.h); 

thePoint.v := temp.v; 
thePoint.h := temp.h; 

end; 

procedure DrawLine (StartPoint, EndPoint 
begin 

MoveTo(StartPoint.h, StartPoint.v); 
LineTo(EndPoint.h, EndPoint.v); 

end; 

procedure DrawLObject (Object 
var 
startPt, EndPt : point; 

integer); 

point); 

Continued 
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begin 
with Objects[object] do 
begin 

StartPt.h := center.h - (XLength div 2); 
StartPt.v := center.v - (YLength div 2); 
EndPt.h := center.h + (XLength div 2); 
EndPt.v := center.v + (YLength div 2); 
if angle <> 0 than 
begin 

rotate(StartPt, center, angle); 
rotate(EndPt, center, angle); 

end; 
DrawLine(StartPt, EndPt); 

end; 
and; 

procedure DrawARect (UpperLeft, UpperRight, LowerLeft, LowerRight 
point); 

begin 
MoveTo(UpperLeft.h, UpperLeft.v); 
LineTo(UpperRight.h, UpperRight.v); 
LineTo(LowerRight.h, LowerRight.v); 
LineTo(LowerLeft.h, LowerLeft.v); 
LineTo(UpperLeft.h, UpperLeft.v); 

end; 

procedure DrawRObject (Object : integer); 
var 

Uppe.rLeft, UpperRight, LowerLeft, LowerRight point; 
begin 

with Objects[Object] do 
begin 

UpperLeft.h := center.h - (XLength div 2); 
UpperLeft.v := center.v - (YLength div 2); 
LowerRight.h := center.h + (XLength div 2); 
LowerRight.v := center.v + (YLength div 2); 
UpperRight.h := LowerRight.h; 
UpperRight.v := UpperLeft.v; 
LowerLeft.h := UpperLeft.h; 
LowerLeft.v := LowerRight.v; 
if Angle <> O than 

Continued 
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bag in 
Rotate(UpperLeft, Center, Angle); 
Rotate(UpperRight, Center, Angle); 
Rotate(LowerLeft, Center, Angle); 
Rotate(LowerRight, Center, Angle); 

and; 
DrawARect(UpperLeft, UpperRight, LowerLeft, LowerRight); 

and; 
and; 

procedure DrawTri (one, two, three Point); 
bag in 

MoveTo(One.h, One.v); 
LineTo(Two.h, Two.v); 
LineTo(Three.h, Three.v); 
LineTo(One.h, One.v); 

and; 

procedure DrawTObject (Object : integer); 
var 

UpperLeft, Apex, LowerLeft point; 
bag in 

with Objects[Object] do 
bag in 

UpperLeft.h := center.h - (XLength div 2); 
UpperLeft.v := center.v - (YLength div 2); 
LowerLeft.h := UpperLeft.h; 
LowerLeft.v := center.v + (YLength div 2); 
Apex.h := center.h + (XLength div 2); 
Apex.v := center.v; 
if Angle <> O than 
bag in 

Rotate(UpperLeft, Center, Angle); 
Rotate(LowerLeft, Center, Angle); 
Rotate(Apex, Center, Angle); 

and; 
DrawTri(UpperLeft, Apex, LowerLeft); 

and; 
and; 

procedure DrawCObject (Object integer); 

Continued 
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var 
UpperLeft, LowerRight point; 
OvalRect : Rect; 

begin 
with Objects[Object] do 
begin 

UpperLeft.h := center.h - (XLength div 2); 
UpperLeft.v := center.v - (YLength div 2); 
LowerRight.h := center.h + (XLength div 2); 
LowerRight.v := center.v + (YLength div 2); 
SetRect(OvalRect, UpperLeft.h, UpperLeft.v, LowerRight.h, 

LowerRight • v) ; 
FrameOval(OvalRect); 

end; 
end; 

procedure DrawArcObject (Object, Arc 
var 

UpperLeft, LowerRight : point; 
OvalRect : Rect; 

begin 
with Objects[Object] do 
begin 

integer); 

UpperLeft.h := center.h - (XLength div 2); 
UpperLeft.v := center.v - (YLength div 2); 
LowerRight.h := center.h + (XLength div 2); 
LowerRight.v := center.v + (YLength div 2); 
SetRect(OvalRect, UpperLeft.h, UpperLeft.v, LowerRight.h, 

LowerRight • v) ; 
FrameArc(OvalRect, -Angle, Arc); 

end; 
end; 

procedure DrawObject (Object 
var 

OType : Integer; 
begin 

Integer); 

OType := Objects[Object] .ObjectType; 
case OType of 

Line : 
DrawLObject(Object); 

Continued 
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Rectangle 
DrawRObject(Object); 

Triangle : 
DrawTObject(Object); 

Circle : 
DrawCObject(Object); 

Circle2 : 
DrawArcObject(Object, 180); 

Circle4 : 
DrawArcObject(Object, 90); 

end; 
end; 

procedure DoCut; 
var 

i : Integer; 
begin 

InvertRect(CutRect); 
repeat 
until not button; 
if SelectedObject <> 0 then 
begin 

{"undraw" the object} 
PenPat(white); 
DrawObject(SelectedObject); 
PenPat(Black); 

{delete the object from the object list} 
for i := SelectedObject to NextObject - 2 do 
begin 

Objects[i) .ObjectType := Objects[i + 11 .ObjectType; 
Objects[iJ.Center := Objects[i + lJ.Center; 
Objects[i) .XLength := Objects[i + 1].XLength; 
Objects[i) .YLength := Objects[i + 1) .YLength; 
Objects(iJ .Angle := Objects[i + 11 .Angle; 

end; 
NextObject := NextObject - 1; 
SelectedObject := O; 

end; 
InvertRect(CutRect); 

end; 

Continued 
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procedure DoRot; 
begin 
if SelectedObject <> 0 then 
with Objects[SelectedObjectJ do 
begin 

InvertRect{RotRect); 
repeat 
until not button; 
PenPat{white); 
DraWObject{SelectedObject); 
Angle := Angle + 1; 
if Angle >= 360 then 

Angle := O; 
PenPat{dkGray); 
DrawObject(SelectedObject); 
InvertRect{RotRect); 

end; 
end; 

procedure DoMove; 
begin 
if SelectedObject <> 0 then 
begin 

InvertRect(MoveRect); 
repeat 
until not button; 
PenPat(White); 
DraWObject(SelectedObject); 
repeat 
until button; 
repeat 
until not button; 
GetMouse(MousePt.h, MousePt.v); 
with Objects[SelectedObject] do 

Center := MousePt; 
PenPat(dkGray); 
DraWObject(SelectedObject); 
InvertRect(MoveRect); 

end; 
end; 

Continued 
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procedure DoScale; 
begin 
if SelectedObject <> 0 then 
begin 

InvertRect(ScaleRect); 
repeat 
until not button; 
PenPat(white); 
DrawObject(SelectedObject); 
with objects[SelectedObject) do 
begin 

Xlength := XLength + 1; 
Ylength := YLength + 1; 

end; 
PenPat(dkGray); 
DrawObject(SelectedObject); 
InvertRect(ScaleRect); 

and; 
end; 

procedure DoControl; 
{Handle a mouse click in the control palette} 
begin 
if PtinRect(MousePt, CutRect) then 

Do Cut 
else if PtinRect(MousePt, RotRect) then 

Do Rot 
else if PtinRect(MousePt, MoveRect) then 

Do Move 
else if PtinRect(MousePt, ScaleRect) then 

DOScale 
else 
repeat 
until not button; 

end; 

function Length (Pointl, Point2 
{Calculate the length of a line} 
begin 

point) Integer; 

SortRect(Pointl.h, Pointl.v, Point2.h, Point2.v); 
length := round(sqrt(sqr(point2.h - pointl.h) + sqr(point2.v -

Continued 
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111111111111111111111111111111111 Listing 7 .11 Continued 

pointl. v))); 
end; 

procedure DoSelect; 
var 

r, BestR, i, BestObject Integer; 
begin 

repeat 
until not button; 
if SelectedObject <> 0 then 

bag in 
PenPat(black); 
DrawObject(SelectedObject); 
SelectedObject := O; 

end; 
BestObject := O; 
BestR := 724; 
if NextObject > 1 then 
begin 

for i := 1 to NextObject - 1 do 
begin 

r := Length(MousePt, Objects[i] .Center); 
if r < bestR than 

bag in 
bestR := r; 
bestObject := i; 

end; 
end; 

end; 
if BestR > 50 then 

BestObject := O; 
if BestObject <> 0 then 
begin 

PenPat(dkGray); 
DrawObject(BestObject); 
SelectedObject := BestObject; 
PenPat(Black); 

end; 
end; 

procedure DrawCirc (UpperLeft, LowerRight point); 

Continued 
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{Frame a circle} 
var 

theRect : rect; 
begin 

SortRect(UpperLeft.h, UpperLeft.v, LowerRight.h, LowerRight.v); 
SetRect(theRect, UpperLeft.h, UpperLeft.v, LowerRight.h, 

LowerRight. v) ; 
FrameOval(theRect); 

end; 

procedure FCirc2 (UpperLeft, LowerRight 
var 

theRect : rect; 
begin 

point); 

SortRect(UpperLeft.h, UpperLeft.v, LowerRight.h, LowerRight.v); 
SetRect(theRect, UpperLeft.h, UpperLeft.v, LowerRight.h, 

LowerRight. v) ; 
FrameArc(theRect, 0, 180); 

end; 

procedure FCirc4 (UpperLeft, LowerRight 
var 

theRect : rect; 
beqin 

point); 

SortRect(UpperLeft.h, UpperLeft.v, LowerRight.h, LowerRight.v); 
SetRect(theRect, UpperLeft.h, UpperLeft.v, LowerRight.h, 

LowerRight. v) ; 
FrameArc(theRect, O, 90); 

end; 

procedure FTri (UpperLeft, LowerRight 
var 

two, three : point; 
begin 

point); 

SortRect(UpperLeft.h, Upperleft.v, LowerRight.h, LowerRight.v); 
Two.h := LowerRight.h; 
Two.v := (LowerRight.v - UpperLeft.v) div 2 + UpperLeft.v; 
Three.h := UpperLeft.h; 
Three.v := LowerRight.v; 
DrawTri(UpperLeft, Two, Three); 

end; 

163 

Continued 
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procedure SortLine (pointl, point2 point); 

procedure swappoints; 
var 

temp : point; 
begin 

temp := pointl; 
pointl := point2; 
point2 := temp; 

end; 

begin 
if pointl.h = point2.h then 
begin 
if pointl.v > point2.v then 

swapPoints; 
end 

else if pointl.h > point2.h then 
swappoints; 

end; 

procedure MakeLine; 
var 

OldPoint : point; 
XLen, YLen : Integer; 

begin 
PenMode(patXor); 
PenPat(dkGray); 
repeat 

GetMouse(MousePt.h, MousePt.v); 
until (MousePt.h <> StartPt.h) or (MousePt.v <> StartPt.v) or not 

Button; 
if Button then 
begin 

DrawLine(StartPt, MousePt); 
OldPoint := MousePt; 
repeat 
begin 

GetMouse(MousePt.h, MousePt.v); 
if (MousePt.h <> OldPoint.h) or (MousePt.v <> OldPoint.v) 

Continued 
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than 
begin 

DrawLine(StartPt, OldPoint); 
DrawLine(StartPt, MousePt); 
OldPoint := MousePt; 

and; 
and 

until not Button; 
SortLine(StartPt, OldPoint); 
Objects[NextObject].ObjectType :=Line; 
Xlen := (OldPoint.h - StartPt.h); 
YLen := (OldPoint.v - StartPt.v); 
Objects[NextObject].Center.h := Xlen div 2 + StartPt.h; 
Objects[NextObject].Center.v := Ylen div 2 + StartPt.v; 
Objects[NextObject].Xlength := Xlen; 
Objects[NextObject].YLength := YLen; 
Objects[NextObject].Angle := O; 
DrawLine(StartPt, MousePt); 
PenPat(Black); 
PenMode(patCopy); 
DrawLObject(NextObject); 
if NextObject <> MaxObjects than 

NextObject := NextObject + l; 
and; 

and; 

procedure FRect (UpperLeft, LowerRight 
var 

theRect : rect; 
begin 

Point); 

SortRect(UpperLeft.h, UpperLeft.v, LowerRight.h, LowerRight.v); 
SetRect(theRect, UpperLeft.h, UpperLeft.v, LowerRight.h, 

LowerRight . v) ; 
FrameRect(theRect); 

end; 

procedure MakeRect; 
var 

OldPoint, tempPt : point; 
XLen, YLen : integer; 

begin 

Continued 
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PenMode(patXor); 
PenPat(dkGray); 
repeat 

GetMouse(MousePt.h, MousePt.v); 
until (MousePt.h <> StartPt.h) or (MousePt.v <> StartPt.v) or not 

Button; 
if Button then 
begin 

FRect(StartPt, MousePt); 
OldPoint .- MousePt; 
repeat 
begin 

GetMouse(MousePt.h, MousePt.v); 
if (MousePt.h <> OldPoint.h) or (MousePt.v <> OldPoint.v) 

then 
begin 

FRect(StartPt, OldPoint); 
FRect(StartPt, MousePt); 
OldPoint := MousePt; 

end; 
end 

until not Button; 
begin 
end; 
SortRect(StartPt.h, StartPt.v, OldPoint.h, OldPoint.v); 
Objects[NextObject] .ObjectType :=Rectangle; 
Xlen := (OldPoint.h - StartPt.h); 
YLen := (OldPoint.v - StartPt.v); 
Objects[NextObject] .Center.h := Xlen div 2 + StartPt.h; 
Objects[NextObject] .Center.v := Ylen div 2 + StartPt.v; 
Objects[NextObject] .Xlength := Xlen; 
Objects[NextObject] .YLength := YLen; 
Objects[NextObject] .Angle := O; 
FRect(StartPt, OldPoint); 
PenPat(Black); 
PenMode(patCopy); 
DrawRObject(NextObject); 
if N~xtObject <> MaxObjects then 

NextObject := NextObject + 1; 
end; 

end; 

Continued 
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procedure MakeTri; 
var 

OldPoint : point; 
XLen, YLen : Integer; 

bag in 
PenMode(patXor); 
PenPat(dkGray); 
repeat 

GetMouse(MousePt.h, MousePt.v); 
until (MousePt.h <> StartPt.h) or (MousePt.v <> StartPt.v) or not 

Button; 
i:t Button then 
bag in 

FTri(StartPt, MousePt); 
OldPoint := MousePt; 
repeat 
begin 

GetMouse(MousePt.h, MousePt.v); 
i:t (MousePt.h <> OldPoint.h) or (MousePt.v <> OldPoint.v) 

than 
bag in 

FTri(StartPt, OldPoint); 
FTri(StartPt, MousePt); 
OldPoint := MousePt; 

and; 
end 

until not Button; 
FTri(StartPt, OldPoint); 
PenPat(Black); 
PenMode(patCopy); 
SortRect(StartPt.h, StartPt.v, OldPoint.h, OldPoint.v); 
Objects[NextObject].ObjectType :=Triangle; 
Xlen := (OldPoint.h - StartPt.h); 
YLen := (OldPoint.v - StartPt.v); 
Objects[NextObjectJ.Center.h := Xlen div 2 + StartPt.h; 
Objects[NextObject].Center.v := Ylen div 2 + StartPt.v; 
Objects[NextObjectJ.Xlength := Xlen; 
Objects[NextObject].YLength := YLen; 
Objects[NextObjectJ.Angle := O; 
DrawTObject(NextObject); 

Continued 
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if NextObject <> MaxObjects then 
NextObject := NextObject + 1; 

end; 
end; 

procedure MakeCirc; 
var 

OldPoint : point; 
XLen, YLen : Integer; 

begin 
PenMode(patXor); 
PenPat(dkGray); 
repeat 

GetMouse(MousePt.h, MousePt.v); 
until (MousePt.h <> StartPt.h) or (MousePt.v <> StartPt.v) or not 

Button; 
if Button then 
begin 

DraWCirc(StartPt, MousePt); 
OldPoint := MousePt; 
repeat 
begin 

GetMouse(MousePt.h, MousePt.v); 
if (MousePt.h <> OldPoint.h) or (MousePt.v <> OldPoint.v) 

then 
begin 

DrawCirc(StartPt, OldPoint); 
DraWCirc(StartPt, MousePt); 
OldPoint := MousePt; 

end; 
end 

until not Button; 
DraWCirc(StartPt, OldPoint); 
PenPat(Black); 
PenMode(patCopy); 
SortRect(StartPt.h, StartPt.v, OldPoint.h, OldPoint.v); 
Objects[NextObject].ObjectType :=Circle; 
Xlen := (OldPoint.h - StartPt.h); 
YLen := (OldPoint.v - StartPt.v); 
Objects [NextObject] • Center. h : = Xle.n div 2 + StartPt. h; 
Objects[NextObject).Center.v := Ylen div 2 + StartPt.v; 

Continued 
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Objects[NextObject].Xlength := Xlen; 
Objects[NextObject].YLength := YLen; 
Objects[NextObject].Angle := O; 
DrawCObject(NextObject); 
if NextObject <> MaxObjects then 

NextObject := NextObject + 1; 
end; 

end; 

procedure MakeCirc2; 
var 

OldPoint : point; 
XLen, YLen : Integer; 

begin 
PenMode(patXor); 
PenPat(dkGray); 
repeat 

GetMouse(MousePt.h, MousePt.v); 
until (MousePt.h <> StartPt.h) or (MousePt.v <> StartPt.v) or not 

Button; 
if Button then 
begin 

FCirc2(StartPt, MousePt); 
OldPoint := MousePt; 
repeat 
begin 

GetMouse(MousePt.h, MousePt.v); 
if (MousePt.h <> OldPoint.h) or (MousePt.v <> OldPoint.v) 

then 
begin 

FCirc2(StartPt, OldPoint); 
FCirc2(StartPt, MousePt); 
OldPoint := MousePt; 

end; 
end 

until not Button; 
FCirc2(StartPt, OldPoint); 
PenPat(Black); 
PenMode(patCopy); 
SortRect(StartPt.h, StartPt.v, OldPoint.h, OldPoint.v); 
Objects[NextObject].ObjectType := Circle2; 

Continued 
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Xlen := (OldPoint.h - StartPt.h); 
YLen := (OldPoint.v - StartPt.v); 
Objects[NextObject].Center.h := Xlen div 2 + StartPt.h; 
Objects[NextObject].Center.v := Ylen div 2 + StartPt.v; 
Objects[NextObject].Xlength := Xlen; 
Objects[NextObject].YLength := YLen; 
Objects[NextObject].Angle := O; 
DrawArcObject(NextObject, 180); 
if NextObject <> MaxObjects then 

NextObject := NextObject + 1; 
end; 

end; 

procedure MakeCirc4; 
var 

OldPoint : point; 
XLen, YLen : Integer; 

begin 
PenMode (patXor) ; 
PenPat (dkGray); 
repeat 

GetMouse(MousePt.h, MousePt.v); 
until (MousePt.h <> StartPt.h) or (MousePt.v <> StartPt.v) or not 

Button; 
if Button then 
begin 

FCirc4(StartPt, MousePt); 
OldPoint := MousePt; 
repeat 
begin 

GetMouse(MousePt.h, MousePt.v); 
if (MousePt.h <> OldPoint.h) or (MousePt.v <> OldPoint.v) 

then 
begin 

FCirc4(StartPt, OldPoint); 
FCirc4(StartPt, MousePt); 
OldPoint := MousePt; 

end; 
end 

until not Button; 
FCirc4(StartPt, OldPoint); 

Continued 
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PenPat(Black); 
PenMode(patCopy); 
SortRect(StartPt.h, StartPt.v, OldPoint.h, OldPoint.v); 
Objects[NextObject].ObjectType := Circle4; 
Xlen := (OldPoint.h - StartPt.h); 
YLen := (OldPoint.v - StartPt.v); 
Objects[NextObject].Center.h := Xlen div 2 + StartPt.h; 
Objects[NextObjectJ.Center.v := Ylen div 2 + StartPt.v; 
Objects[NextObjectJ.Xlength := Xlen; 
Objects[NextObject].YLength := YLen; 
Objects[NextObject].Angle := O; 
DrawArcObject(NextObject, 90); 
if NextObject <> MaxObjects than 

NextObject := NextObject + 1; 
end; 

end; 

procedure DoDraw; 
begin 

StartPt := MousePt; 
case Palette of 

NotDraw : 
DoSelect; 

Line : 
MakeLine; 

Rectangle : 
MakeRect; 

Triangle : 
MakeTri; 

Circle : 
MakeCirc; 

Circle2 : 
MakeCirc2; 

Circle4 : 
MakeCirc4; 

and; 
and; 

procedure PalOff; 
begin 
if SelectedObject <> 0 than 

Continued 
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begin 
PenPat(black); 
DrawObject(SelectedObject); 
SelectedObject := O; 

end; 
case Palette of 

PSelect : 
InvertRect(PselRect); 

Line : 
InvertRect(LineRect); 

Rectangle : 
InvertRect(RectRect); 

Triangle : 
InvertRect(TriRect); 

Circle : 
InvertRect(CircRect); 

Circle2 : 
InvertRect(Circ2Rect); 

Circle4 : 
InvertRect(Circ4Rect); 

end; 
end; 

procedure DoPSelect; 
begin 

PalOff; 
Palette := PSelect; 
InvertRect(PSelRect); 

end; 

procedure DoLine; 
begin 

PalOff; 
Palette := Line; 
InvertRect(LineRect); 

end; 

procedure DoRect; 
begin 

PalOff; 
Palette := Rectangle; 

Continued 
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InvertRect(RectRect); 
end; 

procedure DoTriangle; 
begin 

PalOff; 
Palette := Triangle; 
InvertRect(TriRect); 

and; 

procedure DoCirc; 
begin 

PalOff; 
Palette := Circle; 
InvertRect(CircRect); 

and; 

procedure DoCirc2; 
begin 

PalOff; 
Palette := Circle2; 
InvertRect(Circ2Rect); 

end; 

procedure DoCirc4; 
begin 

PalOff; 
Palette := Circle4; 
InvertRect(Circ4Rect); 

and; 

procedure DoPalette; 
{handle mouse click in palette} 
begin 

repeat 
until not button; 
if PtinRect(MousePt, PSelRect) than 

DoPSelect; 
if PtinRect(MousePt, LineRect) than 

Do Line 
else if PtinRect(MousePt, RectRect) than 

Continued 
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Do Re ct 
else if PtinRect(MousePt, TriRect) then 

DoTriangle 
else if PtinRect(MousePt, CircRect) then 

DoCirc 
else if PtinRect(MousePt, Circ2Rect) then 

DoCirc2 
else if PtinRect(MousePt, Circ4Rect) then 

DoCirc4 
end; 

procedure init; 
con st 

Dv = 40; 
Dh = 10; 
DWidth = 490; 
DHeight = 310; 
palwidth = 40; 
ctrlHeight = 30; 
barWidth = 15; 
barHeight = 15; 
CutWidth = 80; 
MoveWidth = 80; 
Scalewidth = 80; 
RotWidth = 80; 
PSelHeight 40; 
LineHeight = 40; 
RectHeight = 40; 
TriHeight = 40; 
CircHeight = 40; 
Circ2Height 40; 
Circ4Height = 40; 

var 
graphRect : rect; 
i : integer; 

begin 
{initialize variables} 

TextFont(O); 
TextSize(l2); 
PenPat(black); 
PenMode(patcopy); 

Continued 



THE OBJECT-DRAWING PROGRAM 175 

111111111111111111111111111111111 Listing 7 .11 Continued 

Done := FALSE; 
NextObject := 1; 
SelectedObject := O; 

{set up drawing rect, object palette and control palette} 
setRect(graphRect, Oh, Dv, Oh+ DWidth, Dv + DHeight); 
SetDrawingRect(graphRect); 
ShowDrawing; 
setRect(controlRect, -1, Dheight - CtrlHeight - barHeight, DWidth -

palWidth - barwidth + 1, DHeight - barHeight); 
setRect(palRect, DWidth - palwidth - barWidth, -1, DWidth -

barWidth, DHeight - barHeight); 
setRect(DrawRect, O, O, DWidth - palwidth - barWidth, Dheight -

CtrlHeight - barHeight); 
frameRect(controlRect); 
frameRect(PalRect); 
SetRect(CutRect, controlRect.left, controlRect.top, 

controlrect.left + CutWidth, controlRect.bottom); 
FrameRect(CutRect); 
MoveTo(((Cutrect.right - CutRect.left) div 2) - 10, CutRect.top + 

20); 
DrawString('CUT'); 
SetRect(RotRect, CutRect.right, controlRect.top, CutRect.right + 

RotWidth, ControlRect.bottom); 
FrameRect(RotRect); 
MoveTo(RotRect.left + 15, RotRect.top + 20); 
DrawString('ROT'); 
SetRect(MoveRect, RotRect.right, controlrect.top, RotRect.right + 

MoveWidth, ControlRect.bottom); 
FrameRect(MoveRect); 
MoveTo(MoveRect.left + 15, Moverect.top + 20); 
DrawString('MOVE'); 
SetRect(ScaleRect, MoveRect.right, controlrect.top, moverect.right 

+ ScaleWidth, controlrect.bottom); 
FrameRect(ScaleRect); 
MoveTo(ScaleRect.left + 15, ScaleRect.top + 20); 
DrawString('SCALE'); 
SetRect(PSelRect, PalRect.left, palrect.top, palrect.right, 

PalRect.Top + PSe1Height); 
FrameRect(PSelRect); 
MoveTo(PselRect.left + 10, PSelRect.top + 25); 
DrawString('Sel'); 

Continued 
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SetRect(LineRect, PalRect.left, PSelRect.bottom, PalRect.right, 
PSelRect.bottom + LineHeight); 

FrameRect(LineRect); 
SetRect(RectRect, PalRect.left, LineRect.bottom, Palrect.right, 

LineRect.bottom + RectHeight); 
FrameRect(RectRect); 
SetRect(TriRect, Palrect.left, RectRect.bottom, PalRect.right, 

rectRect.bottom + TriHeight); 
FrameRect(TriRect); 
SetRect(CircRect, PalRect.Left, TriRect.bottom, PalRect.right, 

TriRect.bottom + CircHeight); 
FrameRect(CircRect); 
SetRect(Circ2Rect, PalRect.left, CircRect.bottom, PalRect.right, 

CircRect.bottom + Circ2Height); 
FrameRect(Circ2Rect); 
SetRect(Circ4Rect, PalRect.left, Circ2Rect.bottom, PalRect.right, 

Circ2Rect.bottom + Circ4Height); 
FrameRect(Circ4Rect); 
PenSize(2, 2); 

{draw objects in palette} 
TempRect := LineRect; 
InsetRect(TempRect, 8, 8); 
MoveTo(tempRect.left, Temprect.top); 
LineTo(TempRect.right, TempRect.Bottom); 
TempRect := RectRect; 
InsetRect(TempRect, 8, 8); 
FrameRect(TempRect); 
TempRect := TriRect; 
InsetRect(TempRect, 8, 8); 
MoveTo(TempRect.left, TempRect.top); 
LineTo(TempRect.right, TempRect.top + ((TempRect.bottom -

TempRect.top) div 2)); 
LineTo(TempRect.left, TempRect.bottom); 
LineTo(TempRect.left, TempRect.top); 
TempRect := CircRect; 
InsetRect(TempRect, 4, 4); 
FrameOval(TempRect); 
TempRect := Circ2Rect; 
InsetRect(Temprect, 8, 8); 
FrameArc(TempRect, O, 180); 
TempRect := Circ4Rect; 

Continued 
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InsetRect(Temprect, 8, 8); 
FrameArc(TempRect, 0, 90); 
Palette := Line; 
InvertRect(LineRect); 

{initialize cursor} 
for i := 4 to 12 do 
begin 

CrossHairs.data[i] := 256; 
CrossHairs.mask[i] := 256; 

end; 
CrossHairs.data[8) := 8176; 
CrossHairs.mask[8J := 4064; 
CrossHairs.hotspot.v := 8; 
CrossHairs.hotspot.h := 8; 
InitCursor; 
SetCursor(CrossHairs); 

end; 

begin 
init; 
repeat 
repeat 

GetMouse(mousePt.h, MousePt.v); 
if Ptinrect(MousePt, DrawRect) than 

SetCursor(CrossHairs) 
else 

SetCursor(arrow); 
until button; 
GetMouse(MousePt.h, MousePt.v); 
if PtinRect(MousePt, PalRect) than 

DoPalette 
else if PtinRect(MousePt, ControlRect) than 

DoControl 
else if PtinRect(MousePt, DrawRect) then 

DoDraw; 
until Done; 

end. 
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This chapter could just as well have been called "Smoothies andJaggies." 
It's about two of the more exotic branches of computer graphics, spline 
functions that draw smooth curves and fractal algorithms that draw jagged 
curves. 

11111111111111111111111111111111 DRAWING SMOOTH CURVES 

A draftsperson who wants to draw a smooth curve pulls out a template 
called afrench curve. It is a flat piece of plastic cut in a curved shape. Just 
as the draftsperson uses a straightedge to draw a straight line, he or she 
uses a french curve to draw curves. The draftsperson usually has a set of 
templates with all types of curves: french curves of various sizes and 
shapes, ellipses, circles, and parabolas. 

Computer graphics programmers can't use french curves; instead 
they reach into their bag of curve-drawing algorithms to pick one that 
seems appropriate. For most of the curves that a draftsperson uses, there's 
an algorithm that a computer programmer can use to draw the same thing. 
Sometimes you will want to draw a curve with the computer that doesn't 
look exactly like one of the standard curves. If you look at car bodies, boat 
hulls, or aircraft, you'll see that they are composed of many complex 
curves, not just sections of simple curves like ellipses or parabolas. 

Over the past 20 years, computer scientists and mathematicians have 
developed many techniques for drawing complex curves with a computer. 
They usually require that you specify some of the points that you want the 
curve to pass through. The algorithms then draw curves that approximate 
the shape needed to pass through those points. It's possible, though, to 
specify points that cannot be easily fitted with a smooth curve. The next 
best thing that you can do in that case is to use several different curves and 
connect them. Let's look at several examples. 

In figure 8.1, you see a series of points, indicated by small crosses. I 
wanted to construct a smooth curve that passes through these points. In 
this case, that turned out to be pretty easy. Some experimentation showed 
that the points are very close to being on part of an ellipse, and I used the 
formula for an ellipse to generate the curve shown directly below the 
points. 

How did I know the curve would be part of an ellipse? It was just a 
lucky guess based on experience and an eye for curves. We'd like to be able 
to do better than guess, though. Perhaps if we look at what a draftsperson 
does when he or she wants to draw a curve, we'll get a clue as to how we 
might make our curve fitting more rigorous. 

A draftsperson, seeing those points, would probably get out the 
supply of curve templates and start trying them to see what fits. We could 
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111111111111111111111111111111111 Figure 8.1 A simple curve 

do the same thing, trying different algorithms to see which one comes 
closest to what we want. If we examine the mathematics behind those 
algorithms, we may be able to come up with a methodical way of choosing 
just the right formula to fit a curve to our set of points. Let's look at some 
formulas for common curves. 

Circle 
Ellipse 
Parabola 
Cubic curve 

x2 + y2 = r2 
ax2 + by2 = r2 
y = ax2 +bx+ c 
y = ax3 + bx2 + ex + d 

About the only similarity we see is that the formulas all have some 
number of components that are powers of x. That's not much to go on, 
but mathematicians like to play with equations, so they played around and 
noticed that if you express the equations in parametric form, you start to 
see a relationship. 

The parametric form is a way of expressing the same mathematical 
relationship that we see in the formulas above but with an additional 
variable introduced, the parameter. Instead of showing the relationship of 
x and y in one equation, we use two equations. One gives the value of x 
in terms of the parameter, and the other gives the value of y in terms of the 
parameter. 

X = Cx/2 + Cx1t + Cxo 

y = Cy/2 + Cy/ + Cy0 
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The Cx and cy represent constants. The parameter is t. It is sometimes 
useful to think of t as the distance that you are traveling along the curve 
with the formulas giving the values of x and y. The values of the constants 
determine the shape of the curve. It turns out that a great many varieties 
of smooth curves can be drawn with a pair of parametric equations. If you 
generalize the set of equations to express x or y as a power series in t, 
you've got our generalized tool for drawing curves. You would express the 
equations as follows: 

X = Cx/n + CXn-ln-1 + ... + Cxl3 + Cx/2 + Cx,t + Cxo 

y = Cy/n + CYn-ln-1 + ... + Cy3t3 + Cy/2 +Cy/+ Cyo 

Are you tired of math yet? That's about all we're going to see for a 
while. But now that we have these neat equations, the real trick is to pick 
the values of the constants to produce a curve that goes through our 
points. 

We can place a few restrictions on the type of curve that we want, and 
that will help us choose the constants. We know that we don't want a 
curve like the one in figure 8.2. It goes through the control points, but it 
goes a lot of other places, too. We'd like it to be better behaved: to stick 
close to the control points and be smooth without wandering off in 
random directions. 

Figure 8.3 shows us something else that we don't want, a curve with 
a sharp peak in the middle. We call the mathematicians over and point out 
these deficiencies in the formulas; they go off and mutter mathematics to 
themselves for a while and come back with a solution of sorts: a set of 

111111111111111111111111111111111 Figure 8.2 A curve through points 
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111111111111111111111111111111111 Figure 8.3 A curve with discontinuity 

mathematical restrictions that limit our choices of the constants that 
determine the shapes of the curves. If we are going to develop a computer 
program that uses those restrictions with the parametric equations, the 
program will still have to go through some sort of trial-and-error process 
to select the constants. 

It's still possible for us to specify a series of points that no parametric 
equation can draw a smooth curve through. In this case, we go back to the 
draftsperson to see what to do. Faced with a complex curve that no 
templates fit, the draftsperson makes the curve by using different tem­
plates for different pieces of the curve. We can do the same. We use 
different equations or just the same parametric equations with different 
sets of constants for various sections of the curve. The trick here is to make 
these different curve sections fit together smoothly (figure 8.4). 

In the end, we make a series of compromises between how close the 
curve comes to the control points, how smooth it is, and how much 
compute time it takes to generate the curve. A method commonly used 
involves what are called Bezier curves. The Bezier method joins curves 
generated by different parametric equations. The curves are modified near 
their ends by blending functions that attempt to make them join smoothly. 
Bezier curves are a good compromise for many applications, but they have 
two significant drawbacks: the curve does not pass through all of the 
control points {it does pass near all of them), and the joints between 
curves are not always smooth. 
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111111111111111111111111111111111 Figure 8.4 Fitting curves together 

11111111111111111111111111111111 SPLINE CURVES 

If our most important requirement is smooth curves, we use the B-Spline 
method of generating complex curves. The term spline comes from 
another tool that draftspersons have used to draw complex smooth curves. 
A spline is a metal strip with slots cut into one side. The slots allow the 
strip to be flexible but also restrict the radius of curvature. 

The B-Spline technique, like the Bezier technique, uses a blending 
function to join curves, but it does a better job of it than the Bezier 
method. You do have to give up something to get that smoothness and 
continuity: the curve passes through fewer control points than the Bezier 
curve. With the smoothness comes another factor. The placement of a 
control point near a B-Spline curve affects not just the area around that 
point; it affects the shape of the entire curve. Let's take a look at the 
B-Spline curve in figure 8.5 to see what that means. 

You can see that the placement of the conrol points exerts an 
influence on the curve even though the curve does not pass through the 
points. If you can imagine an elastic string or rubber band that has 
magnetic properties (in other words, is attracted by magnets), you can get 
a better idea of how the control points affect the shape of the curve. 

Imagine that you lay the magnetic rubber band on the surface of a 
drawing table and pin down its ends. You then place magnets on the 
drawing board at points corresponding to the control points of a B-Spline 
curve. The magnets pull the rubber band into a curved shape. Each 
magnet's influence on the shape depends on how close it is to the curve 
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111111111111111111111111111111111 Figure 8. 5 A B-Spline curve 

and how close other magnets are. The B-Spline algorithm reacts to control 
points in much the same way. You can get a curve to come closer to 
control points if you place several control points close together. Figures 
8.6 and 8 . 7 were generated with a B-Spline algorithm. The principal 
difference is that , in figure 8. 7, the first peak of the curve has two control 
points. Notice how close the curve comes to the control points and how 
they affect its shape. 

In figure 8.8, we've increased the number of control points. Notice 
how much closer the curve is to the control points. It actually passes 
through many of them. 

Let's see what kind of program generated these curves. We won't go 
into the detailed mathematics behind the algorithm. For readers with a 
mathematical bent, there are references that show you where to find that 
kind of information. You can use this program to draw curves or take the 
spline algorithm and use it in other programs, all without becoming a 
mathematician. If you want to draw very smooth curves for professional 
applications by using these techniques , you should look up some of the 
references (see the bibliography at the end of this book). This spline 
algorithm is a reasonable compromise between simplicity and smooth 
curves, but there are better algorithms. This one suffers from a 1-bit 
rounding error when converting from real coordinates to the Macintosh's 



186 SPLINES AND FRACTALS 

D Dr11wing 

+ 
~ 

+ 

l2J 

111111111111111111111111111111111 Figure 8.6 A curve with four control points 
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111111111111111111111111111111111 Figure 8. 7 The effect of adding a fifth control point 
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1111111111 11 111111111111111111111 Figure 8.8 A curve with many control points 

integer coordinates. It shows a slight tendency to do a 1- or 2-pixel 
oscillation where different sections of the curve blend together. 

First, type in the program and try it. You set control points (figure 8.9) 
by clicking the mouse button in the drawing window. 

When you have established all of your control points, click the mouse 
anywhere outside of the drawing window, and the program begins calcu­
lating and drawing the curve. It starts at the first control point and usually 
ends up on or extremely close to the last control point (figure 8.10). 

It 's slow, isn't it? It takes a lot of iterations to calculate all of the points 
of the curve and the influence of nearby curve points and control points . 
This is one of the reasons why really sophisticated image synthesis 
programs are usually run on a Cray instead of a Macintosh. 

When you have a specific shape in mind that you want the curve to 
match, putting in lots of control points will make the curve come out very 
close to the shape you want (figure 8.11). 

You can even make curves that close on themselves or curve inside of 
themselves like a spiral (figure 8.12). 
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111111111111111111111111111111111 Figure 8.9 Control points 
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111111111111111111111111111111111 Figure 8.10 The curve 



SPLINE CURVES 189 

Drawing __ 

+ 
+ 

+ 

111111111111111111111111111111111 Figure 8.11 A curve with many control points 
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111111111111111111111111111111111 Figure 8.12 A spiral curve 
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11111111111111111111111111111111 THE SPLINE PROGRAM 

The main loop of the program has two tasks. First it must allow the user 
to enter the control points and identify them in the drawing window. 
Then it must calculate and draw a curve determined by those control 
points. The main loop of the program is shown in listing 8.1. 

The init procedure initializes the drawing window, the cursor shape, 
and some variables. Two variables that affect the curve calculations are 
initialized in the main loop. They are the curve order and the number of 
iterations for the spline algorithm. The order is a parameter in the spline 
algorithm that influences the shape of the curve. The higher the number, 
the closer the curve comes to the control points. A reasonable value for 
order is 3, 4, or 5. The number of iterations affects the smoothness of the 
curve and the length of time it takes the program to calculate the curve. A 
higher number (within limits) creates a smoother curve; a lower number 
shortens the calculation time. 

The getpoints function is the routine that allows the user to select 
control points by clicking the mouse in the drawing window. It returns the 
number of control points to the main loop. Getpoints executes until the 
user clicks the mouse outside of the drawing window. It then returns to 
the main loop. 

The spline function returns a point that is a function of the parameter 
t, the number of control points, and the order of the curve. It is based on 
a spline algorithm described in Principles of Interactive Computer Graph­
ics by William M. Newman and Robert F. Sproull. We will take a brief and 

111111111111111111111111111111111 Listing 8.1 The Main Loop of BSplines 

(listing 8 .1, BSpline program main loop} 

begin 
in it; 
order : = 3; 
iterations := 200; 
npoints := getpoints - 1; 
MaxT := npoints - order + 2; 
CurvePt := spline (0, npoints, order); 
MoveTo(CurvePt.h, CurvePt.v); 
for j := 1 to iterations do 
begin 

t := (j * MaxT) I (iterations + 1); 
CurvePt := Spline (t, npoints, order); 
LineTo(CurvePt.h, CurvePt.v); 

end; 
end. 
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superficial look at the spline algorithm. If you are interested in more 
details or the mathematical basis for the spline function, you can find it in 
chapter 21 of Newman and Sproull's book. 

The first time the main loop calls the spline function, it uses the 
function to calculate the first point on the curve. After moving the pen to 
the first point on the curve, the program enters a loop to calculate the rest 
of the points on the curve. The control variable for the loop is iterations. 
It determines the number of points that the program calculates for the 
curve. The range of values that the parameter t can assume is divided into 
a number of increments equal to the number of iterations. Each time 
through the loop, the program calculates the value of the parameter t for 
the current iteration, uses the spline function to calculate the point on the 
curve, and draws a line from the previous point to the new curve point. 

In listing 8.2, we see the spline function. It calculates a curve point by 
adding the influences of the control points. The influence of a control 
point is determined by the blending function. The order of the curve has 
an influence by determining the number of control points used to calcu­
late a point on the curve. The blend function uses the joint function to 
locate the joining points for the various sections of the curve. It smoothly 
blends the sections of the curve by applying blending functions to the 
influence of nearby control points. 

The entire spline program listing is at the end of this chapter. The 
blend and joint functions are in that listing. 

11111111111111111111111111111111 DRAWING JAGGED CURVES 

Smooth curves are almost always a human product; nature seems to prefer 
jagged lines. If you look at the outline of a mountain range or a coastline 
on a map, you will see what I mean. A new branch of mathematics has 
been developed just to describe the types of shapes that nature normally 
produces, fractional geometry. The functions that determine that geom­
etry are called fractals. 

Have you noticed that when you look at some things in nature, the 
closer you look the more detail you see? Even something that looks 
perfectly flat, a highly machined metal part, shows surface roughness 
when you look closer. Look at it with a microscope, and you will no longer 
see even a clue that it has a flat surface. You can find other examples 
wherever you look in nature. If you examine a snowflake with your naked 
eye, you see its crystalline pattern. If you use a magnifying glass, you see 
that what appeared to be straight lines composing the pattern of the 
structure are really more detailed structures. 
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111111111111111111111111111111111 Listing 8.2 The Spline Function 

{listing 8.2} 
function Spline (st : real; 

n, k : integer) : point; 
{n -- number of control points} 
{st -- curve generating parameter, 0 < st < n-k+2} 
{k -- curve's order of continuity} 
type 

RPoint = record 
x : real; 
y : real; 

end; 
var 
i, TLim : integer; 
x, y : real; 
result : point; 
P : RPoint; 

{other routines go here, see listing 8. 9} 

begin 
x : = 0; 
y := O; 
Tlim := n - k + 2; {also used by Joint function} 
if st > TLim then 
st := TLim; 

for i : = 0 to n do {n = number of control points -1} 
begin 

P.x := P.x + CtlX[i + l] * Blend(i, k, st); 
P.y := P.y + CtlY[i + l] * Blend(i, k, st); 

end; 
result. v : = round (P .y); 
result.h := round(P.x); 
Spline := result; 

end; 

If you use the map of a coastline to measure its length, you arrive at 
a number that you think is reasonable. Suppose that the scale of the map 
is such that the smallest increment that you can measure is 1 mile. If you 
use a map with a larger scale-say one that allows you to measure tenths 
of a mile-and remeasure the coastline, it will appear to be longer. If you 
could measure the real coastline (not a map) with a yardstick, you'd get a 
still larger number. The smaller the increments of measurement, the longer 
the coastline appears. That's one of the properties of fractional geometry. 
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11111111111111111111111111111111 DRAWING FRACTALS 

We can use the principles of fractional geometry to create drawings that 
simulate nature. There are algorithms that produce detailed snowflakelike 
drawings. There are others that can be used for modeling coastlines or 
mountain ranges. The best way to describe how to draw fractals is to 
examine some programs that do just that. 

In this chapter, we'll look at three programs for drawing fractals. All 
of the programs start with an initial pattern defined by the user. They add 
more detail to the pattern in successive iterations, redrawing the pattern 
each time. 

The first successively adds more detail to a shape that we define at the 
start of the program. It redraws the design at each level of detail. The 
second uses the same approach but adds a random factor that simulates 
the irregular outlines found in nature. The third program successively 
divides a line segment into smaller parts, perturbing the connecting points 
at each iteration. It draws a good outline of a mountain range. 

The user controls the first two programs in the same way. When the 
program starts, it draws the end points of a pattern that will be the start of 
the fractal. The user clicks the mouse on the other points that will define 
the pattern. The program draws a line from the previous point to each new 
point as the user clicks the mouse in the drawing window. After defining 
the initial pattern, the user clicks the mouse outside of the drawing 
window, and the program completes the pattern by drawing a line to the 
end point. 

In figure 8.13 we see the screen before the user has defined the initial 
pattern. In figure 8.14 the user has defined three line segments. The user 
then clicks outside of the drawing window, and the program completes 
the pattern (figure 8.15). 

The user controls the iteration process by clicking the mouse button. 
The first time the user clicks the button outside of the drawing window 
(to complete the initial pattern), the program draws a line from the last 
point the user defined to the end point defined by the program and 
removes the crosses from the screen. The next time the user clicks the 
mouse, the program does the first iteration. It replaces each line segment 
in the pattern with a scaled-down copy of the entire pattern; then it draws 
the new pattern. Figure 8.16 shows the first iteration for the pattern in 
figure 8.15. 

Each time the user clicks the mouse, the program does another 
iteration, replacing each existing line segment with the entire pattern. 
The third and fourth iterations for our pattern are shown in figures 8.17 
and 8.18. 
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111111111111111111111111111111111 Figure 8.13 End points 
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111111111111111111111111111111111 Figure 8.14 The partially drawn pattern 
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Orowing 

111111111111111111111111111111111 Figure 8.15 The completed initial pattern 

Orowing 

111111111111111111111111111111111 Figure 8.16 The first iteration 
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Drawing 

111111111111111111111111111111111 Figure 8.1 7 The third iteration 

Drawing 

111111111111111111111111111111111 Figure 8.18 The fourth iteration 
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Of course, the pattern that you end up with depends a great deal on 
what you started with . Figure 8.19 shows a different starting pattern, and 
figure 8.20 shows the fourth iteration. Try some patterns yourself, and see 
what kinds of results you can get. 

The program itself is not complex, and bears a resemblance to the 
spline program. In listing 8 .3, we see the main loop of the program. It calls 
an initialization routine that sets up variables, the cursor, and the drawing 
window. The getpoints routine looks familiar: it allows the user to enter 
the points that define the initial pattern and stores those points in the 
arrays CtlX and CtlY. The main loop also calls InitPts to initialize the arrays 
that hold the points of the patterns. OriginCtl recalculates all of the points 
in the initial pattern to give them a zero offset from the origin. These 
points constitute the pattern that is used to replace line segments during 
the iteration process . 

Getpoints retains control until the user clicks the mouse outside of 
the drawing window to complete the initial pattern. After getpoints 
returns to the main loop, the last thing executed is the iterate procedure. 
It sits in an endless loop waiting for a mouse click. When it gets a mouse 
click, iterate calculates a new pattern by replacing each line segment with 
a scaled copy of the initial pattern. It scales the initial pattern and rotates 
it to make it fit exactly in the place of the line segment it replaces . 

Drawing 

111111111111111111111111111111111 Figure 8.19 Another initial pattern 
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Drawing 

111111111111111111111111111111111 Figure 8.20 The fourth iteration of the pattern shown in figure 8.19 

111111111111111111111111111111111 Listing 8.3 The Main Loop of the Fractal Programs 

{listing 8.3) 
begin 

in it; 
npoints : = getpoints; 
length := CtlX[np o intsJ - CtlX[l); 
InitPts; 
OriginCtl; 
iterate; 

end. 

Iterate (listing 8.4) does its job in three steps. When it detects a mouse 
click, it erases the drawing window (eraseRect), calculates the new pattern 
(calcpts), and draws the new pattern (drawpts). Calcpts is really the heart 
of the program (listing 8 .5). 

Calcpts works with two lists of points. One list is contained in the 
arrays oldPtsH and oldPtsV; the other is in newPtsH and newPtsV. The 
pattern is always drawn on the basis of the points in newPts. OldPts is used 
to calculate new points when an iteration is being performed. The new 
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{listing 8. 4} 
procedure iterate; 
var 

i : integer; 
done : BOOLEAN; 

begin 
eraseRect(DrawRect); 
drawpts; 
done := false; 
repeat 
repeat 
until button; 
repeat 
until not button; 
eraseRect(DrawRect); 
calcpts; 
drawpts 

until done; 
end; 

111111111111111111111111111111111 Listing 8.5 The Calcpts Routine 

{listing 8. 5} 
procedure calcpts; 
var 

i : integer; 
begin 

nextNew : = 1; 
for i : = 2 to nOldPts do 
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CalcNew(oldPtsH[i - 1], oldPtsV[i - 1], oldPtsH[i], 
oldPtsV[i]); 

NewPtsH [nextNew] : = oldPtsH [nOldPts]; 
NewPtsV[nextNew] := oldPtsV[nOldPts]; 
nNewPts := nextNew; 
for i : = 1 to nNewPts do 
begin 

oldPtsH[i] := newPtsH[i]; 
oldPtsV[i] := newPtsV[ij; 

end; 
nOldpts : = nNewPts; 

end; 

point values are put in newPts, but when the calculation is complete, the 
data in newPts is copied to oldPts. 

Calcpts calculates the points for a new pattern by executing a loop 
that steps through the set of old points. For each pair of old points, calcpts 
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calls a routine that calculates new points. Calcpts passes that routine, 
CalcNew, a pair of points. CalcNew (listing 8.6) must figure out the 
distance between the points and calculate the sine and cosine of the angle 
that a line between those points makes with the horizontal axis. It uses 
those numbers to convert the description of the initial pattern (in CtlX and 
CtlY) to a scaled-down copy of that pattern between the two old points. 

If the initial pattern has four line segments, it takes five points to 
describe it. CalcNew is passed two points for every line segment in oldPts 
and generates five points for newPts; that is, CalcNew generates five points 
for each pair passed to it. 

11111111111111111111111111111111 SIMULATING NATURE 

If we want to draw something that looks more like a natural phenomenon 
such as a mountain or a coastline, we need to introduce an element of 
randomness into the pattern. The second fractal program does that by 
adding a random offset to the y value (vertical coordinate) of the new 
points calculated every iteration. Except for that random offset, the pro­
gram is identical to the first. The CalcNew routine (listing 8. 7) calculates 
a new offset every time it is called and adds that offset to every y value that 

111111111111111111111111111111111 Listing 8.6 The CalcNew Routine 

{listing 8.6) 
procedure CalcNew (hl, vl, h2, v2 : integer); 
var 

scale, seglen, SegCos, SegSin : real; 
i : integer; 

begin 
seglen := sqrt(sqr(h2 - hl) + sqr(v2 - vl)); 
scale := seglen I length; 
SegSin := (vl - v2) I seglen; 
SegCos := (h2 - hl) I seglen; 

{we want to rotate & scale the figure in Ctl then move it to 
(hl,vl)} 

{take each point from ctl, rotate it, scale it and offset by 
(hl,vl)} 

for i := 1 to npoints - 1 do 
begin 

newPtsV[nextNewJ := round(scale * (SegCos * CtlY[i] -
SegSin * CtlX(i])) + vl; 

newPtsH[nextNew) := round(scale * (SegSin * CtlY[i] + 
SegCos * CtlX[i])) + hl; 

nextNew := nextNew + l; 
end; 

end; 
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111111111111111111111111111111111 Listing 8. 7 The CalcNew Routine with Offset 

{listing 8.7) 
procedure CalcNew (hl, vl, h2, v2 : integer); 
var 
offset, scale, seglen, SegCos, SegSin : real; 
i : integer; 

begin 
seglen := sqrt(sqr(h2 - hl) + sqr(v2 - vl)); 
scale : = seglen I length; 
SegSin := (vl - v2) I seglen; 
SegCos := (h2 - hl) I seglen; 
offset := random I (32767); 

{we want to rotate & scale the figure in Ctl then move it to 
(hl,vl)) 

{take each point from ctl, rotate it, scale it and offset by 
(hl,vl)) 

for i := 1 to npoints - 1 do 
begin 

newPtsV[nextNew] := round(offset * scale * (SegCos * 
CtlY[i] - SegSin * CtlX[i])) + vl; 

newPtsH[nextNew] := round(scale * (SegSin * CtlY[i) + 
SegCos * CtlX[i])) + hl; 

next New : = nextNew + 1; 
end; 

end; 

it puts in newPtsV. Every iteration, the program places a scaled and rotated 
copy of the initial pattern in place of each line segment in the old pattern. 

The effect of the changes to CalcNew is to offset the points of the 
scaled and rotated initial pattern. Each time the initial pattern replaces a 
line segment, the routine calculates a new offset; that is, there is a new 
offset for every pair of points in oldPts. 

Figures 8.21 through 8.25 show the sequence of patterns generated 
by the Fractal2 program. This set of patterns was started with the same 
initial pattern that we used with the first fractal program. Comparing figure 
8.25 to figure 8.20, you can see that the random offset made quite a 
difference. Instead of the filigree in figure 8.20, we get a pattern that looks 
more like a coastline. 

Our last fractal program does not allow the user to specify the initial 
pattern. It starts by assuming that a line between the two end points is the 
initial pattern. At each iteration, the program divides each line segment 
into two line segments. The point where the two new line segments join 
is offset vertically from the old line segment by a random amount. 

At the start of the program, the user specifies where the division point 
for the initial line segment will be. The user clicks the mouse somewhere 
in the window, and that point determines the initial offset value. At each 



202 SPLINES AND FRACTALS 

Drowing 

111111111111111111111111111111111 Figure 8.21 The Fractal2 initial pattern 

Drowing 

111111111111111111111111111111111 Figure 8.22 The Fracta12 first iteration 
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Dr11wing 

111111111111111111111111111111111 Figure 8.23 The Fractal2 second iteration 

Drnwing 

111111111111111111111111111111111 Figure 8.24 The Fractal2 third iteration 
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§0 Drowing 

111111111111111111111111111111111 Figure 8.2 5 The Fractal2 fourth iteration 

iteration, that offset value is modified by a fudge factor (amp) and a random 
number to calculate the vertical offset of each new pattern. 

In listing 8.8, we see the CalcNew procedure for the Fractal3 pro­
gram. Every time it is passed a pair of points from the old pattern, it 
calculates three new points, replacing the old line segment with two new 

111111111111111111111111111111111 Listing 8.8 The Fractal3 CalcNew Routine 

{listing 8.8) 
procedure CalcNew (hl, vl, h2, v2 : integer); 
var 

seglen, SegCos, SegSin, ran : real; 
i : integer; 

begin 
seglen := sqrt(sqr(h2 - hl) + sqr(v2 - vl) ); 
ran := random I 32767; 
newPtsV [nextNew] : = vl; 
newPtsH [nextNew] := hl; 
nextNew := nextNew + l; 
offset : = ran * seglen * amp * scale; 
newPtsV[nextNew] := -round( (vl - v2) / 2 + offset) + vl; 
newPtsH [nextNew] := ( (h2 - hl) div 2) + hl; 
nextNew := nextNew + l; 

end; 



SIMULATING NATURE 205 

line segments. The old line segment is divided at its center, and the joining 
point of the new line segments is offset vertically by the value of the offset 
variable. That variable is calculated by multiplying the original offset 
entered by the user (scale) by the segment length (seglen), the fudge factor 
(amp), and the random number (ran). 

The effect is to offset the center of each line segment. vertically by a 
random amount at each iteration. The random number is different for each 
line segment. Note that when the user enters the point used to calculate 
the offset, the program does not use the horizontal component of that 
point; only the vertical component is used. The complete listing for 
Fractal3 is at the end of this chapter. 

Figures 8.26 through 8.29 show a set of patterns generated by 
Fractal3. Figures 8.26 through 8.28 show the initial pattern and the first 
two iterations; figure 8.29 is the eighth iteration. We are making fewer 
changes at each iteration than we did in the Fractal 1 and Fractal2 pro­
grams, so it takes more iterations to produce a detailed pattern with 
Fractal3. 

Drawing 

111111111111111111111111111111111 Figure 8.26 The Fractal3 initial pattern 
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ornwing 

111111111111111111111111111111111 Figure 8.27 The Fractal3 first iteration 

Drawing 

111111111111111111111111111111111 Figure 8.28 The Fractal3 second iteration 
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Drawing 

111111111111111111111111111111111 Figure 8.29 The Fractal3 eighth iteration 

The program makes a nice mountain range, with the mountains 
becoming more rugged with each iteration. Fractal3 can be modified to 
produce a good imitation of a coastline if you also offset the horizontal 
cooordinate of the joint between the new line segments. 

Listings 8 .9, 8.10, 8.11, and 8.12 show the BSplines, Fractall, Frac­
tal2, and Fractal3 programs in their entirety. 
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111111111111111111111111111111111 Listing 8.9 BSplines 

program BSplines; 
{Listing 8. 9} 
con st 

MaxPoints = 100; 
Oh = 40; 
Dv = 40; 
DWidth = 390; 
DHeight = 2 90; 

var 
iterations, npoints, MaxT, k, j, order : Integer; 
t : real; 
CtlX, CtlY : array[l . . MaxPoints) of real; 
DrawRect, graphRect : Rect; 
CrossHairs : cursor; 
CurvePt : Point; 

function Spline (st : real; 
n, k : integer) : point; 

{n -- number of control points} 
{st -- curve generating parameter, 0 < ·St < n-k+2} 
{k -- curve's order of continuity} 

type 
RPoint = record 

x : real; 
y : real; 

end; 
var 
i, TLim : integer; 
x, y : real; 
result : point; 
P : RPoint; 

function Joint (m integer) integer; 
begin 
if (m >= k) and (m <= n) then 
Joint := m - k + 1 

else if m < k then 
Joint .- 0 

else 
Joint : = TLim 

end; 

function Blend (bi, bk : integer; 
bt : real) real; 

var 
I temp : integer; 
Rtemp : real; 

{this routine recurses} 
begin 
if bk = 1 then 
if (Joint (bi) <= bt) and (bt < Joint (bi + 1)) then 

Continued 



THE SPLINE PROGRAM 209 

111111111111111111111111111111111 Listing 8.9 Continued 

Rtemp := 1 
else 

Rtemp := 0 
else 
begin 

!temp := Joint(bi +bk - 1) - Joint(bi); 
if !temp <> 0 then 

Rtemp := (bt - Joint (bi)) * Blend(bi, bk - 1, bt) I 
I temp 

else 
Rtemp := O; 

!temp := Joint(bi +bk) - Joint(bi + 1); 
if !temp <> 0 then 

Rtemp := Rtemp + (Joint(bi + bk) - bt) * Blend(bi + 1, 
bk - 1, bt) I !temp 

end; 
Blend : = Rtemp 

end; 

begin 
x := 0; 
y := O; 
Tlim := n - k + 2; {also used by Joint function} 
if st > TLim then 
st : = TLim; 

for i := 0 to n do {n = number of control points -1} 
begin 

P.x := P.x + CtlX[i + 1) * Blend(i, k, st); 
P.y := P.y + CtlY[i + 1) * Blend(i, k, st); 

end; 
result.v := round(P.y); 
result.h := round(P.x); 
Spline := result; 

end; 

procedure init; 
var 
i, j : integer; 

begin 
for j : = 1 to MaxPoints do 
begin 

CtlX [ j) : = 0; 
Ct 1 Y [ j) : = 0; 

end; 
SetRect(graphRect, Dh, Dv, Dh + DWidth, Dv + DHeight); 
SetDrawingRect(graphRect); 
SetRect (DrawRect, 0, 0, DWidth, DHeight); 
ShowDrawing; 
CrossHairs.data[4] := 8176; 
CrossHairs.data[12J := 8176; 
for i := 5 to 11 do 

Continued 
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111111111111111111111111111111111 Listing 8.9 Continued 

begin 
CrossHairs.data[i) .- 4368; 
CrossHairs .mask [i] .- 256; 

end; 
CrossHairs.data[8) := 8176; 
CrossHairs.mask[8) := 4064; 
CrossHairs.hotspot.v := 8; 
CrossHairs.hotspot.h := 8; 
InitCursor; 
SetCursor(CrossHairs); 

end; 

function getpoints 
var 

i : integer; 
MousePt : Point; 
Done : BOOLEAN; 

begin 
i := 1; 
repeat 
begin 

integer; 

GetMouse(MousePt.h, MousePt.vl; 
if PtinRect (mousePt, DrawRect) then 
setCursor(crosshairs) 

else 
SetCursor(arrow); 

if Button then 
begin 
if PtinRect (mousePt, DrawRect) then 
begin 
repeat 
until not button; 
moveto(mousePt.h - 4, mousept.v); 
lineTo(mousept.h + 4, mousePt.v); 
moveto(mousePt.h, mousePt.v - 4); 
lineTo (MousePt. h, mousePt. v + 4) ; 
CtlX[iJ := mousePt.h; 
CtlY[i) := mousept.v; 
i := i + 1; 
if i > MaxPoints then 

Done . - TRUE; 
end 

else 
Done . - TRUE; 

end; 
end; 

until Done; 
getPoints : = i - 1; 

end; 

begin 

Continued 
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in it; 
order := 3; 
iterations := 200; 
npoints : = getpoints - 1; 
MaxT := npoints - order + 2; 

THE SPLINE PROGRAM 211 

CurvePt := spline (0, npoints, order); 
MoveTo(CurvePt.h, CurvePt.v); 
for j := 1 to iterations do 
begin 

t := (j * MaxT) I (iterations + 1); 
CurvePt : = Spline (t, npoints, order) ; 
LineTo(CurvePt.h, CurvePt.v); 

end; 
end. 
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111111111111111111111111111111111 Listing 8.1 O Fractal 1 

program Fractal!; 
{listing 8.10} 

{input points to define initial pattern} 
{then iterate} 
con st 

MaxCtl = 10; 
MaxPts = 600; 
Dh = 40; 
Dv = 40; 
DWidth = 390; 
DHeight = 2 90; 

var 
startPt, stopPt : point; 
CtlX, CtlY : array[l. .MaxCtl] of integer; 
oldPtsH, oldPtsV, NewPtsH, NewPtsV : array[l. .MaxPts] of 

integer; 
npoints, nOldPts, nNewPts, length, NextNew : integer; 
DrawRect, graphRect : Rect; 
CrossHairs : cursor; 

procedure CalcNew (hl, vl, h2, v2 : integer); 
var 

scale, seglen, SegCos, SegSin : real; 
i : integer; 

begin 
seglen := sqrt(sqr(h2 - hl) + sqr(v2 - vl)); 
scale := seglen I length; 
SegSin := (vl - v2) I seglen; 
SegCos := (h2 - hl) I seglen; 

{we want to rotate & scale the figure in Ctl then move it to 
(hl, vl)} 

{take each point from ctl, rotate it, scale it and offset by 
(hl,vl)} 

for i := 1 to npoints - 1 do 
begin 

newPtsV[nextNew] := round(scale * (SegCos * CtlY[i] -
SegSin * CtlX[i])) + vl; 

newPtsH[nextNew] := round(scale * (SegSin * CtlY[i] + 
SegCos * Ct lX [ i l ) ) + hl; 

nextNew := nextNew + 1; 
end; 

end; 

procedure calcpts; 
var 

i : integer; 
begin 

nextNew : = 1; 
for i := 2 to nOldPts do 

CalcNew(oldPtsH[i - 1], oldPtsV[i - 1], oldPtsH[i], 

Continued 



THEFRACTALlPROGRAM 213 

111111111111111111111111111111111 Listing 8.1 O Continued 

oldPtsV[i]); 
NewPtsH[nextNew] := oldPtsH[nOldPts]; 
NewPtsV[nextNew] := oldPtsV[nOldPts]; 
nNewPts := nextNew; 
for i : = 1 to nNewPts do 
begin 

oldPtsH[i] := newPtsH[i]; 
oldPtsV [ i J : = newPtsV [ i] ; 

and; 
nOldpts := nNewPts; 

end; 

procedure drawpts; 
var 

i : integer; 
begin 

moveto(newPtsH[l], newPtsV[lJ); 
for i : = 2 to nNewPts do 
lineto(newPtsH[i], newPtsV[i]); 

end; 

procedure OriginCtl; 
var 

i : integer; 
begin 

for i := 1 to NPoints do 
begin 

CtlX[i] .- CtlX[i] - StartPt.h; 
CtlY[i] .- CtlY[i] - StartPt.v; 

end; 
end; 

procedure InitPts; 
var 

i : integer; 
begin 

nOldPts := npoints; 
nNewPts : = npoints; 
for i := 1 to nOldPts do 
begin 

oldPtsH[i] := CtlX[i]; 
oldPtsV[i] := CtlY[i]; 
newPtsH[i] .- CtlX[i]; 
newPtsV[i] := CtlY[i]; 

end; 
end; 

procedure iterate; 
var 

i : integer; 
done : BOOLEAN; 

Continued 
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111111111111111111111111111111111 Listing 8.10 Continued 

begin 
eraseRect(DrawRect); 
drawpts; 
done := false; 
repeat 
repeat 
until button; 
repeat 
until not button; 
eraseRect(DrawRect); 
calcpts; 
drawpts 

until done; 
end; 

procedure Cross (pt : point); 
begin 

moveto(pt.h - 4, pt.v); 
lineTo(pt.h + 4, pt.v); 
moveto(pt.h, pt.v - 4); 
lineTo(pt.h, pt.v + 4); 

end; 

procedure init; 
var 
i, j : integer; 

begin 
for j : = 1 to MaxCtl do 
begin 

CtlX [ j) : = 0; 
Ctl Y [ j ) : = 0; 

end; 
for j : = 1 to MaxPts do 
begin 

NewPtsH[j) .- O; 
NewPtsV[j) .- O; 
o 1 dP t s H [ j ) . - 0 ; 
01 dP t s V [ j ) . - 0 ; 

end; 
SetRect(graphRect, Oh, Dv, Dh + DWidth, Dv + DHeight); 
SetDrawingRect(graphRect); 
SetRect (DrawRect, O, 0, DWidth, DHeight); 
ShowDrawing; 
CrossHairs.data[4J := 8176; 
CrossHairs.data[12J .- 8176; 
for i := 5 to 11 do 
begin 

CrossHairs.data[i) := 4368; 
CrossHairs.mask[i) := 256; 

end; 
CrossHairs .data[8) := 8176; 

Continued 
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CrossHairs.mask[8] := 4064; 
CrossHairs.hotspot.v := 8; 
CrossHairs.hotspot.h := 8; 
InitCursor; 
SetCursor(CrossHairs); 
startPt.v := Dheight div 2; 
startPt .h := 30; 
stopPt. v : = startPt. v; 
stopPt.h := DWidth - 30; 
Cross(startPt); 
Cross(stopPt); 

end; 

function getpoints integer; 
var 

i : integer; 
lastPT, MousePt Point; 
Done : BOOLEAN; 

begin 
i := 1; 
CtlX[i] := StartPt.h; 
CtlY[i] := StartPt.v; 
moveTo(CtlX[i], CtlY[i]); 
i := i + 1; 
repeat 
begin 

THEFRACTALlPROGRAM 

GetMouse(MousePt.h, MousePt.v); 
if Pt InRect (mousePt, DrawRect) then 
setCursor(crosshairs) 

else 
SetCursor(arrow); 

if Button then 
begin 
repeat 
until not button; 
if PtinRect (MousePt, drawRect) then 
begin 

1 ineTo (mousePt. h, mousePt. v) ; 
CtlX[i] := rnousePt.h; 
CtlY[il := rnousept.v; 
i := i + 1; 
if i > MaxCt 1 then· 

Done : = TRUE; 
end 

else 
Done . - TRUE i 

end; 
end; 

until Done; 
CtlX [ i] : = StopPt .h; 
CtlY[i] .- StopPt.v; 
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Continued 
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111111111111111111111111111111111 Listing 8.10 Continued 

lineTo(CtlX[i], CtlY[i]); 
getPoints : = i; 

end; 

begin 
init; 
npoints : = getpoints; 
length := CtlX[npoints] - CtlX[l]; 
InitPts; 
OriginCtl; 
iterate; 

end. 
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program Fractal2; 
{listing 8 .11} 

THEFRACTAL2PROGRAM 

{Like Fractal 1 but adds a random factor} 
const 

MaxCtl = 10; 
MaxPts = 60 0; 
Dh = 40; 
Dv = 40; 
DWidth = 390; 
DHeight = 2 90; 

var 
startPt, stopPt : point; 
CtlX, CtlY : array[l. .MaxCtl) of integer; 
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oldPtsH, oldPtsV, NewPtsH, NewPtsV : array[l. .MaxPts) of 
integer; 

npoints, nOldPts, nNewPts, length, NextNew : integer; 
DrawRect, graphRect Rect; 
CrossHairs : cursor; 

procedure CalcNew (hl, vl, h2, v2 : integer); 
var 
offset, scale, seglen, SegCos, SegSin : real; 
i : integer; 

begin 
seglen := sqrt(sqr(h2 - hl) + sqr(v2 - vl)); 
scale := seglen I length; 
SegSin := (vl - v2) I seglen; 
SegCos := (h2 - hl) I seglen; 
offset := random I (32767); 

{we want to rotate & scale the figure in Ctl then move it to 
(hl,vl)} 

{take each point from ctl, rotate it, scale it and offset by 
(hl,vl)} 

for i := 1 to npoints - 1 do 
begin 

newPtsV [nextNew) : = round (offset * scale * (SegCos * 
CtlY[i) - SegSin * CtlX[i))) + vl; 

newPtsH[nextNew) := round(scale * (SegSin * CtlY[i) + 
SegCos * CtlX[i))) + hl; 

nextNew := nextNew + 1; 
end; 

end; 

procedure calcpts; 
var 

i : integer; 
begin 

nextNew : = 1; 
for i : = 2 to nOldPts do 

CalcNew(oldPtsH[i - 1), oldPtsV[i - 1), oldPtsH[i), 
oldPtsV[i)); 

Continued 
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111111111111111111111111111111111 Listing 8.11 Continued 

NewPtsH [nextNew] := oldPtsH [nOldPts]; 
NewPtsV[nextNew] := oldPtsV[nOldPts]; 
nNewPts : = nextNew; 
for i := 1 to nNewPts do 
begin 

oldPtsH[i] := newPtsH[i]; 
oldPtsV[i] := newPtsV[i]; 

end; 
nOldpts := nNewPts; 

end; 

procedure drawpts; 
var 

i : integer; 
begin 

moveto (newPtsH [ 1], newPtsV [ 1]); 
for i := 2 to nNewPts do 
lineto (newPtsH[i], newPtsV[i)); 

end; 

procedure OriginCtl; 
var 

i : integer; 
begin 
for i := 1 to NPoints do 
begin 

CtlX[i] .- CtlX[i] - StartPt.h; 
CtlY[i] .- CtlY[i] - StartPt.v; 

end; 
end; 

procedure InitPts; 
var 

i : integer; 
begin 

nOldPts : = npoints; 
nNewPts := npoints; 
for i : = 1 to nOldPts do 
begin 

oldPtsH[i] := CtlX[i] i 

oldPtsV[i] .- CtlY[i] i 
newPtsH[i] := CtlX[i]; 
newPtsV[i] .- CtlY[i]; 

end; 
end; 

procedure iterate; 
var 

i : integer; 
done : BOOLEAN i 

begin 

Continued 
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eraseRect(DrawRect); 
drawpts; 
done := false; 
repeat 
repeat 
until button; 
repeat 
until not button; 
eraseRect(DrawRect); 
calcpts; 
drawpts 

until done; 
end; 

procedure Cross (pt : point); 
begin 

moveto(pt.h - 4, pt.v); 
lineTo(pt.h + 4, pt.v); 
moveto(pt.h, pt.v - 4); 
lineTo(pt.h, pt.v + 4); 

end; 

procedure init; 
var 
i, j : integer; 

begin 
for j : = 1 to MaxCtl do 
begin 

Ct lX [ j ] : = 0; 
Ctl Y [ j ] : = 0 ; 

end; 
for j : = 1 to MaxPts do 
begin 

NewPtsH[j] := O; 
NewPtsV[j] := O; 
o 1 dP ts H [ j ] : = 0; 
OldPtsV[j] := O; 

end; 
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SetRect(graphRect, Oh, Dv, Dh + DWidth, Dv + DHeight); 
SetDrawingRect(graphRect); 
SetRect(DrawRect, O, O, DWidth, DHeight); 
ShowDrawing; 
CrossHairs.data[4] := 8176; 
CrossHairs.data[12] .- 8176; 
for i := 5 to 11 do 
begin 

CrossHairs.data[i] := 4368; 
CrossHairs .mask (i] := 256; 

end; 
CrossHairs.data[8] := 8176; 
CrossHairs.mask[8] := 4064; 

Continued 
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111111111111111111111111111111111 Listing 8.11 Continued 

CrossHairs.hotspot.v := 8; 
CrossHairs.hotspot.h := 8; 
InitCursor; 
SetCursor(CrossHairs); 
startPt. v : = Dheight div 2; 
startPt .h := 3.0; 
stopPt. v : = startPt. v; 
stopPt.h := DWidth - 30; 
Cross(startPt); 
Cross(stopPt); 

end; 

function getpoints : integer; 
var 

i : integer; 
lastPT, MousePt Point; 
Done : BOOLEAN; 

begin 
i := 1; 
CtlX[i] := StartPt.h; 
CtlY[i] := StartPt.v; 
moveTo(CtlX[i], CtlY[i]); 
i := i + l; 
repeat 
begin 

GetMouse(MousePt.h, MousePt.v); 
if PtinRect (mousePt, DrawRect) then 
setCursor(crosshairs) 

else 
SetCursor(arrow); 

if Button then 
begin 
repeat 
until not button; 
if PtinRect (MousePt, drawRect) then 
begin 

lineTo(mousePt.h, mousePt.v); 
CtlX [ i] : = mousePt. h; 
CtlY[i] := mousept.v; 
i := i + 1; 
if i > MaxCtl then 

Done : = TRUE; 
end 

else 
Done : = TRUE; 

end; 
end; 

until Done; 
CtlX[i] := StopPt.h; 
CtlY[i] := StopPt.v; 
lineTo (CtlX[i], CtlY[i]); 

Continued 
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getPoints := i; 
end; 

begin 
in it; 
npoints := getpoints; 
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length := CtlX[npoints] - CtlX[l]; 
InitPts; 
OriginCtl; 
iterate; 

end. 
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program Fractal3; 
(listing 8 .12} 
{random curve} 
(one input point for initial displacement} 
I makes good mountains} 
con st 

MaxCtl = 10; 
MaxPts = 300; 
Oh = 40; 
Dv = 40; 
DWidth = 390; 
DHeight = 2 90; 
amp= 0.01; 

var 
startPt, stopPt : point; 
CtlX, CtlY : array[l .. MaxCtl] of integer; 
oldPtsH, oldPtsV, NewPtsH, NewPtsV : array[l. .MaxPts] of 

integer; 
npoints, nOldPts, nNewPts, length, NextNew : integer; 
DrawRect, graphRect : Rect; 
CrossHairs : cursor; 
offset, scale : real; 

procedure CalcNew (hl, vl, h2, v2 : integer); 
var 

seglen, SegCos, SegSin, ran real; 
i : integer; 

begin 
seglen := sqrt(sqr(h2 - hl) + sqr(v2 - vl)); 
ran := random I 32767; 
newPtsV[nextNew] := vl; 
newPtsH [nextNew] : = hl; 
nextNew : = nextNew + 1; 
offset : = ran * seglen * amp * scale; 
newPtsV[nextNew] := -round((vl - v2) I 2 +offset) + vl; 
newPtsH [nextNew] := ( (h2 - hl) div 2) + hl; 
nextNew := nextNew + 1; 

end; 

procedure calcpts; 
var 

i : integer; 
begin 

nextNew : = 1; 
for i := 2 to nOldPts do 

CalcNew(oldPtsH[i - 1], oldPtsV[i - 1], oldPtsH[i], 
oldPtsV[i]); 

NewPtsH[nextNew] := oldPtsH[nOldPts]; 
NewPtsV[nextNew] := oldPtsV[nOldPts]; 
nNewPts := nextNew; 
for i := 1 to nNewPts do 

Continued 
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begin 
oldPtsH[i] := newPtsH[i]; 
oldPtsV[i] := newPtsV[i]; 

end; 
nOldpts := nNewPts; 

end; 

procedure drawpts; 
var 

i : integer; 
begin 

move to (newPtsH [ 1], newPtsV [ 11 ) ; 
for i := 2 to nNewPts do 
lineto (newPtsH[i], newPtsV[i]); 

end; 

procedure OriginCtl; 
var 

i : integer; 
begin 

for i := 1 to NPoints do 
begin 

CtlX[i] := CtlX[i] - StartPt.h; 
CtlY[i] := CtlY[i] - StartPt.v; 

end; 
end; 

procedure InitPts; 
var 

i : integer; 
begin 

nOldPts : = npoints; 
nNewPts := npoints; 
for i : = 1 to nOldPts do 
begin 

oldPtsH[i] := CtlX[i]; 
oldPtsV[i] := CtlY[i]; 
newPtsH[i] := CtlX[i]; 
newPtsV[i] := CtlY[i]; 

end; 
end; 

procedure iterate; 
var 

i : integer; 
done : BOOLEAN; 

begin 
eraseRect(DrawRect); 
drawpts; 
done := false; 
repeat 

Continued 
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repeat 
until button; 
repeat 
until not button; 
eraseRect(DrawRect); 
calcpts; 
drawpts 

until done; 
end; 

procedure Cross (pt : point) ; 
beqin 

moveto(pt.h - 4, pt.v); 
lineTo(pt.h + 4, pt.v); 
moveto(pt.h, pt.v - 4); 
lineTo(pt.h, pt.v + 4); 

end; 

procedure init; 
var 
i, j : integer; 

begin 
for j : = 1 to MaxCtl do 
beqin 

CtlX[j] := O; 
Ctl Y [ j] : = 0; 

end; 
for j := 1 to MaxPts do 
beqin 

NewPtsH[j] := 0; 
NewPtsV[j] := 0; 
o 1 dP ts H [ j ] : = 0 ; 
OldPtsV[j] := O; 

end; 
SetRect(graphRect, Dh, Dv, Dh + DWidth, Dv + DHeight); 
SetDrawingRect(graphRect); 
SetRect (DrawRect, O, O, DWidth, DHeight); 
ShowDrawing; 
CrossHairs.data[4] := 8176; 
CrossHairs.data[12] := 8176; 
for i := 5 to 11 do 
begin 

CrossHairs.data[i] := 4368; 
CrossHairs .mask [i] := 256; 

end; 
CrossHairs.data[8] := 8176; 
CrossHairs.mask[8] := 4064; 
CrossHairs.hotspot.v := 8; 
CrossHairs.hotspot.h := 8; 
InitCursor; 
SetCursor(CrossHairs); 

Continued 
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startPt.v := Dheight div 2; 
startPt.h := 30; 
stopPt. v : = startPt. v; 
stopPt.h := DWidth - 30; 
Cross(startPt); 
Cross(stopPt); 

end; 
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function getpoints : integer; 
var 

i : integer; 
lastPT, MousePt : Point; 
Done : BOOLEAN; 

begin 
CtlX[l] := StartPt.h; 
CtlY[l] := StartPt.v; 
moveTo(CtlX[l], CtlY[l]); 
repeat 
begin 

GetMouse(MousePt.h, MousePt.v); 
if PtinRect (mousePt, DrawRect) then 
setCursor(crosshairs) 

else 
SetCursor(arrow); 

if Button then 
begin 

repeat 
until not button; 
if PtinRect (MousePt, drawRect) then 
begin 

lineTo(mousePt.h, mousePt.v); 
CtlX[2] := mousePt.h; 
CtlY[2] := mousept.v; 
Done : = TRUE; 

end 
end; 

end; 
until done; 
CtlX[3] := StopPt.h; 
CtlY [3] := StopPt .v; 
lineTo (CtlX[3], CtlY[3]); 
scale := CtlY[l] - CtlY[2]; 
getPoints := 3; 

end; 

begin 
init; 
npoints : = getpoints; 
length := CtlX[npoints] - CtlX[l]; 
InitPts; 
iterate; 

end. 
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11111111111111111111111111111111 SOUND BASICS 

A door slamming, a radio blasting rock music, or a string quartet playing 
Eine Kleine Nacbtmusik: all of the sounds that you hear come to your ear 
as vibrations in the air. Musical instruments, radios, stereos, and the 
carpenter's hammer hitting a nail all produce sounds by causing air 
vibrations. The Macintosh is no different. It has a small speaker like the 
one in a radio. The Macintosh hardware, controlled by your program, 
makes the speaker vibrate to produce sounds. 

We won't need to worry about the speaker itself or the hardware that 
drives it. All we're concerned with is how to write a program that makes 
sounds. The Macintosh can produce quite a variety of sounds, and in 
order to understand how to control the type of sound the Mac produces, 
we need to know something about sound. 

Musical notes consist of a vibration with a particular waveshape that 
is repeated very rapidly. If we were to make a graph of the vibration that 
produces a tone that sounds pure, it would look like the one shown in 
figure 9.1. The vertical axis represents the vibration's amplitude, and the 
horizontal axis represents time. The amplitude can be the amount that a 
speaker moves to produce the sound, air pressure, the amount that your 
eardrum moves when it receives the sound, or any other measure of sound 
that makes sense. In this case, it represents the electrical current that the 
Macintosh sound hardware sends to the speaker. 

The shape of the sound wave might seem an unnecessary detail, but 
it is important. It's the shape that determines the character of the sound. 
The length of the sound waveform determines how often it is repeated and 
hence the pitch. The height determines the volume of the sound. You 

Amplitude 

111111111111111111111111111111111 Figure 9.1 A sine wave 
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could have two tones, one produced by plucking the string of a harp and 
another produced by an oboe. They could both have the same pitch and 
volume but would still sound different. The difference is in the shape of 
the sound wave. 

The wave in figure 9 .1 is shaped like the graph of the trigonometric 
sine function. It's a common sound waveshape. It's even more common 
to find sound waves that are combinations of several sine waves of 
different amplitude, frequency, and phase. Let's see what these terms­
amplitude, frequency, and phase-really mean. 

In figure 9.2 we see another sine wave, with a particular point on the 
wave marked. The amplitude at that point is the distance from the x axis 
to the sine curve. The amplitude of the wave is the amplitude of the 
highest point on the curve. The period of the wave is the amount of time 
that it takes for the wave (or the hardware that generates it) to make one 
complete cycle and start to produce the same waveshape again. The 
frequency of the wave is the number of waves that can be generated in 1 
second and is the inverse of the period. The period is measured in seconds 
or fractions of a second. The frequency is measured in units of cycles per 
second called hertz. 

Frequency is just another word for pitch, and the period can also be 
used to represent the same information. The amplitude of the sound wave 
is the same as the volume. The higher the amplitude, the louder the sound. 
Our ears are more sensitive to weak sounds than to loud sounds, and as a 
result, the relationship between the amplitude of a sound and how loud 
we perceive it to be is not a linear one. It is, in fact, logarithmic. If we 
increase the amplitude of a sound by a factor of 10, it sounds twice as loud 
to us. 

Amplitude 

Amplitude 
of Wave 

Amplitude 
of Point 

I< 
Period 

>I 
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The phase of a sound is a measure of how it lines up with another 
sound wave of the same frequency (or an exact multiple of the frequency). 
If we take an arbitrary point in time (for instance, the origin of our 
coordinate system), the phase of a point on the wave is a measure of how 
fur along the wave the point is from that arbitrary point in time. Phase is 
a measure of time but is expressed in degrees, a complete waveform having 
360 degrees. Phase is a relative measurement. It usually measures the 
difference in start time between two sound waves. 

Figure 9.3 shows two sound waves in the same graph. The phase 
angle ~ is a measure of the time relationship between the two waveforms. 

We're interested in phase, amplitude, and frequency because com­
bining sine waves of different phase, amplitude, and frequency produces 
new waveshapes, and it's the shape of the wave that gives the sound its 
unique character, what musicians call timbre. 

In our programs that produce sound, we can add various waves 
together to produce unique sounds. One of our programs will have the 
ability to synthesize sounds from various sine waves that we specify. 
Before we do that, however, we need to look at the Macintosh toolbox 
routines that control the sound generation hardware. 

MAKING MUSIC WITH 
11111111111111111111111111111111 THE MACINTOSH 

The Macintosh simulates a music or sound synthesizer in software. In tact, 
it simulates three different types of synthesizers. One simply produces a 
single tone with a square wave. You can specify the frequency, amplitude, 
and duration of the tone. The second synthesizer can produce four tones 

Amplitude 
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simultaneously. For each of the four tones, you can specify the frequency, 
phase, and waveform. You cannot start and stop the four tones individu­
ally; they must be started together and must have the same duration. The 
third, the free-form synthesizer, allows you to specify an arbitrary wave­
form of any length. It can be used to simulate almost any sound and has 
been used by programs that do speech synthesis. 

An application program controls the synthesizers through the tool­
box routines listed below. 

SysBeep 

Note 

StartSound 

StopSouild 

SoundDone 

SetSoundVol 

GetSoundVol 

Produces a preset square-wave tone of specified 
duration. 

Produces a tone of specified amplitude, 
frequency, and duration. 

Starts a sound produced by the square-wave, 
four-voice, or free-form synthesizer. 

Stops a sound started by the StartSound 
procedure. 

Returns TRUE if the sound started by StartSound 
is done; otherwise returns FALSE. 

Sets the sound volume to one of the eight 
volume levels (0 through 7). This volume 
setting applies to all sounds produced by the 
synthesizers. It is the same as the sound volume 
set by the control panel desk accessory. 

Returns the current sound volume (0 through 7). 

When you call StartSound and pass it sound data, it sets up a data 
structure for the sound driver and starts the sound driver. It doesn't 
actually produce the sounds. The sound driver interrupt handler executes 
every 44.93 microseconds and sets the speaker current every time it 
executes. The sound interrupt handler knows what to do by looking at the 
sound list established by the sound driver. What this means to us is that, 
in some cases, our program can start a sound and then go execute some 
more code while the sound driver and its interrupt handler make the 
sounds for us. 

Let's see how we can use the sound routines to have some fun with 
Macintosh. 
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11111111111111111111111111111111 SYSBEEP AND NOTE 

The SysBeep and Note routines are good when you want the program to 
get the user's attention but you don't care about making beautiful music. 
The tone generated by SysBeep is the same as the tone that you hear when 
you turn the Macintosh on. You don't have any control over the amplitude 
or frequency of the tone, but you do specify its duration. 

SysBeep(Duration : Integer); 

Listing 9 .1 is a short program that calls Sys Beep every time you press 
the mouse button. 

The variable tis the duration of the tone in seconds. SysBeep needs 
to be told the duration in units of 0.022 second, so the program converts 
t before calling SysBeep. 

The Note procedure is very similar to SysBeep, but it lets you specify 
the amplitude and frequency of the tone as well as the duration. 

Note(Frequency : Longint, Amplitude, Duration : Integer); 

The duration for Note is in sixtieths of a second. The frequency is 
specified in hertz (cycles per second), and the amplitude is an integer in the 
range Oto 255, with the loudest amplitude being 255. Like SysBeep, Note 
produces a square wave. 

111111111111111111111111111111111 Listing 9 .1 Beep 

program Beep; 
{Listing 9. 1} 
var 

t : integer; 
Done : BOOLEAN; 

begin 
Done := FALSE; 
t := 1; 
repeat 
begin 
repeat 
until button; 
repeat 
until not button; 
SysBeep(round(t I 0.022)); 

end; 
until Done; 

end. 
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The program in listing 9.2 enters a loop that uses the Note procedure 
to produce tones of successively higher frequency. 

When the frequency reaches the upper limit allowed by the Macin­
tosh software, the program starts again at the lowest frequency. You will 
notice when you run this program that the Macintosh hardware and 
software can produce high-frequency tones that are beyond the capabili­
ties of the speaker. As the program gets into that frequency range, you start 
to hear the lower subharmonics of the tone that the Macintosh is trying to 
produce. If you want to produce the higher frequencies, you may need to 
use a high-quality audio amplifier and speaker hooked to the audio output 
jack on the back of the Macintosh. 

11111111111111111111111111111111 CONTROWNG THE VOWME 

Do you remember the volume control on the control panel desk acces­
sory? It sets the volume level for all sounds produced by the Macintosh. 
Some of the sound routines that you can call from your program let you 
specify an amplitude, but that amplitude is not the same as the volume 

111111111111111111111111111111111 Listing 9.2 Note 

program Note; 
{listing 9.2} 
var 
Amplitude, Duration integer; 
Frequency : Long int; 
Done : BOOLEAN; 
t : real; 

begin 
Done := FALSE; 

{time in units of 1 sec} 
t := 0.1; 

{duration in units of 1/60 sec} 
duration := round (60 * t); 

{frequency in Herz (cycles per second)} 
Frequency := 440; 

(amplitude, 0 ... 255) 
Amplitude := 64; 
repeat 
begin 

Note(Frequency, Amplitude, Durat~on); 

Frequency : = round (Frequency * ( 1 + 1 I 14) ) ; 
if Frequency > 32767 then 

Frequency := 440; 
end; 

until Done; 
end. 
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setting. When your program sets a sound's amplitude to its highest value, 
the sound is as loud as the current volume setting allows. If you set the 
amplitude lower, the sound is proportionally lower than the current 
volume setting. 

Even though the volume is supposed to be set by the user with the 
control panel, the sound driver provides two routines to allow you to 
manipulate the volume from your program. The GetSound procedure 
returns the current volume level setting. It is a value between O and 7, the 
same as the volume level settings in the control panel. The SetSoundVol 
procedure sets the volume level to the value that you specify; again, it's 
from Oto 7. 

Even though those routines are available, the Macintosh user interface 
design guidelines recommend that you not use them. You should allow the 
user to control the volume with the control panel. 

11111111111111111111111111111111 THE SOUND SYNTHESIZERS 

When you want to do something more ambitious than producing simple 
tones, you need to use one of the three audio synthesizers. Each synthe­
sizer is actually a piece of software in the sound driver and uses the same 
hardware to produce sounds that the SysBeep and Note procedures use. 
You use the same set of procedures and functions to control all three 
synthesizers. The difference is in the data structures that you pass to the 
StartSound procedure. 

There are three different types of synthesizer data structures, one for 
each synthesizer type. Each has a synthesizer record, but the record 
formats are different. The first field in the record contains the synthesizer 
type and thus identifies the record type. The synthesizer types are pre­
defined constants. 

const 
SWmode = -1; 
FFmode = O; 
FTmode = l; 

(Square-wave synthesizer) 
(Free-form synthesizer) 
(Four-tone synthesizer) 

The synthesizer records have predefined record types. 

type 
SWSynthRec = record 

mode : integer; 
triplets : Tones 

end; 



FFSynthRec = record 
mode : integer; 
rate : longint; 
wave Bytes : Free Wave 

end; 

FTSynthRec = record 
mode : integer; 
SndRec : FTSndRecPtr 

end; 
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The application program must set the mode field in the synthesizer 
record to one of the predefined mode values before calling StartSound. 

Each of the synthesizer records refers to other predefined record 
types: triplets, waveBytes, and SndRec. We'll look at those record types 
when we talk about the individual synthesizers in detail. 

When using the square-wave or four-tone synthesizers, we don't use 
the predefined synthesizer record type. Instead we define a record of 
identical format. This seems to be a peculiarity of the way that Macintosh 
Pascal uses the sound driver. 

An application program starts a synthesizer by calling the StartSound 
procedure. The sound driver and synthesizer software will produce the 
sounds specified in the synthesizer record until they have produced all of 
the sounds specified or the program calls the StopSound procedure. 

Compared to the processing speed of the Macintosh, it takes a long 
time to produce a sound. The program has the option of having the 
StartSound routine wait until it has finished before returning or having it 
return as soon as it starts the sound. If the StartSound routine returns as 
soon as it starts the sound, the program can continue to execute while the 
sound driver makes sounds. The program can use the SoundDone func­
tion to find out if the sound driver is finished and ready to start another 
sound. 

The documentation on StartSound states that you can specify a 
routine for the driver to execute when it is finished. However, that's not 
the kind of thing you can get away with in Macintosh Pascal. The sound 
completion routine is executed as if it were an interrupt handler, not an 
application program. If your program were compiled into a stand-alone 
application program instead of running as a Macintosh Pascal interpreted 
program, you could use that as a sound completion routine, but you 
would still be limited in what you could do with it. Because it's treated as 
an interrupt handler, the routine cannot call StartSound. About the only 
thing it can do is post an event and let the application program detect the 
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event with a call to the event manager. You might just as well use the 
SoundDone procedure to find out when the driver is finished. It's a lot 
simpler. 

StartSound(SynthRecPtr, NBytes, CompletionPtr); 

SynthRecPtr is a pointer to the synthesizer record. CompletionPtr is 
the pointer to the routine to execute when the driver has finished. In 
Macintosh Pascal, it should be set to either nil or pointer( -1 ). If Com­
pletionPtr is nil, the StartSound routine will return as soon as it starts the 
sound. If CompletionPtr is equal to pointer( -1 ), StartSound won't return 
until the driver has finished producing the sounds specified in the syn­
thesizer record. 

NBytes is the size of the synthesizer record. Instead of hard-coding 
the record size, you should always use SizeOf(SynthRec), where SynthRec 
is the synthesizer record. Also, you can use the @ operator instead of 
creating a pointer to the synthesizer record. Just put @SynthRec in place 
of SynthRecPtr. 

The StopSound procedure causes the sound driver to immediately 
stop producing sound. In Macintosh Pascal, you cannot start another 
sound even though the current one has finished unless you call 
StopSound. There's nothing in the documentation to identify that limi­
tation, but that's the way it works. The best method is to call StartSound, 
do other processing that you need to do, and when you are ready to 
start another sound, wait in a loop until SoundDone returns a TRUE 
value. When you fall out of that loop, call StopSound; then call StartSound 
again. 

StartSound(@SynthRec, SizeOf(SynthRec), nil); 

other processing 

repeat 
until SoundDone; 
StopSound; 
StartSound(@SynthRec, SizeOf(SynthRec) nil); 
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GENERATING 
11111111111111111111111111111111 SQUARE-WAVE TONES 

The square-wave tone synthesizer is the easiest to use and is just the thing 
for applications that don't need more complicated sounds. The synthe­
sizer record for the square-wave synthesizer has an array that contains a list 
of tones. The array has three parameters for each tone: the count (fre­
quency information), the amplitude, and the duration. When we use the 
square-wave synthesizer in Macintosh Pascal, we don't define a variable of 
type SWSynthRec; instead we define a record of our own that looks like 
the SWSynthRec. 

SynthRec : record 
mode : Integer; 
triplets : array [0 .. 3000] of Tone; 

end; 

The application program must set the mode to SWMode before 
calling StartSound. 

The elements of the triplets array are tone records. A tone record 
defines one tone and has the values for the tone's count (frequency), 
amplitude, and duration. 

Tone = record 
Count : Integer; 
Amplitude : Integer; 
Duration : Integer 

end; 

The duration is in sixtieths of a second, and the amplitude is just like 
the amplitude in the Note procedure: it has a range of 0 to 255, with 255 
being the loudest. The count is a method of representing the frequency. If 
the frequency is expressed in hertz (cycles per second), the formula for the 
count is: 

Count = 783360 I Frequency 

When you call StartSound and pass it a synthesizer record for the 
square-wave synthesizer, it starts reading the tone information from the 
triplets array and sounds each tone in sequence. 

Listing 9.3 is a short program that uses the square-wave synthesizer. 
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111111111111111111111111111111111 Listing 9.3 SquareWave 

program SquareWave; 
{listing 9. 3} 
con st 

NTones = 28; 

type 
Tone = record 

Count : Integer; 
Amplitude : Integer; 
Duration : Integer 

end; 

var 
frequency, amp, i integer; 
secs : real; 
SynthRec : record 

Mode : integer; 
Triplets : array [ 1 •• NTones J of Tone; 

end.; 

begin 
frequency := 440; 
secs := 0.1; 
SynthRec.Mode := SWMode; 
amp := 128; 
for i := 1 to NTones do 
begin 
with SynthRec.Triplets[iJ do 
begin 

count := round(783360 I frequency); 
amplitude := amp; 
duration : = round (secs * 60); 
Frequency := round(Frequency * (1 + 1 I 14)); 
amp := amp - ( (128 - 1) div NTones); 
secs := secs + ( (0.5 - 0.1) I NTones); 

end; 
end; 

Start Sound (@SynthRec, sizeof (SynthRec), nil); 
repeat 
until SoundDone or Button; 
if button then 

StopSound; 
end. 

The program sets the synthesizer mode variable and then fills the 
triplets array with tone data. It executes a loop that steps through the 
elements in the triplets array, setting the count, amplitude, and duration 
for each tone. It specifies a different frequency and amplitude for each 
tone, so it must calculate a new amplitude and frequency each time 
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through the loop. Since the frequency is encoded as a count, the program 
also calculates the count each time through the loop. 

After the program fills in the triplets array elements with tone data, it 
calls StartSound. StartSound uses the square-wave synthesizer to sound 
each tone in turn. We passed StartSound the pointer value nil in place of 
the completion routine pointer, so it returns immediately without waiting 
for all of the tones to be done. The program then enters a loop, waiting 
for the sound driver to be done or the mouse button to be pushed. If you 
push the mouse button, the program calls StopSound and stops the sound 
driver from generating sounds. If you don't push the mouse button, the 
program calls StopSound after the driver has finished generating sounds. 

SOUND FROM FREE-FORM 
11111111111111111111111111111111 WAVEFORMS 

The square-wave synthesizer is easy to use but not very exciting. Using the 
free-form synthesizer, the Macintosh is capable of producing more com­
plicated sounds. It can make almost any sound that you can imagine. The 
free-form synthesizer reads a description of an arbitrary waveshape and 
turns it into sound. This synthesizer has been used to make a variety of 
sound effects, even human speech. With the proper audio equipment, you 
can record any sound and digitize it. After turning the digitized sound into 
a free-form synthesizer wave description, you can reproduce it on the 
Macintosh. 

The free-form synthesizer is controlled by StartSound, StopSound, 
and SoundDone just like the other synthesizers. Its synthesizer record 
contains the synthesizer mode (FFMode), a rate parameter, and an array 
that describes the free-form wave. 

SynthRec : record 
Mode : Integer; 
Rate : Fixed; 
WaveBytes : packed array [O .. 30000] of Byte 

end; 

In Macintosh Pascal, we do not define a variable of type FFSynthRec, 
the predefined free-form synthesizer record type. Instead, we define a 
record variable with the same structure as the predefined synthesizer 
record, just as we have done above. 

The rate field is a fixed-point number. The fixed-point data type is 
something that you rarely see in Macintosh Pascal. It is used by some of the 
toolbox routines but is not very well supported by the Macintosh Pascal 
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interpreter. There are only a few fixed-point arithmetic and conversion 
routines documented in the Macintosh Pascal reference manual. 

A fixed-point number is 32 bits long, the same length as a long 
integer, and some documentation uses the longint type when referring to 
fixed-point numbers. Even though fixed-point numbers are the same size 
as long integers, the data format is quite different. The high-order word of 
a fixed-point number contains an integer that is the whole part of the 
number. The low-order word contains the fractional part. There is no 
exponent. To convert a number from an integer to fixed-point, you must 
shift it left 16 bits to get it into the high-order word. 

The WaveBytes array contains a description of the waveform for the 
tone that you want the synthesizer to produce. Each element in the array 
is a byte that contains a value between 0 and 255. When you call the 
StartSound procedure, the Macintosh reads each byte of the waveform 
description in turn and moves the speaker to correspond to the value of 
the waveform at that point. The rate at which the sound driver reads 
waveform bytes and creates sound is determined by the rate parameter in 
the synthesizer record. 

The rate variable determines how many waveform description bytes 
the sound driver will read every 44.93 microseconds (the update rate of 
the sound synthesizer hardware). You can calculate how long it will take 
to generate a waveform at a given rate with the formula below. 

time:= 44.93E-6 • (size I rate); 

Size is the number of bytes that the waveform occupies in the 
waveform description array. Time is in seconds. 

If you know the time that you want the synthesizer to take to sound 
one waveform, you can use one of the formulas below in your program to 
calculate the rate. 

temp:= round(44.93E-6 • (size I time)); 
rate : = BitShift(temp, 16); 

The temp variable is an integer, and its value must be shifted left 16 
bits to convert it to the fixed-point type. The result of the multiplication 
and division is a real number (floating-point), and we round it off to an 
integer value before putting it into temp. 

If you know the frequency of a waveform that you are going to repeat, 
you can calculate the rate parameter with the following formula. 

temp:= round(44.93E-6 * size • frequency); 
rate : = BitShift(temp, 16); 
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The frequency is in hertz. 
Our free-form program creates a waveform definition and then calls 

StartSound to make the sound. We could make a nonrepeating waveform 
of arbitrary shape, but in this program, I chose to make a tone that consists 
of a repeated waveform. We calculate a basic waveshape that is 256 bytes 
and then fill the waveform array with repeated copies of that 255-byte 
waveform. If we were doing speech synthesis or making complicated 
sound effects, we wouldn't use a repeated waveshape. 

We calculate the repeated waveshape by mathematically combining 
sine, cosine, square, and triangle waves. By combining several simple 
waveshapes, we can produce more complicated waves. Figure 9.4 shows 
a wave that is a combination of one sine wave with another sine wave of 
smaller amplitude and higher frequency. The higher-frequency sine wave 
seems to ride on the shoulders of the larger sine wave. 

We can see the function that produced that waveshape in listing 9.4. 
Several functions are defined in the program to give you examples of how 
you can create your own unique functions and waveshapes. 

The program is easy to run; you just start it with the Go command in 
the Macintosh Pascal Run menu and wait for it to calculate the wave, draw 
the waveshape, and make the sound. The amount of time required to 
calculate the waveshape depends on the complexity of the function. 
For the most complex function in the listing, the program takes about 
2 minutes. 

~D Drowing 

111111111111111111111111111111111 Figure 9.4 A composite waveform 
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111111111111111111111111111111111 Listing 9.4 The FunctC Function 

{listing 9. 4} 
function FunctC (angle 
con st 

Nl = l; 
N2 = 0. l; 

var 
Al, A2 : real; 

beqin 
Al := Nl I (Nl + N2); 
A2 := N2 I (Nl + N2); 

real) real; 

FunctC :=Al * sin(angle) + A2 * sin(lS * Angle); 
end; 

The main part of the program is shown in listing 9. 5. The first thing 
it does is hide all of the Macintosh Pascal windows. It then calls lnitDraw 
to set the drawing window size and show the drawing window. After 
setting the frequency and amplitude of the tone, the program calls 
CalcOne to calculate the basic waveshape and SetSound to put repeated 
copies of it into the waveform array. SetSound also sets the mode and rate 
variables in the synthesizer record. 

The DrawOne procedure draws one cycle of the basic waveshape in 
the drawing window. We call StartSound and use pointer( -1) as the 
completion routine pointer. It causes StartSound to wait until the sound is 
finished before returning. 

The Calcone procedure in listing 9.6 makes repeated calls to a 
periodic function to fill the OneWave array with one cycle of our basic 
waveshape. We pass the wave function an angle between 0 and 211", and the 
function returns an amplitude in the range - 1 to + 1. We calculate the 

111111111111111111111111111111111 Listing 9.5 The Main Part of FreeForm 

{listing 9.5} 
beqin 

HideAll; 
InitDraw; 
Freq := 220; 
Amp := 1; 
CalcOne; 
Set Sound; 
DrawOne; 
StartSound(@SynthRec, SizeOf(SynthRec), pointer(-1)); 
StopSound; 

end. 
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lllllllllllllllllllllllllllllllll Listing 9.6 The Calcone Routine 

{listing 9.6} 
procedure Calcone; 
var 

i : integer; 
begin 

for i : = 0 to WaveLength - 1 do 
begin 
theta := 2 * pi * i I WaveLength; 
OneWave[i] := 128 + trunc(Amp * 127 * FunctC(theta)); 

end; 
end; 

angle by multiplying 211" by the ratio of the stepping index to the wave­
length. The wavelength is the number of bytes in one complete cycle (the 
number of elements in the OneWave array). We take the amplitude re­
turned by the function (a real number) and convert it to an integer in the 
range 0 to 255. That's the value that we put in the One Wave array element. 
It's within the proper range to fit in a 1-byte array element. 

Let's look at some other wave functions and their waveshapes. Listing 
9. 7 shows a function that consists of a sine function and the first three odd 
harmonics. The wave that it produces is shown in figure 9.5. 

When we hear the sound corresponding to that waveshape, it sounds 
very close in frequency to the basic waveshape. The shape almost resem­
bles a square wave. The more odd harmonics you add, the more the wave 
looks like a square wave. 

111111111111111111111111111111111 Listing 9. 7 The FunctB Function 

{listing 9.7} 
function FunctB (angle : real) real; 
con st 

Nl l; 
N2 = l; 
N3 = l; 
N4 = l; 

var 
Al, A2, A3, A4 : real; 

begin 
Al := Nl / (Nl + N2 + N3 + N4); 
A2 := N2 I (Nl + N2 + N3 + N4); 
A3 := N3 I (Nl + N2 + N3 + N4); 
A4 := N4 I (Nl + N2 + N3 + N4); 
FunctB :=Al * sin(angle) + A2 * sin(3 * angle) + A3 * sin(S 

*angle) + A4 * sin(7 *angle); 
end; 
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Drowing 

111111111111111111111111111111111 Figure 9.5 Odd harmonics 

In listing 9 .8, we see a function that creates a waveform from a sine 
wave and several even harmonics. As we can see in figure 9.6, the shape is 
quite different from that of the wave with odd harmonics. When we hear 
that sound, it sounds more like several tones in harmony. 

This program is easy to modify to try new waveshapes. In each of the 
functions already defined, the different components of the function are 
multiplied by an amplitude factor before being added together. Try chang-

111111111111111111111111111111111 Listing 9.8 The FunctA Function 

{listing 9. 8} 
function FunctA (angle : real) real; 
con st 

Nl = l; 
N2 = l; 
N3 = l; 

var 
Al, A2, A3 : real; 

begin 
Al := Nl I rn1 + N2 + N3); 
A2 : = N2 / (N 1 + N2 + N 3) ; 
A3 := N3 / (Nl + N2 + N3); 
FunctA := Al * sin(angle) + A2 * sin(2 * Angle) + A3 * sin(4 

* angle); 
end; 
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Drowing 

111111111111111111111111111111111 Figure 9.6 Even harmonics 

ing the relative amplitudes of different harmonics, and see what happens. 
You can also try your hand at making new combinations of sine, square, 
and triangle waves . Something else that would be interesting to try would 
be to write a function that produces random numbers within a given 
amplitude range. If you add various amounts of that function to the rest of 
a calculated waveshape, you will introduce some noise. It can really 
change the character of a sound. 

You'll find the complete listing of the free-form wave program at the 
end of this chapter. 

USING THE FOUR-VOICE 
11111111111111111111111111111111 SYNTHESIZER 

The four-voice synthesizer can produce sound from arbitrarily shaped, 
repeating waveforms. Its advantage is that it can play four waveforms 
simultaneously. Its limitation is that it can play only repeating waveforms 
that can be stored in 256-byte arrays. It cannot play a long nonrepeating 
waveform the way the free-form synthesizer can. For Macintosh Pascal 
programmers, the four-voice synthesizer will be a lot more useful than the 
free-form synthesizer because, with the memory limitations imposed by 
Macintosh Pascal, you can't play a very long free-form waveform. Since the 
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four-voice synthesizer repeats waveforms, the duration of the tones is not 
related to the amount of memory available. 

When using the four-voice synthesizer, we actually use the predefined 
data types for the synthesizer record and other data records. In.addition 
to the synthesizer record, the four-voice synthesizer requires one sound 
record and waveform arrays, one for each waveform that we use. 

type 
FTSynthRec = record 

Mode : integer; 
SndRec : FTSndRecPtr 

end; 

The synthesizer record contains just the synthesizer type and a 
pointer to the sound record. The sound record has a duration parameter 
that applies to all four tones, but for each of the four tones it has rate, phase 
information, and a pointer to the waveform array. 

FTSoundRec = record 
Duration : Integer; 
SoundlRate : Fixed; 
SoundlPhase : Integer; 
Sound2Rate : Fixed; 
Sound2Phase : Integer; 
Sound3Rate : Fixed; 
Sound3Phase : Integer; 
Sound4Rate : Fixed; 
Sound4Phase : Integer; 
Soundl Wave, 
Sound2Wave, 
Sound3Wave, 
Sound4Wave : WavePtr 

end; 

The SoundRate variables are just like the rate variable in the free-form 
synthesizer record. If you set a sound rate variable to zero, the synthesizer 
does not produce the corresponding tone. The waveform array has the 
same format as the OneWave array that we use in the free-form program. 

Wave = packed array [0 .. 255] of Byte; 

The sound synthesizer doesn't necessarily start reading a waveform at 
the first byte in the wave array. You can specify where the synthesizer will 
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start reading waveform bytes. For each of the four tones, you put the wave 
array index of the starting byte in the SoundPhase variable. By setting the 
SoundPhase variables to nonzero values, you can determine the phase 
relationships among the four tones. 

Our four-voice synthesizer program is more elaborate than our other 
sound programs. Like the free-form program, it calculates waveshapes 
from sine, square, and triangle functions . It displays the waveshapes 
individually and in combination. Since it can handle four tones, we put 
four control boxes at the bottom of the drawing window so the user can 
selectively enable or disable each tone. If you disable a tone, the program 
does not display that tone 's waveshape. 

It takes the program a while to calculate each waveshape, so we add 
a prompt box that explains what the program is doing and prompts the 
user for a mouse click at various points before proceeding. When you start 
the program, you see the display shown in figure 9. 7. If you click the 
mouse in any of the boxes in the lower left part of the window, you toggle 
the on/off control for the corresponding tone. 

Figure 9.8 shows the lower part of the drawing window with two 
tones turned off. 

D Drawing 

I ON 12 ON 13 ON 14 ON J Select Uoices or Click Mouse in Window To Start 

'2J 

11 11 111111111 111 11 11 111111111 11 11 Figure 9. 7 The four-voice program window 
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lll!JDEl!JDI 3 ON 14 ON I Select Uoices or Click Mouse in Window To Start 

111111111111111111111111111111111 Figure 9.8 Tone control boxes 

To start the calculation of the waveforms, you click the mouse 
anywhere outside of the four tone control boxes. When the program 
finishes calculating each waveform, it displays the waveform, stops, and 
asks you to click the mouse to continue (figure 9.9). 

The program has four functions set up, but you can change any of 
them by changing the CalcWave routine. The four functions that are in the 
program listing are a sine with two odd harmonics, a sine with two even 
harmonics, a triangle, and a square wave. 

After the program has calculated and displayed each of the four 
waveforms, it displays all four in the same window, as shown in figure 9 .10. 

If you've studied the other programs in this book, there's little need 
to go into the details of how the drawing window is initialized and how 
the control boxes work. Most of the calculations are the same as those in 
the free-form synthesizer program but with variations because of the fact 

Drawing 

ll!JDEl!JD 3 ON 4 ON 

111111111111111111111111111111111 Figure 9.9 Click Mouse to Continue 
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Drawing 

1 ON 2 ON 3 ON 4 ON 

111111111111111111111111111111111 Figure 9.10 Four waves 

that there are four tones. You will probably want to experiment with the 
waveform calculations, so we'll look at the differences between these and 
the one in the free-form program. 

The InitSound procedure initializes the synthesizer record, the sound 
record, and the amplitude variables. The amplitude variables, Ampl 
through Amp4, are used to set the relative amplitudes of the four tones. 
They are real numbers and can take on values between 0 and 1. In the 
unmodified program, they are all set to 1 (see listing 9.9). 

You control the duration of the tones by setting the Time variable to 
the duration in seconds. 

The four-voice wave calculation routine is different from the one in 
the free-form program because, in the four-voice program, we have the 
capability of turning off a tone. If the tone is turned off, the routine 
doesn't waste time calculating the waveform. The CalcSound routine 
checks the SoundRate variable for each tone to see if the tone is turned off; 
the rate is zero if the tone is turned off (see listing 9.10). 

If the amplitude for one of the tones has been set to zero but the tone 
is still turned on, the routine doesn't calculate the waveform; it just sets all 
of the bytes in the waveform array to zero. That 's faster than going through 
the function calculations, but it still takes time, so the routine puts the 
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111111111111111111111111111111111 Listing 9.9 The InitSound Routine 

{listing 9.9} 
procedure InitSound; 
var 

Freql, Freq2, Freq3, Freq4 : real; 
begin 
{initialize synthesizer record} 

SynthRec.Mode := FTMode; 
SynthRec.SndRec := @SoundRec; 

{set synthesizer record pointer} 
SynthRecPtr := @SynthRec; 

{initialize sound record} 
Time := 1. O; 
with SoundRec do 
begin 

Duration := round(Time * 60); 
Freql := 440; 
Freq2 := 440 * (1 + 4 I 14); 
Freq3 := 660; 
Freq4 := 880; 
if vl than 

SoundlRate := RateCalc(Freql) 
else 

SoundlRate := O; 
if v2 than 

Sound2Rate := RateCalc(Freq2) 
else 

Sound2Rate := O; 
if v3 than 

Sound3Rate := RateCalc(Freq3) 
else 

Sound3Rate := O; 
if v4 then 

Sound4Rate := RateCalc(Freq4) 
else 

Sound4Rate := O; 
SoundlPhase := O; 
Sound2Phase := O; 
Sound3Phase := O; 
Sound4Phase := O; 

{set relative amplitudes of 4 voices, 0 -> 1, loudest 1} 
Ampl := 1; 
Amp2 := 1; 
Amp3 := 1; 
Amp4 := 1; 
SoundlWave 
Sound2Wave 
Sound3Wave 
Sound4Wave 

end; 
and; 

:= @Wavel; 
:= @Wave2; 
:= @Wave3; 
:= @Wave4; 
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lllllllllllllllllllllllllllllllll Listing 9.10 Calculating Wave 1 

{listing 9.10} 

{calculate wavel} 
if SoundRec.SoundlRate <> 0 then 
begin 
Message('Calculating Waye 1'); 
if Ampl = 0.0 then 
for i := 0 to 255 do 

Wavel[i] := 0 
else 
for i := 0 to 255 do 
begin 

theta := i * 2 * pi I 255; 
Wavel[i] := 128 + trunc(Ampl * 127 * FunctB(theta)); 

end; 
end; 

Calculating Wave message in the message box at the bottom of the 
drawing window. 

The full listing for the four-voice program is at the end of the chapter. 
There are several ways you could improve on this program. One way 
would be to change the DrawWave procedure to pass it the phase of the 
wave you want to draw, and have it start at the proper byte in the waveform 
array. You would probably want to draw each individual wave starting at 
byte zero but draw them with the proper phase relationships when 
Draw All calls Draw Wave to put all four waveforms on the screen. When 
you start drawing a waveform at the proper phase, you will need to wrap 
around to the beginning of the waveform array after byte 2 5 5 so that you 
draw the entire cycle of the waveform. 

Another useful modification would be to have a display that shows 
the composite waveform of all four voices. You would need to take into 
account the phase and rate of each tone. 

Listings 9 .11 and 9 .12 show the FreeForm and Four Voice programs in 
their entirety. 
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111111111111111111111111111111111 Listing 9.11 FreeForm 

program FreeForm; 
{listing 9 .11} 
con st 

DrawTop = 4 5; 
DrawLeft = 50; 
DrawWidth = 300; 
DrawHeight = 280; 
pi = 3.1415926; 
MaxBytes = 11000; 
WaveLength = 256; 

type 
Byte = 0 •. 255; 

var 
i : integer; 
DrawWind, DrawRect : Rect; 
Amp, Freq, theta : real; 
SynthRec : record 

mode : integer; 
rate : Fixed; 
waveBytes : packed array [ 0 .. MaxBytes J of Byte; 

end; 
OneWave : packed array [ 0 .• Wavelength] of Byte; 

function Triangle (angle : real) : real; 
begin 
if angle <= pi then 
begin 

Triangle := 2 * angle I pi - 1; 
end 

else 
begin 

Triangle := 1 - 2 * (angle - pi) I pi; 
end; 

end; 

function Square (angle 
begin 
if angle < pi then 

Square := 1. 0 
else 

Square := -1. 0; 
end; 

function FunctC (angle 
const 
Nl = 1; 
N2 = 0 .1; 

var 

real) real; 

real) real; 

Continued 
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Al, A2 : real; 
begin 

Al := Nl I (Nl + N2); 
A2 := N2 / (Nl + N2); 
FunctC :=Al * sin(angle) + A2 * sin(lS * Angle); 

end; 

function FunctB (angle 
con st 

Nl l; 
N2 l; 
N3 l; 
N4 l; 

var 
Al, A2, A3, A4 : real; 

begin 

real) 

Al := Nl / (Nl + N2 + N3 + N4); 
A2 := N2 / (Nl + N2 + N3 + N4); 
A3 := N3 I (Nl + N2 + N3 + N4); 
A4 ;= N4 I (Nl + N2 + N3 + N4); 

real; 

FunctB := Al * sin(angle) + A2 * sin(3 * angle) + A3 * sin(S 
* angle) + A4 * sin(? * angle); 

end; 

function FunctA (angle 
con st 

Nl l; 
N2 = l; 
N3 = l; 

var 
Al, A2, A3 : real; 

begin 

real) 

Al : = Nl / (Nl + N2 + N3) ; 
A2 : = N2 / (Nl + N2 + N3); 
A3 : = N3 I (Nl + N2 + N3); 

real; 

FunctA := Al * sin(angle) + A2 * sin(2 * Angle) + A3 * sin(4 
* angle); 

end; 

procedure Calcone; 
var 

i : integer; 
begin 

for i := 0 to WaveLength - 1 do 
begin 

theta := 2 * pi * i I WaveLength; 
Onewave[i] := 128 + trunc(Amp * 127 * FunctC(theta)); 

end; 
end; 

Continued 
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procedure DrawOne; 
con st 
startV = 10; 

var 
i : integer; 

begin 
Move To ( 5, startV + 25 6 - OneWave [ 0] ) ; 
for i : = 1 to WaveLength - 1 do 

LineTo(5 + i, startV + 256 - Onewave[i]) 
end; 

procedure InitDraw; 
begin 

SetRect(DrawWind, DrawLeft, DrawTop, DrawLeft + DrawWidth, 
DrawTop + DrawHeight); 

SetDrawingRect(DrawWind); 
SetRect(DrawRect, O, O, DrawWidth, DrawHeight); 
ShowDrawing; 

end; 

function RateCalc (Frequency 
var 

temp long int; 
begin 

{assume wavelength bytes/cycle} 

real) Fixed; 

temp := Round(Wavelength * Frequency * 44.93E-6); 
RateCalc := BitShift (temp, 16); 

end; 

procedure SetSound; 
var 

i : integer; 
begin 
with SynthRec do 
begin 

mode : = FFMode; 
rate := RateCalc(Freq); 
for i : = 0 to MaxBytes do 
waveBytes [i] := Onewave[i mod WaveLength]; 

end; 
end; 

begin 
HideAll; 
InitDraw; 
Freq := 220; 
Amp := 1; 
CalcOne; 
Set Sound; 
DrawOne; 
StartSound(@SynthRec, SizeOf(SynthRec), pointer(-1)); 
StopSound; 

end. 
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program FourVoice; 
{listing 9 .12} 
con st 

DrawTop = 3 7; 
DrawLeft = 5; 
DrawWidth = 510; 
DrawHeight = 315; 
pi = 3 .1415926; 
System = O; 

var 
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DrawRect, DrawWind, MsgRect : rect; 
vlRect, v2Rect, v3Rect, v4rect : rect; 
vl, v2, v3, v4, Done : BOOLEAN; 
voices : integer; 
Wavel, Wave2, Wave3, Wave4 : wave; 
SoundRec : FTSoundRec; 
SoundRecPtr : FTSndRecPtr; 
SynthRec : FTSynthRec; 
SynthRecPtr : FTSynthPtr; 
i : integer; 
Time, AMpl, Amp2, Amp3, Amp4 real; 
mouse : point; 

procedure WaitClick; 
begin 
repeat 

InvertRect(MsgRect); 
until button; 
repeat 
until not button; 

end; 

procedure Message (theString str255); 
begin 

EraseRect(MsgRect); 
FrameRect(MsgRect); 
Move To (MsgRect. left + 4, MsgRect. top + 14) ; 
DrawString(theString); 

end; 

procedure ToggleVl; 
begin 
vl := not vl; 
if vl then 
begin 

EraseRect(vlRect); 
FrameRect(vlrect); 
Move To (vlRect. left + 4, vlRect. top + 14); 
Drawstring ( '1 ON'); 
Voices : = Voices + i; 

255 

Continued 
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end 
else 
begin 

EraseRect(vlRect); 
FrameRect(vlrect); 
MoveTo(vlRect.left + 4, vlRect.top + 14); 
Drawstring (' 1 OFF'); 
InvertRect(vlRect); 
Voices := Voices - l; 

end; 
end; 

procedure ToggleV2; 
begin 

v2 := not v2; 
if v2 then 
begin 

EraseRect(v2Rect); 
FrameRect(v2rect); 
MoveTo(v2Rect.left + 4, v2Rect.top + 14); 
Drawstring ( '2 ON'); 
Voices := Voices + l; 

end 
else 
begin 

EraseRect(v2Rect); 
FrameRect(v2rect); 
Move To (v2Rect. left + 4, v2Rect. top + 14); 
Drawstring ( '2 OFF'); 
InvertRect(v2Rect); 
Voices . - Voices - 1; 

end; 
end; 

procedure ToggleV3; 
begin 

v3 := not v3; 
if v3 then 
begin 

EraseRect(v3Rect); 
FrameRect(v3rect); 
Move To (v3Rect. left + 4, v3Rect. top + 14); 
Drawstring (' 3 ON'); 
Voices . - Voices + 1; 

end 
else 
begin 

EraseRect(v3Rect); 
FrameRect(v3rect); 
MoveTo(v3Rect.left + 4, v3Rect.top + 14); 
Drawstring ( '3 OFF'); 

Continued 



111111111111111111111111111111111 Listing 9.12 Continued 

InvertRect (·v3Rect) ; 
Voices := Voices - 1; 

end; 
end; 

procedure ToggleV4; 
begin 

v4 := not v4; 
if v4 then 
begin 

EraseRect(v4Rect); 
FrameRect(v4Rect); 
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MoveTo(v4Rect.left + 4, v4Rect.top + 14); 
Drawstring (' 4 ON'); 
Voices := Voices + 1; 

end 
else 
begin 

EraseRect(v4Rect); 
FrameRect(v4Rect); 
MoveTo(v4Rect.left + 4, v4Rect.top + 14); 
Drawstring ( '4 OFF'); 
InvertRect(v4Rect); 
Voices := Voices - 1; 

end; 
end; 

procedure Varinit; 
begin 

Voices := 4; 
vl := TRUE; 
v2 := TRUE; 
v3 := TRUE; 
v4 := TRUE; 

end; 

procedure InitDraw; 
var 

BoxBottom, BoxTop, BoxWidth, BoxHeight : Integer; 
begin 

257 

SetRect(DrawWind, DrawLeft, DrawTop, DrawLeft + DrawWidth, 
DrawTop + DrawHeight); 

SetDrawingRect(DrawWind); 
ShowDrawing; 
BoxHeight : = 2 0; 
BoxBottom := DrawHeight - 15; 
BoxTop := BoxBottom - BoxHeight; 
BoxWidth := 40; 
Set Re ct (DrawRect, 0, 0, DrawWidth, Box Top - 1) ; 
SetRect(vlRect, O, BoxTop, BoxWidth, BoxBottom); 
SetRect(v2Rect, vlRect.right, BoxTop, vlRect.right + 

Continued 
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BoxWidth, BoxBottom); 
SetRect(v3Rect, v2Rect.right, BoxTop, v2Rect.right + 

BoxWidth, BoxBottom); 
SetRect(v4Rect, v3Rect.right, BoxTop, v3Rect.right + 

BoxWidth, BoxBottom); 
SetRect (MsgRect, v4Rect. right, BoxTop, DrawWidth - 10, 

BoxBottom); 
FrameRect(vlRect); 
FrameRect(v2Rect); 
FrameRect(v3Rect); 
FrameRect(v4Rect); 
FrameRect(MsgRect); 
MoveTo(vlRect.left + 4, vlRect.top + 14); 
Drawstring (' 1 ON'); 
MoveTo (v2Rect.left + 4, v2Rect.top + 14); 
Drawstring ( '2 ON'); 
MoveTo (v3Rect.left + 4, v3Rect.top + 14); 
Drawstring ( '3 ON'); 
MoveTo(v4Rect.left + 4, v4Rect.top + 14); 
Drawstring ( '4 ON'); 

end; 

function RateCalc (Frequency 
var 

temp long int; 
beqin 

{assume 255 bytes/cycle} 

real) Fixed; 

temp:= Round(255 *Frequency* 44.93E-6); 
RateCalc := BitShift (temp, 16); 

end; 

procedure InitSound; 
var 

Freql, Freq2, Freq3, Freq4 : real; 
beqin 

{initialize synthesizer record} 
SynthRec.Mode := FTMode; 
SynthRec.SndRec := @SoundRec; 

I set synthesizer record pointer} 
SynthRecPtr := @SynthRec; 

{initialize sound record} 
Time : = 1. O; 
with SoundRec do 
beqin 

Duration := round(Time * 60); 
Freql := 440; 
Freq2 . - 4 4 0 * ( 1 + 4 I 14) ; 
Freq3 := 660; 
Freq4 .- 880; 
if vl then 

SoundlRate := RateCalc(Freql) 

Continued 
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else 
SoundlRate := O; 

if v2 than 
Sound2Rate := RateCalc(Freq2) 

else 
Sound2Rate := O; 

if v3 than 
Sound3Rate := RateCalc(Freq3) 

else 
Sound3Rate := O; 

if v4 than 
Sound4Rate := RateCalc (Freq4) 

else 
Sound4Rate := O; 

SoundlPhase := O; 
Sound2Phase := O; 
Sound3Phase := O; 
Sound4Phase := O; 

{set relative amplitudes of 4 voices, 0 -> 1, loudest 1} 
Ampl := 1; 
Amp2 := 1; 
Amp3 := 1; 
Amp4 := 1; 
SoundlWave := @Wavel; 
Sound2Wave := @Wave2; 
Sound3Wave := @Wave3; 
Sound4Wave := @Wave4; 

and; 
and; 

function Triangle (angle real) real; 
begin 
if angle <= pi than 
begin 

Triangle : = 2 * angle I pi - 1; 
and 

else 
begin 

Triangle := 1 - 2 * (angle - pi) I pi; 
and; 

and; 

function Square (angle 
begin 
if angle < pi than 

Square := 1. 0 
else 

Square := -1. O; 
end; 

function FunctB (angle 

real) real; 

real) real; 

Continued 
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con st 
Nl l; 
N2 : l; 
N3 : l; 

var 
Al, A2, A3 : real; 

begin 
Al :: Nl I (Nl + N2 + N3); 
A2 : : N2 I (Nl + N2 + N3) ; 
A3 :: N3 / (Nl + N2 + N3); 
FunctB :: Al * sin(angle) + A2 * sin(3 * angle) + A3 * sin(5 

* angle); 
end; 

function FunctA (angle 
con st 

Nl l; 
N2 : l; 
N3 ,., l; 

var 
Al, A2, A3 : real; 

begin 

real) 

Al : : Nl / (Nl + N2 + N3) ; 
A2 : : N2 / (Nl + N2 + N3) ; 
A3 :: N3 / (Nl + N2 + N3); 

real; 

FunctA :: Al * sin(angle) + A2 * sin(2 * Angle) + A3 * sin(4 
* angle); 

end; 

procedure CalcSound; 
{fill in the wave arrays} 

var 
i : integer; 
theta : real; 

begin 
{calculate wavel} 

if SoundRec.SoundlRate <> 0 then 
begin 
Message('Calculating Wave 1'); 
if Ampl ,., 0.0 then 
for i :: 0 to 255 do 
Wavel[i) :: 0 

else 
for i :: 0 to 255 do 
begin 

theta :: i * 2 * pi I 255; 
Wavel[i) :: 128 + trunc(Ampl * 127 * FunctB(theta)); 

end; 
end; 

I calculate wave2} 

Continued 
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if SoundRec. Sound2Rate <> 0 than 
begin 
Message('Calculating wave 2'); 
if Amp2 = 0.0 then 
for i := 0 to 255 do 

Wave2 [i] := 0 
else 
for i := O to 255 do 
begin 

theta := i * 2 * pi I 255; 
Wave2 [i] := 128 + trunc (Amp2 * 127 * FunctA (theta)); 

end; 
end; 

{calculate wave3} 
if SoundRec. Sound3Rate <> 0 then 
begin 
Message('Calculating Wave 3'); 
if Amp3 = 0.0 then 
for i := 0 to 255 do 

Wave3 [i] := 0 
else 
for i := 0 to 255 do 
begin 

theta := i * 2 * pi I 255; 
Wave3[i] := 128 + trunc(Amp3 * 127 * Triangle(theta)); 

end; 
end; 

{calculate wave4} 
if SoundRec. Sound4Rate <> 0 then 
begin 

Message('Calculating Wave 4'); 
if Amp4 = 0.0 then 
for i := 0 to 255 do 

Wave4 [i] := 0 
else 
for i := O to 255 do 
begin 

theta := i * 2 * pi I 255; 
Wave4[i] := 128 + trunc(Amp4 * 127 * Square(theta)); 

end; 
end; 

end; 

procedure DrawWave (theWave 
start : point; 
scale : real) ; 

var 
i, v : integer; 

begin 
v := Round(scale * theWave[O]); 
MoveTo(start.h, start.v - v); 

Wave; 

Continued 
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for i := 1 to 255 do 
bag in 

v := Round(scale * theWave[i]); 
LineTo(start.h + i, start.v - v); 

end; 
end; 

procedure DrawAll; 
con st 

waveHgt 64; 
waveSep 4; 

var 
i : integer; 
startPt : point; 
QScale : real; 

begin 
EraseRect(DrawRect); 
Message ('Waves for all voices'); 
QScale : = 0. 25; 
startPt .h := 10; 
startPt. v : = waveHgt + 4; 
if vl than 

DrawWave (Wavel, startPt, QScale); 
startPt. v : = startPt. v + waveHgt + wave Sep; 
if v2 then 

DrawWave (Wave2, startPt, QScale); 
startPt. v : = startPt. v + waveHgt + waveSep; 
if v3 then 

DrawWave (Wave3, startPt, QScale); 
startPt. v : = startPt. v + waveHgt + waveSep; 
if v4 then 

DrawWave(Wave4, startPt, QScale); 
Message ('Click Mouse to Hear Tones '); 

end; 

procedure DrawWaves; 
var 

i : integer; 
start point; 
Scale : real; 

begin 
start.h := 10; 
start.v := 128 + ( (DrawHeight - 24) div 2); 
Scale := 1; 
if vl then 
begin 

EraseRect(DrawRect); 
Message ('Wave 1'); 
DrawWave(Wavel, start, scale); 
Message ('wave 1, Click Mouse to Continue'); 
WaitClick; 

Continued 
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end; 
if v2 then 
begin 

EraseRect(DrawRect); 
Message('Wave 2'); 
DrawWave(Wave2, start, 
Message('Wave 2, Click 
WaitClick; 

end; 
if v3 then 
begin 

EraseRect(DrawRect); 
Message ('Wave 3 '); 
DrawWave(Wave3, start, 
Message ('Wave 3, Click 
WaitClick; 

end; 
if v4 then 
begin 

EraseRect(DrawRect); 
Message ('Wave 4') ; 
or·awwave (Wave4, start, 
Message('Wave 4, Click 
WaitClick; 

end; 
if voices > 1 then 

DrawAll 
else 
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scale); 
Mouse to Continue' ) ; 

scale); 
Mouse to Continue'); 

scale); 
Mouse to Continue' ) ; 

Message('Click Mouse to Hear Tones'); 
WaitClick; 

end; 

begin 
HideAll; 
Done := FALSE; 
TextFont(System); 
TextSize(12); 
Varinit; 
initdraw; 
repeat 

213 

Message ('Select Voices or Click Mouse in Window To Start'); 
repeat 
until button; 
repeat 
until not button; 
GetMouse(mouse.h, mouse.v); 
if PtinRect (Mouse, vlRect) then 

ToggleVl 
else if ptinRect (mouse, v2Rect) then 

ToggleV2 
else if Ptinrect (mouse, v3Rect) then 

Continued 
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ToggleV3 
else if PtinRect (mouse, v4Rect) then 

ToggleV4 
else 
begin 

initsound; 
calcsound; 
DrawWaves; 
StartSound(SynthRecPtr, SizeOf(SynthRec), nil); 
repeat 
until SoundDone; 
Stop Sound; 

end; 
until done; 

end. 
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APPENDIX A: QUICKDRAW 
11111111111111111111111111111111 DATA STRUCTURES 

canst 

type 

srcCopy = O; 
srcOR = l; 
srcXOR = 2; 
srcBIC = 3; 
notSrcCopy = 4; 
notSrcOR = 5; 
notSrcXOR = 6; 
notSrcBIC = 7; 
patCopy = 8; 
patOR = 9; 
patXOR = 10; 
patBIC = 11; 
notPatCopy = 12; 
notPatOR = 13; 
notPatXOR = 14; 
notPatBIC = 15; 

pattern =packed array [0 .. 7] of 0 .. 255; 
Styleltem = (bold, italic, underline, outline, 

shadow, condense, extend); 
Fontinfo = record 

ascent, 
descent, 
widMax, 
leading : integer; 

end; 
Point = record case integer of 

0 : (v : integer; h : integer); 
1 : (vh : array [vhSelect] of integer); 

end; 
Rect = record case integer of 

O : (top, left, bottom, right : integer); 
1 : (topLeft, botRight : Point); 

end; 
QDByte = -128 .. 127; 
QDPtr = AQDByte; 
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BitMap = record 
baseAddr: QDPtr; 
rowBytes : integer; 
bounds : Rect; 

end; 
Bitsl6: array [0 .. 15] of integer; 
Cursor = record 

data : Bits 16; 
mask : Bitsl6; 
hotspot : Point; 

end; 
PenState = record 

pnLoc : Point; 
pnSize : Point; 
pnMode : integer; 
pnPat : Pattern; 

end; 
PolyHandle = "PolyPtr; 
PolyPtr = "Polygon; 
Polygon = record 

polySize : integer; 
polyBBox : Rect; 
poly Points : array [O .. O] of point; 

end; 
RgnHandle = "RgnPtr; 
RgnPtr = "Region; 
Region = record 

rgnSize : integer; 
rgnBBox : Rect; 

end; 
PicHandle = "PicPtr; 
PicPtr = "Picture; 
Picture = record 

picSize : integer; 
picFrame : Rect; 

end; 
GraiPort = record 

device : integer; 
portBits : BitMap; 
portRect : Rect; 
visRgn: RgnHandle; 
clipRgn: RgnHandle; 
bkPat : Pattern; 
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fillPat : Pattern; 
pnLoc : Point; 
pnSize : Point; 
pnMode : integer; 
pnPat : Pattern; 
pn Vis : integer; 
txFont : integer; 
txFace : Style; 
txMode : integer; 
txSize : integer; 
spExtra : longint; 
fgColor : longint; 
bkColor : longint; 
ColrBit : integer; 
patStretch : integer; 
picSave : QDHandle; 
rgnSave : QDHandle; 
polySave : QDHandle; 
grafFrocs : QDProcPtr; 

end; 
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APPENDIX B: QUICKDRAW 
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Calculations 

AddPt(src, dst); 
Type: 
Parameters: 

Description: 

EmptyRect(r); 
Type: 
Parameter: 
Description: 

EqualPt(ptl, pt2); 
Type: 
Parameters: 

Description: 

Procedure 
src Point 
dst Point variable 
Add the coordinates of src to dst, and put the result 
in dst. 

Function Boolean 
r Re ct 
Return TRUE if the rectangle is empty, that is, if it 
has zero width or zero height. 

Function Boolean 
ptl Point 
pt2 Point 
Return TRUE if the coordinates of the two points are 
the same. 

EqualRect(rectl, rect2); 
Type: Function Boolean 

Rect Parameters: rectl 

Description: 

GlobalToLocal(pt); 
Type: 
Parameter: 
Description: 

rect2 Re ct 
Return TRUE if the coordinates of the corners of the 
rectangles are equal. 

Procedure 
pt Point variable 
Convert the coordinates of the point from the global 
coordinate system to the current GrafPort's local 
coordinate system. 
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InsetRect(r, db, dv); 
Type: 
Parameters: 

Description: 

LocalToGlobal(pt); 
Type: 
Parameter: 
Description: 

Procedure 
r Rect variable 
dh Integer 
dv Integer 
Shrink the rectangle by the amounts dh (horizontal) 
and dv (vertical). If dh or dv is negative, the 
rectangle is expanded in that direction instead 
of shrunk. 

Procedure 
pt Point variable 
Convert the coordinates of the point from the 
current GrafPort's local coordinate system to the 
global coordinate system. 

MapPt(pt, fromRect, toRect); 
Type: Procedure 
Parameters: pt Point variable 

Re ct 

Description: 

fromRect 
to Re ct Re ct 
Calculate the coordinates in toRect of the point in 
fromRect, scaling its position to match the scale 
difference between the two rectangles. 

MapRect(r, fromRect, toRect); 
Type: Procedure 
Parameters: 

Description: 

r 
fromRect 
toRect 

Rect variable 
Rect 
Re ct 

Map the coordinates of rectangle r's corners from 
the source rectangle to the destination rectangle, 
scaling to match the dimensions of the destination 
rectangle. (Calls MapPt to map the corners.) 



OffsetRect(r, db, dv); 
Type: 
Parameters: 

Description: 

PtlnRect(pt, r); 
Type: 
Parameters: 

Description: 
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Procedure 
r Re ct 
dh Integer 
dv Integer 
Offset the coordinates of the rectangle's corners 
by dh (horizontal) and dv (vertical). Moves 
the rectangle. 

Function 
pt 

Boolean 
Point 

r Rect 
Return TRUE if the point is inside the rectangle. 

Pt2Rect(ptl, pt2, dstRect); 
Type: Procedure 
Parameters: ptl Point 

Point 

Description: 

pt2 
dstRect Rect variable 
Set dstRect to the rectangle that just encloses the 
two points. 

SectRect(srcl, src2, dstRect); 
Type: Function Boolean 

Re ct Parameters: srcl 

Description: 

SetPt(pt, b, v); 
Type: 
Parameters: 

Description: 

src2 Rect 
dstRect Rect variable 
Set dstRect to the area of intersection of the two 
source rectangles. 

Procedure 
pt Point variable 
h Integer 
v Integer 
Set the coordinates of pt to h (horizontal) and 
v (vertical). 
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SetRect(r, left, top, right, bottom); 
Type: Procedure 
Parameters: r Rect 

left Integer 
top Integer 
right Integer 
bottom Integer 

Decription: Set the rectangle data structure to the specified 
coordinates. 

SubPt(src, dst); 
Type: 
Parameters: 

Description: 

Procedure 
src Point 
dst Point variable 
Subtract the coordinates of src from dst, and put the 
result in dst. 

UnionRect(srcl, src2, dstRect); 
Type: Procedure 
Parameters: 

Description: 

Cursor 

HideCursor; 
Type: 
Parameters: 
Description: 

InitCursor; 
Type: 
Parameters: 
Description: 

srcl Rect 
src2 Rect 
dstRect Rect variable 
Set dstRect to the rectangle that just encloses both 
of the source rectangles. 

Procedure 
none 
Hide the cursor, and decrement the cursor level 
variable. The cursor stays hidden as long as the 
cursor level is negative. 

Procedure 
none 
Initialize the cursor (set it to a visible arrow). 



ObscureCursor; 
Type: 
Parameters: 
Description: 

SetCursor(crsr ); 
Type: 
Parameter: 
Description: 

SbowCursor; 
Type: 
Parameters: 
Description: 

GrafPort 

BackPat(pat); 
Type: 
Parameter: 
Description: 

ClipRect(r); 
Type: 
Parameter: 
Description: 

ClosePort(port); 
Type: 
Parameter: 
Description: 

GetClip(rgn); 
Type: 
Parameter: 
Description: 
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Procedure 
none 
Hide the cursor until the mouse is moved. (Does not 
decrement the cursor level.) 

Procedure 
crsr Cursor 
Set the cursor shape. 

Procedure 
none 
Increment the cursor level. If it is zero, show 
the cursor. 

Procedure 
pat Pattern 
Set the bkPat field in the current GrarPort's data 
structure. 

Procedure 
r Re ct 
Set the clipRect field in the current GrarPort's data 
structure. 

Procedure 
port GrarPtr 
Close the GrarPort, deallocating its memory. 

Procedure 
rgn RgnHandle 
Set rgn to the clipRgn of the current GrarPort. 
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GetPort(port); 
Type: 
Parameter: 
Description: 

GrafDevice(device); 
Type: 
Parameter: 
Description: 

InitGraf(globalPtr); 
Type: 
Parameter: 
Desription: 

InitPort(port); 
Type: 
Parameter: 
Description: 

Procedure 
port GrafPtr variable 
Get a pointer to the current GralPort's data 
structure. 

Procedure 
device Integer 
Set the device field in the GrafPort data structure. 

Procedure 
globalPtr QDPtr 
Initialize the QuickDraw package (called 
automatically by Macintosh Pascal). 

Procedure 
port GrafPtr 
Initialize the GralPort data structure for a port that 
is already open. 

MovePortTo(leftGlobal, topGlobal); 
Type: Procedure 
Parameters: leftGlobal Integer 

topGlobal Integer 
Description: Move the portRect; set the upper left corner of the 

portRect field in the GrafPort data structure. 

OpenPort(port); 
Type: 
Parameter: 
Description: 

Procedure 
port GrafPtr 
Open the GrafPort, allocating memory and 
initializing the GralPort data structure. 

PortSize(widtb, beigbt); 
Type: Procedure 
Parameters: width Integer 

height Integer 
Description: Set the size of the portRect field in the GrafPort data 

structure. Changes only the lower right corner 
of portRect. 



SetClip(rgn); 
Type: 
Parameter: 
Description: 

SetOrlgin(h, v ); 
Type: 
Parameters: 

Description: 

SetPort(port); 
Type: 
Parameter: 
Description: 

SetPortBits(bm); 
Type: 
Parameter: 
Description: 

Ltne 

Line( db, dv ); 
Type: 
Parameters: 

Description: 

LineTo(h, v); 
Type: 
Parameters: 

Description: 
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Procedure 
rgn RgnHandle 
Set the clipRgn of the current GrarPort. 

Procedure 
h Integer 
v Integer 
Set the origin of the GrarPort's coordinate system 
(changes the portBits.bounds, portRect, and visRgn 
fields in the GrarPort data structure). 

Procedure 
port GraphPtr 
Set the current GrarPort to the GrarPort data 
structure specified by the pointer. 

Procedure 
bm BitMap 
Set the portBits field in the GrarPort data structure. 

Procedure 
dh Integer 
dv Integer 
Draw a line from the current pen location to the 
point calculated by adding dh to the pen's 
horizontal coordinate and adding dv to the pen's 
vertical coordinate. 

Procedure 
h Integer 
v Integer 
Draw a line from the current pen location to the 
point specified by the horizontal coordinate, h, and 
the vertical coordinate, v. 
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Pen 

GetPen(pt); 
Type: 
Parameter: 
Description: 

Procedure 
pt Point variable 
Set pt to the current pen location. 

GetPenState(pnState); 
Type: Procedure 
Parameter: pnState PenState variable 
Description: Set pnState to the current pen state. 

HidePen; 
Type: 
Parameters: 
Description: 

Move(dh, dv); 
Type: 
Parameters: 

Description: 

MoveTo(h, v); 
Type: 
Parameters: 

Description: 

PenMode(mode); 
Type: 
Parameter: 
Description: 

Procedure 
none 
Decrement the pen visibility variable (pnVis) in the 
current graph port. As long as the variable is less 
than zero, the pen cannot draw. The first call to 
HidePen will make the pen invisible. Subsequent 
calls must be balanced by an equal number of calls 
to ShowPen in order to make the pen draw again. 

Procedure 
dh Integer 
dv Integer 
Move the pen by dh horizontally and dv vertically. 

Procedure 
h Integer 
v Integer 
Move the pen to the specified coordinates. 

Procedure 
mode Integer 
Set the pen mode in the current graph port. 



PenNormal; 
Type: 
Parameters: 
Description: 

PenPat(pat); 
Type: 
Parameter: 
Description: 
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Procedure 
none 
Initialize the pen parameters in the current graph 
port to a pen size of (1, 1 ), a pen mode of patCopy, 
and a pen pattern of black. 

Procedure 
pat Pattern 
Set the current graph port's pen pattern to the 
specified pattern. 

PenSize(width, height); 
Type: Procedure 
Parameters: width Integer 

height Integer 
Description: Set the current graph port's pen size to the specified 

dimensions. 

SetPenState(pnState); 
Type: Procedure 
Parameter: pnState PenState 
Description: Set the current graph port's pen state. 

Show Pen; 
Type: 
Parameters: 
Description: 

Picture 

ClosePicture; 
Type: 
Parameters: 
Description: 

Procedure 
none 
Increment the current graph port's pen visibility 
parameter. The parameter cannot be greater than 
zero. If the parameter is zero, the pen can draw; if 
it is less than zero, the pen cannot draw. 

Procedure 
none 
Stop recording QuickDraw calls in the current 
picture data structure. 
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DrawPlcture(tbePicture, r); 
Type: Procedure 
Parameters: thePicture PicHandle 

Description: 
r Re ct 
Scale the picture to fit in the rectangle, and draw it 
in the rectangle. 

KlllPlcture(tbePlcture); 
Type: Procedure 
Parameter: thePicture PicHandle 
Description: Deallocate the memory used by the picture data 

structure. 

OpenPlcture(plcFrame); 
Type: Function PicHandle 
Parameter: picFrame Rect 
Description: Allocate memory for and create a data structure for 

recording QuickDraw calls as a picture. Start 
recording QuickDraw calls in the picture 

Polygons 

ClosePoly,· 
Type: 
Parameters: 
Description: 

ErasePoly(poly); 
Type: 
Parameter: 
Description: 

FlllPoly(poly, pat); 
Type: 
Parameters: 

Description: 

data structure. 

Procedure 
none 
Deallocate the data structure for the current 
polygon, and stop saving QuickDraw calls in it. 

Procedure 
poly Poly Handle 
Erase the polygon by filling it with the current 
background pattern. 

Procedure 
poly Poly Handle 
pat Pattern 
Fill the polygon with the specified pattern. 



'FramePoly(poly); 
Type: 
Parameter: 
Description: 

InvertPoly(poly); 
Type: 
Parameter: 
Description: 

KillPoly(poly); 
Type: 
Parameter: 
Description: 
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Procedure 
poly Poly Handle 
Draw the outline of the polygon, using the current 
pattern. 

Procedure 
poly Poly Handle 
Invert the value (1or0) of each pixel in the polygon. 

Procedure 
poly Poly Handle 
Deallocate the data structure in which the polygon 
is stored. 

OffsetPoly(poly, db, dv ); 
Type: Procedure 
Parameters: poly Poly Handle 

dh Integer 
dv Integer 

Description: Move the polygon horizontally by distance dh and 
vertically by distance dv. 

OpenPoly; 
Type: 
Parameters: 
Description: 

PaintPoly(poly); 
Type: 
Parameter: 
Description: 

Function Poly Handle 
none 
Allocate the polygon data structure, and begin 
recording QuickDraw calls in it. The function 
returns a handle to the data structure. 

Procedure 
poly Poly Handle 
Fill the polygon with the current pattern, using the 
current pen parameters. 
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Region 

CloseRgn(tbeRgn); 
Type: 
Parameter: 
Description: 

Procedure 
theRgn RgnHandle 
Stop storing QuickDraw calls, and organize the 
QuickDraw shapes defined by QuickDraw calls into 
a region. You must supply a handle to a region 
previously defined by NewRgn. 

CopyRgn(srcRgn, dstRgn),· 
Type: Procedure 
Parameters: srcRgn RgnHandle 

dstRgn RgnHandle 
Description: Copy the source region's data structure to the 

destination region's data structure. 

Dif.fRgn(ARgn, BRgn, dstRgn); 
Type: Procedure 
Parameters: ARgn RgnHandle 

BRgn RgnHandle 
dstRgn RgnHandle 

Description: Calculate the difference between ARgn and BRgn, 
and store the resulting region in dstRgn. The effect 
is that of subtracting BRgn from ARgn. 

DisposeRgn(tbeRgn); 
Type: Procedure 
Parameter: theRgn RgnHandle 
Description: Deallocate the memory used by the region data 

structure. 

EmptyRgn(tbeRgn); 
Type: 
Parameter: 
Description: 

Function Boolean 
theRgn RgnHandle 
Return a value of TRUE if the region is empty. An 
empty region is one that has dimensions of O; it 
contains no pixels. 
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EqualRgn(ARgn, BRgn); 
Type: Function Boolean 
Parameters: ARgn RgnHandle 

BRgn RgnHandle 
Description: Return a value of TRUE if ARgn and BRgn are equal. 

EraseRgn(theRgn); 
Type: 
Parameter: 
Description: 

FillRgn(tbeRgn, pat); 

Regions are equal if they are identical (have the same 
location, shape, and dimensions). 

Procedure 
theRgn RgnHandle 
Erase the region by filling it with the current 
background pattern. 

Type: Procedure 
Parameters: theRgn RgnHandle 

pat Pattern 
Description: Fill the region with the specified pattern. 

FrameRgn(tbeRgn); 
Type: 
Parameter: 
Description: 

Procedure 
theRgn RgnHandle 
Draw the outline of the region, using the current 
pen pattern and pen parameters. 

/nsetRgn(tbeRgn, db, dv ); 
Type: Procedure 
Parameters: theRgn RgnHandle 

dh Integer 
dv Integer 

Description: Change the size of the region while leaving it in the 
same location. The amount to shrink the region 
horizontally is dh; dv is the amount to shrink it 
vertically. Negative values of dh or dv make the 
region larger rather than smaller. 

InvertRgn(theRgn); 
Type: 
Parameter: 
Description: 

Procedure 
theRgn RgnHandle 
Invert the value (1 or 0) of each pixel in the region. 
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NewRgn; 
Type: 
Parameters: 
Description: 

Function RgnHandle 
none 
Allocate the memory for a region data structure. 

OffsetRgn(tbeRgn, db, dv ); 
Type: Procedure 
Parameters: theRgn RgnHandle 

dh Integer 
dv Integer 

Description: Change the location of a region by dh horizontally 
and dv vertically. 

OpenRgn(tbeRgn); 
Type: 
Parameter: 
Description: 

PaintRgn(tbeRgn); 
Type: 
Parameter: 
Description: 

PtlnRgn(pt, tbeRgn),· 

Procedure 
theRgn RgnHandle 
Start recording QuickDraw calls that will be used by 
CloseRgn to calculate a region data structure. 

Procedure 
theRgn RgnHandle 
Fill the region with the current pattern, using the 
current pen parameters. 

Type: Function Boolean 
Parameters: theRgn RgnHandle 

pt Point 
Description: Return a value of TRUE if the specified point is 

inside the region. 

RectlnRgn(r, tbeRgn); 
Type: Function Boolean 
Parameters: theRgn RgnHandle 

r Re ct 
Description: Return a value of TRUE if the specified rectangle is 

completely enclosed by the region. 



RectRgn(tbeRgn, r); 
Type: 
Parameters: 

Description: 
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Procedure 
theRgn RgnHandle 
r Re ct 
Set the region to the rectangle. The previous 
description of the region is lost, and the region 
becomes a retangle with the position and 
dimensions of the specified rectangle. 

SectRgn(ARgn, BRgn, dstRgn); 
Type: Procedure 
Parameters: ARgn RgnHandle 

BRgn RgnHandle 
dstRgn RgnHandle 

Description: Set the destination region, dstRgn, to the 
intersection of ARgn and BRgn. The area enclosed 
by dstRgn is the area where ARgn and BRgn overlap. 

SetEmptyRgn(tbeRgn); 
Type: Procedure 
Parameter: theRgn RgnHandle 
Description: Replace the region data structure with one that 

defines an empty region, a region with zero 
dimensions. An empty region encloses no pixels. 

SetRectRgn(tbeRgn, left, top, right, bottom); 
Type: Procedure 
Parameters: theRgn RgnHandle 

left Integer 
top Integer 
right Integer 
bottom Integer 

Description: Set the region to a rectangle. Like RectRgn, except 
that, with SetRectRgn, you specify the coordinates 
of the rectangle's corners rather than defining the 
rectangle with a rectangle data structure. 
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UnionRgn(ARgn, BRgn, dstRgn); 
Type: Procedure 
Parameters: ARgn RgnHandle 

BRgn RgnHandle 
dstRgn RgnHandle 

Description: Set the destination region, dstRgn, to the areas 
enclosed by ARgn and BRgn. The resulting region 
can have discontiguous areas. 

XorRgn(ARgn, BRgn, dstRgn); 
Type: Procedure 
Parameters: ARgn RgnHandle 

BRgn RgnHandle 
dstRgn RgnHandle 

Description: Set the destination region to the area in the union of 
ARgn with BRgn that is not also a part of the 
intersection of ARgn and BRgn. 

Shapes 

EraseArc(r, startAngle, arcAngle); 
Type: Procedure 
Parameters: 

Description: 

EraseOval(r); 
Type: 
Parameter: 
Description: 

EraseRect(r); 
Type: 
Parameter: 
Description: 

r Rect 
startAngle Integer 
arcAngle Integer 
Erase the arc by filling it with the current 
background pattern. The arc is a portion of the oval 
defined by the rectangle. It starts at the start angle 
and extends to the angle that is the sum of 
startAngle degrees plus arcAngle degrees. 

Procedure 
r Re ct 
Erase the oval defined by the rectangle by filling it 
with the current background pattern. 

Procedure 
r Re ct 
Erase the rectangle by filling it with the current 
background pattern. 
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EraseRoundRect(r, ovWd, ovHt); 
Type: Procedure 
Parameters: r Rect 

ov\'Vd Integer 
ovHt Integer 

Description: Erase the rounded rectangle by filling it with the 
current background pattern. 

FillArc(r, startAngle, arcAngle, pat); 
Type: Procedure 
Parameters: r Rect 

startAngle Integer 
arcAngle Integer 
pat Pattern 

Description: Fill the arc with the specified pattern. The arc is a 
pie-shaped portion of the oval defined by the 
rectangle. It starts at the start angle and extends to 
the angle that is the sum of startAngle degrees plus 
arcAngle degrees. 

FtllOval(r, pat); 
Type: 
Parameters: 

Description: 

FtllRect(r, pat); 
Type: 
Parameters: 

Description: 

Procedure 
r Re ct 
pat Pattern 
Fill the oval defined by the rectangle with the 
specified pattern. 

Procedure 
r Re ct 
pat Pattern 
Fill the rectangle with the specified pattern. 

FtllRoundRect(r, ovWd, ovHt, pat),· 
Type: Procedure 
Parameters: r Rect 

ov\'Vd Integer 
ovHt Integer 
pat Pattern 

Description: Fill the rounded rectangle with the specified 
pattern. 
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FrameArc(r, startAngle, arcAngle),· 
Type: Procedure 
Parameters: r Rect 

startAngle Integer 
arcAngle Integer 

Description: Draw the arc, using the current pen parameters. The 
arc is a portion of the oval defined by the rectangle. 
It starts at the start angle and extends to the angle 
that is the sum of startAngle degrees plus 

FrameOval(r); 
Type: 
Parameter: 
Description: 

FrameRect(r); 
Type: 
Parameter: 
Description: 

arcAngle degrees. 

Procedure 
r Re ct 
Draw the oval defined by the rectangle. 

Procedure 
r Re ct 
Draw the rectangle. 

FrameRoundRect(r, ovWd, ovHt); 
Type: Procedure 
Parameters: r Re ct 

ovWd Integer 
ovHt Integer 

Description: Draw the round rectangle. 

InvertArc(r, startAngle, arcAngle); 
Type: Procedure 
Parameters: 

Description: 

r Re ct 
startAngle Integer 
arcAngle Integer 
Invert the arc. The arc is a pie-shaped portion of the 
oval defined by the rectangle. It starts at the start 
angle and extends to the angle that is the sum of 
startAngle degrees plus arcAngle degrees. Inversion 
consists of inverting the value (1 or 0) of every pixel 
within the arc. 



InvertOval(r); 
Type: 
Parameter: 
Description: 

InvertRect(r); 
Type: 
Parameter: 
Description: 
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Procedure 
r Re ct 
Invert the oval defined by the rectangle, including 
its interior. Inversion consists of inverting the value 
(1 or 0) of every pixel within the oval. 

Procedure 
r Re ct 
Invert the rectangle. Inversion consists of inverting 
the value (1 or 0) of every pixel within the rectangle. 

InvertRoundRect(r, ovWd, ovHt); 
Type: Procedure 
Parameters: r Rect 

ovWd Integer 
ovHt Integer 

Description: Invert the rounded rectangle. Inversion consists of 
inverting the value (1 or 0) of every pixel within the 
rounded rectangle. 

PaintArc(r, startAngle, arcAngle),· 
Type: Procedure 
Parameters: r Rect 

startAngle Integer 

~ arcAngle Integer 
Descri tion: Fill the arc with the current pen pattern. The arc is 

a portion of the oval defined by the rectangle. It 
starts at the start angle and extends to the angle 
that is the sum of startAngle degrees plus 

PaintOval(r); 
Type: 
Parameter: 
Description: 

PaintRect(r); 
Type: 
Parameter: 
Description: 

arcAngle degrees. 

Procedure 
r Re ct 
Fill the oval with the current pen pattern. 

Procedure 
r Rect 
Fill the rectangle with the current pen pattern. 



290 APPENDIXES 

PatntRoundRect(r, ovWd, ovHt); 
Type: Procedure 
Parameters: 

Description: 

Text 

CbarWtdtb(cb); 
Type: 
Parameter: 
Description: 

DrawCba'l(cb); 
Type: 
Parameter: 
Description: 

DrawString(string); 
Type: 
Parameter: 
Description: 

r Re ct 
ovWd Integer 
ovHt Integer 
Fill the rounded rectangle with the current pen 
pattern. 

Function 
ch 

Integer 
Char 

Return the width, in pixels, of the character ch, 
assuming that the character is drawn with the 
current text font, style, and size. 

Procedure 
ch Char 
Draw the character ch at the current pen location, 
using the current text font, style, and size. 

Procedure 
string Str255 
Draw the characters in the string starting at the 
current pen position, using the current text font, 
style, and size. 

DrawText(textBuf, ftrstByte, byteCount); 
Type: Procedure 
Parameters: textBuf QDPtr 

firstByte Integer 
byteCount Integer 

Description: Draw the text in the text buffer, starting at the 
current pen position and using the current text font, 
style, and size. 



GetFontlnfo(info); 
Type: 
Parameter: 
Description: 

SpaceExtra(extra); 
Type: 
Parameter: 
Description: 

String Width(s ); 
Type: 
Parameter: 
Description: 

TextFace(face); 
Type: 
Parameter: 
Description: 

TextFont(font); 
Type: 
Parameter: 
Description: 

TextMode(mode); 
Type: 
Parameter: 
Description: 

TextSize(size); 
Type: 
Parameter: 
Description: 
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Procedure 
info Fontinfo variable 
Fill the info variable with information about the 
current text font's character dimensions (ascent, 
descent, maximum width, and leading). 

Procedure 
extra Longint 
Set the number used to calculate how much to 
widen the distance between characters when 
justifying text. 

Function Integer 
s Str255 
Return the length in pixels of the specified string, 
assuming that it is drawn in the current text font, 
style, and size. 

Procedure 
face Style 
Set the current graph port's text face. 

Procedure 
font Integer 
Set the current graph port's text font. 

Procedure 
mode Integer 
Set the current graph port's text mode. 

Procedure 
size Integer 
Set the current graph port's text size. 
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Te:xtWtdtb(textBuf, ftrstByte, byteCount),· 
Type: Function Integer 
Parameters: textBuf QDPtr 

firstByte Integer 
byteCount Integer 

Description: Return the width of the text in the text buffer, 
assuming that it is drawn in the current text font, 
style, and size. 
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Button; 
Type: 
Parameters: 
Description: 

GetMouse(h, v ); 
Type: 
Parameters: 

Description: 

StillDawn; 
Type: 
Parameters: 
Description: 

WaitMouseUp; 
Type: 
Parameters: 
Description: 

Function Boolean 
none 
Return the current state of the mouse button 
(TRUE =button down). 

Procedure 
h Integer variable 
v Integer variable 
Get the current mouse position in the coordinate 
system of the drawing window, and put it in the 
variables h (horizontal coordinate) and v (vertical 
coordinate). 

Function Boolean 
none 
Test to see if the mouse button is down and there 
are no other mouse events in the event queue. 

Function Boolean 
none 
Test to see if the mouse button is down and there 
are no other mouse-down events in the event 
queue. Removes mouse-up events from the 
event queue. 
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APPENDIX D: MACINTOSH 
11111111111111111111111111111111 PASCAL WINDOW ROUTINES 

HideAll; 
Type: 
Parameters: 
Description: 

Procedure 
none 
Hide all of the windows. 

SetDrawingRect(DrawingRect); 
Type: Procedure 
Parameter: DrawingRect Rect 
Description: Set the drawing window to the size specified by 

DrawingRect. 

Show Drawing; 
Type: 
Parameters: 
Description: 

Procedure 
none 
Show the drawing window. 
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APPENDIX E: SOUND ROUTINES 
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Sound Data Structures 

const 

type 

SWmode = -1; 
FFmode = O; 
FTmode = l; 

byte = 0 .. 255; 

(Square-wave mode) 
(Free-form mode) 
(Four-tone mode) 

Square-Wave Synthesizer 

type 
Tone = record 

Count, 
Amplitude, 
Duration : integer 

end; 

Tones = array [0 .. 3000] of Tone; 

SWSynthRec = record 
Mode : integer; 
Triplets : Tones 

end; 

SwSynthPtr = "'SWSynthRec; 
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Free-Form Synthesizer 

type 
FreeWave = packed array [0 .. 30000] of byte; 
FFSynthRec = record 

Mode : integer; 
Rate : longint; 
WaveBytes: FreeWave 

end; 

FFSynthRecPtr = "FFSynthRec; 

Four-Voice Synthesizer 

type 
Wave = packed array [0 .. 255] of byte; 
WavePtr = "Wave; 
FTSoundRec = record 

duration : integer; 
Sound 1 Rate : fixed; 
Sound 1 Phase : longint; 
Sound2Rate : fixed; 
Sound2Phase : longint; 
Sound3Rate : fixed; 
Sound3Phase : longint; 
Sound4Rate : fixed; 
Sound4Phase : longint; 
Soundl Wave : WavePtr; 
Sound2Wave: WavePtr; 
Sound3 Wave : WavePtr; 
Sound4Wave : WavePtr; 

end; 

FTSndRecPtr = "FTSoundRec; 

FTSynthRec = record 
mode : integer; 
SndRec : FTSndRecPtr 

end; 

FTSynthPtr = "FTSynthRec; 
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Sound Routines 

GetSoundVol(Level); 
Type: 
Parameter: 
Description: 

Procedure 
Level Integer variable 
Get the current sound volume setting. The sound 
volume is an integer in the range 0 .. 7. 

Note(Frequency, Amplitude, Duration); 
Type: Procedure 
Parameters: Frequency Longint 

Amplitude Integer 
Duration Integer 

Description: Produce a single square-wave tone with the 
specified frequency, amplitude, and duration. 
Frequency is in hertz, duration is in units of 0.022 
sec, and amplitude is 0 .. 255. 

SetSoundVol(Level}; 
Type: 
Parameter: 
Description: 

SoundDone; 
Type: 
Parameters: 
Description: 

Procedure 
Level Integer 
Set the current sound volume setting. The sound 
volume is an integer in the range 0 .. 7. 

Function Boolean 
none 
Return TRUE if the last sound started 
is complete. 

StartSound(SyntbRecPtr, SyntbRecSize, completionPtr); 
Type: Procedure 
Parameters: SynthRecPtr Pointer 

SynthRecSize Longint 
completionPtr Pointer 

Description: Start producing a sound, using the specified 
synthesizer record. 
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StopSound; 
Type 
Parameters: 
Description: 

SysBeep(Duration); 
Type: 
Parameter: 
Description: 

Procedure 
none 
Stop producing sound. 

Procedure 
Duration Integer 
Produce a tone for the specified length of time. 
Time is in units of 0.022 second. 



Aliasing 

Ascent 

Amplitude 

Arc 

CAD 

Clip 

Coordinates 

Cursor 
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GLOSSARY 

The creation of irregularities in an image as a result of limiting 
drawing to fixed pixels. Produces a jagged appearance in lines not 
parallel to the coordinate axes. 

The distance between a text character's base line and its top. 

The difference between the highest value that a waveform takes on 
and its lowest value. 

A QuickDraw object, a pie-shaped portion of an oval. 

Computer-aided design, design with a program that allows a 
designer to use the computer to create drawings. CAD programs 
store drawing information as object descriptions rather than images. 

To restrict drawing to a defined area. 

The numbers that represent the position of a point in a given 
coordinate system relative to that coordinate system's origin. 

The small image on the screen that follows the mouse's movements. 
Application programs can change the shape of the cursor, hide it, 
and display it, but they cannot set the cursor position. 

301 



302 

Descent 

Erase 

Fill 

Fractals 

Frame 

Font 

GrafPort 

Halftone 

Hot Spot 

Invert 

Kerning 

Object 

Oval 

Paint 

GLOSSARY 

The distance between a text character's base line and its 
lowest point. 

To fill a QuickDraw shape (including its edges) with the current 
background pattern. 

To draw a specified pattern inside of a QuickDraw shape. 

Images produced by a mathematical method called fractional 
geometry. Fractals can be made to mimic the shapes found 
in nature. 

To draw the outside edge of a QuickDraw shape. 

A set of text characters of a uniform shape and design. 

Conceptually, a drawing area either on the screen or in a memory 
buffer. Physically, a data structure that contains variables that 
define the drawing area and current settings of drawing 
parameters. 

An image made up of dots that vary in size or pattern and hence 
simulate shades of gray. 

The point in the cursor image that corresponds to the mouse 
position. 

To reverse the state of all pixels within a QuickDraw shape 
(including the shape's edges). Inverting turns a shape into a 
negative image of itself. 

Moving characters closer together so that part of one character 
overhangs or goes under the adjacent character. 

A mathematical description of something that you can draw, as 
opposed to the object's image, which is a list of the pixels turned 
on and off when you draw the object. 

A QuickDraw shape equivalent to an ellipse. 

To fill a QuickDraw shape with the pen's current pattern. 



Pen 

Period 

Phase 

Pixel 

Polygon 

QuickDraw 

RAM 

Rectangle 

Region 

ROM 

Round 
Rectangle 

Spline 

Synthesizer 

GLOSSARY 303 

A convenient term for the current drawing position and drawing 
parameters. QuickDraw routines draw as if they were moving a 
pen over the drawing area. 

The amount of time it takes a sound wave's waveform to repeat. 

The difference in start time between two identical or similar 
waveforms. 

A picture element. The smallest portion of the display that you 
can alter. 

A QuickDraw shape. A polygon is a closed figure made up of 
line segments. 

The Macintosh's graphics software package. The QuickDraw 
routines reside in ROM. 

Random access memory (read-write memory). RAM is 
where applications programs, variables, and some toolbox 
routines reside. 

A QuickDraw shape. A QuickDraw rectangle must be parallel to 
the coordinate axes. 

An arbitrarily shaped portion of the drawing area. A region is 
described by a data structure and can be manipulated like 
QuickDraw shapes. 

Read-only memory. Where the Macintosh toolbox software 
is stored. 

A QuickDraw shape. A round rectangle is a rectangle with 
rounded corners. 

A smooth curve created with a mathematical technique that 
synthesizes and blends together sections of curves on the basis of 
predefined control points. 

Macintosh software that synthesizes sounds using the Macintosh's 
speaker. There are three types of synthesizer: square-wave, free­
form, and four-voice. 
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INDEX 

AddPt procedure, 271 
Aliasing, 7 
Alignment, pattern, 29-30 
Amplitude of sound wave, 228, 229 

setting, 223-234 
Angles 

of arc, 43 
of rotation, 151 
sine of, 128 

Arbitrary point, rotation about, 134 
Arc, 43, 125 
Axis of rotation, 130 

BackPat procedure, 275 
Beep, 232 
Bezier curves, 183 
BIC mode, 33, 35 
Bit image, 106-107 
Bit map, 107-108 
Bit-mapped display, 3-4 
Blocks, 39 
Boxes 

drawing. See DrawBox 
palette, 140, 142, 144, 145 

rotation of, 129, 130 
scaling, 135-138 

B-Spline curves, 184-189 
program for, 190-191, 192, 

208-211 
Button function, 77, 293 
Bytes 

in display memory, 106-107 
setting, in pattern, 30-31 
waveform, 240 

CAD (computer-aided design) 
programs, 120 

CalcNew procedure, 200 
for Fractal2 program, 200-201 
for Fractal3 program, 204-205 

Calcone procedure, 243 
Calcpts routine, 192-200 
Calculating Wave 1, 2 51 
Calculation routines, QuickDraw, 

271-274 
Character origins, 55 

offset, 56 
Characters, text. See Text characters 

307 
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CharWidth function, 61, 63, 290 
CheapCAD program, 154-177 

main loop, 145 
Clipping, 24 
ClipRect procedure, 24, 26, 275 
ClipRgn (clipping region), 109, 111, 

114, 115 
ClosePicture procedure, 83, 84, 279 
ClosePoly procedure, 88, 89, 280 
ClosePort procedure, 275 
CloseRgn procedure, 95, 282 
Color images, 109 
CompletionPtr, 236 
Computer-aided design (CAD) 

programs, 120 
Constants, selecting, for curve 

drawing, 182-183 
Control palette boxes, 142 
Control points, fitting curves to, 180, 

182, 183 
B-Spline curves, 184-185, 187 

Control routines, 149 
Coordinate system, 12-13, 102-106 

for bit image, 107 
conversions, 19-20, 112-114 
GratPort and, 111 
of object, 121 
pen in, 28 
SetOrigin procedure for, 114-115 
translation of, 1 7-19 

Coordinate transformations, 15-20, 
105, 106 

conversions, 19-20, 112-114 
rotation, 129-134 
scaling, 15-16, 17, 19, 116-117, 

135-139 
translation, 15, 16, 17-19, 116 

Coordinates 
of pen, 28 

for text drawing, 60 
pixel, 4-6, 12-13 
and scaling, 136-13 7, 139 

CopyRgn procedure, 282 
Cursor, 38-39, 70-76, 77 

QuickDraw routines for, 72-73, 
274-275 

Cursor hot spot, 72 

Cursor image, 70, 72 
Cursor level, 73 
Cursor mask, 70, 72 
Curve order, 190 
Curves, jagged, 191-192 

fractals, drawing, 193-207, 
212-225 

Curves, smooth, 180-183 
B-Spline curves, 184-191, 192, 

208-211 
CUT box, 142 

Data types and data structures 
bit map, 107 
cursor, 72 
fixed-point, 239-240 
Fontinfo, 61 
GratPort, 108-109 
line and object records, 123 
of object, 121 
pattern, 30 
point, 20 

DrawBox with, 21 
QuickDraw, 267-269 
rectangle, 22 
synthesizer, 234-235, 246, 

297-298 
Default character image, 57 
Destination rectangles, 87, 116-117 
Device, ImageWriter, 57-58, 105, 120 
DiffRgn procedure, 282 
Dimensions, 12 
Disk files, fonts in, 53 
Display, bit-mapped, 3-4 
Display memory bits, 106-107 
Display RAM, 13 
DisposeRgn procedure, 96, 282 
DoControl, 149 
Documents, large, 103-105, 106, 115 
DoCut procedure, 149 
DoDraw routine, 146 
DoMove procedure, 149 
DoRect routine, 145 
DoRot procedure, 149 
DoScale procedure, 149 
DoSelect routine, 148-149 
DrawArcObject routine, 151, 152 



DrawBox, 14 
with ClipRect, 26 
with coordinate transformations, 

15-16, 17 
with point data type, 21 
with SetRect, 23 
several rectangles, modification for, 

25 
DrawChar procedure, 55, 58, 59, 290 
DrawFont program 

final form, 63, 65-67 
preliminary, 59 
revised, 62, 64 

Drawing. See also QuickDraw 
curves, jagged, 191-207, 212-225 
curves, smooth, 180-191, 192, 

208-211 
objects. See Objects 
patterns, 29-31, 32, 34 

in sh;ape-drawing procedures, 
44 

pen. See Pen 
shapes, 40-47 

routines for, 286-290 
text. See Text characters 
in two dimensions, 12-26 

DrawLine, 6, 14 
DrawObject routine, 149-150 
DrawPicture procedure, 83, 84, 87, 

280 
DrawPoly routine, 94 
DrawRgn routine, 96 
DrawRObject routine, 147-148, 150 
DrawShapes routine, 45 
Drawstring procedure, 59, 290 
DrawStrip procedure, 3 7 
DrawText procedure, 290 
DrawWave procedure, 251 

Elements and element records, 
123-127 

EmptyRect function, 271 
EmptyRgn function, 96, 282 
EqualPt and EqualRect functions, 271 
EqualRgn function, 283 
EraseArc procedure, 286 
Erase operation, 44 
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EraseOval procedure, 286 
ErasePoly procedure, 90, 280 
EraseRect procedure, 286 
EraseRgn procedure, 283 
EraseRoundRect procedure, 287 
Even harmonics, 244 

Files, font, 52, 53-54 
FillArc procedure, 287 
Fill operation, 44, 45 
FillOval procedure, 287 
FillPoly procedure, 90, 280 
FillRect procedure, 287 
FillRgn procedure, 283 
FillRoundRect procedure, 287 
Fixed-point numbers, 239-240 
Fontinfo record, 61 
Font mover utility, 53 
Fonts, type, 50-51 

character set, drawing, 63-67 
files, 52, 53-54 
getting information about, 61, 63 
manager, 57-58 
names and numbers, 60-61 
in object drawing, 122-123 
setting characteristics of, 58 

Four-voice synthesizer, 245-251, 
255-264,298 

Fractals, drawing, 193-200, 212-216 
Fractal2, 200-201, 217-221 
Fractal3, 201, 204-205, 207, 

222-225 
Fractional geometry, principles of, 

191-192 
FrameArc procedure, 151, 288 
Frame operation, 44, 47 
FrameOval procedure, 288 
FramePoly procedure, 90, 281 
FrameRect procedure, 22, 288 
FrameRgn procedure, 283 
FrameRoundRect procedure, 288 
FRect, 146 
Free-form synthesizer, 239-245, 

252-254,298 
French curve, 180 
Frequency of sound wave, 229 

with Note procedure, 233 
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FunctA function, 244 
FunctB function, 243 
FunctC function, 242 

GetClip procedure, 275 
GetFontlnfo procedure, 61, 291 
GetMouse procedure, 77, 293 
GetPen and GetPenState procedures, 

278 
Getpoints function 

in fractal programs, 197 
in spline program, 190 

GetPort procedure, 276 
GetSoundVol procedure, 299 
GlobalToLocal and LocalToGlobal 

procedures, 112-113, 271, 
272 

GrafDevice procedure, 276 
GrafPort, 108-111, 112 

QuickDraw routines for, 275-277 
SetOrigin procedure, 114-115 

Graphics editors, 3 
GraphRect, 3 7 

offsetting, 103 
Grids, 12-13, 38, 73, 74, 77, 78-79, 

81-82 
Group of objects, creating, 127-128 

Halftone images, 8-9 
Hex characters, 67 
HideAll procedure, 295 
HideCursor procedure, 73, 274 
HidePen procedure, 278 
Hot spot, cursor, 72 

Icons, 79 
Image, cursor, 70, 72 
ImageWriter, 57-58, 105, 120 
InitCursor procedure, 72, 274 
InitDraw procedure, 102-103 
InitGraf and InitPort procedures, 276 
InitSound procedure, 249, 250 
InLine facility, 76-77 
InsetRect procedure, 272 
InsetRgn procedure, 283 
Integers, 16-1 7 

and cursor, 75-76 
vs. fixed-point numbers, 240 

InvertArc procedure, 288 
Invert operation, 44 
InvertOval procedure, 289 
InvertPoly procedurt~, 90, 281 
InvertRect procedure, 289 
InvertRgn procedure, 283 
InvertRoundRect procedure, 289 
Iterate procedure in fractal program, 

193, 197-198, 199 

Jagged curves, 191-192 
fractals, drawing, 193-207, 

212-225 
Jaggies, 7 

Kerning, 55-57 
KillPicture procedure, 84, 280 
KillPoly procedure, 89, 281 

Languages for access to QuickDraw, 9 
Leading, 54 
Library, QuickDrawl vs. QuickDraw2, 

87 
Lines 

converting coordinates of, 114 
drawing 6, 7, 14, 227 

LineTo procedure, 277 
for polygons, 88 

Linked lists of elements, 125-128 
LocalToGlobal and GlobalToLocal 

procedures, 112-113, 271, 
272 

Loudness of sound, 229 

MacDraw program, 120 
Macintosh Pascal, 9, 10 

fixed-point data type in, 239-240 
and mouse, 76-77 
vs. QuickDraw, 43 
and sound synthesizers, 235, 236 
window routines, 295 

MacPaint program, 120 
MakePoly procedure, 94 
MakeRect routine, 146, 147 
MakeRgn routine, 96 
MapPoly procedure, 117 
MapPt and MapRect procedures, 19, 

116, 272 



MapRgn procedure, 11 7 
Mask, cursor, 70, 72 
Memory 

bit image and bit map, 106-108 
pixels and, 13, 106-107 

Memory buffer, 105 
Modes, pen, 31-39 
Monospaced fonts, 51 
Mouse, 76-79 

and fractal drawing, 193 
and object drawing, 140, 144, 146 
and picture drawing, 84 
and polygon drawing, 90, 92, 94 
and region drawing, 96 
routines for, 77, 293 

MovePortTo procedure, 276 
Move procedure, 278 
MoveTo procedure, 278 
Music, making, 230-231 

NewPts and oldPts, 198-199 
NewRgn function, 95, 284 
NotCOPY, notOR, notXOR, notBIC 

modes, 33, 35 
Note procedure, 232-233, 299 

Object description record, 140 
Object descriptions, 120 
Objects, 103-104, 120-177 

data structure of, 121 
group of, creating, 127-128 
program for drawing, 154-1 77 

explanation of, 139-151 
modification of, 152-153 

rotation of, 129-134, 151 
scaling, 15-16, 17, 19, 116-117, 

135-139, 150 
shape of, representing, 122-128 
trigonometry and, 128-130 

ObscureCursor procedure, 73, 275 
Odd harmonics, 243 
Offset, random, in fractal programs, 

200-201, 205 
OffsetPoly procedure, 89, 94, 281 
OffsetRect procedure, 103, 113, 273 
OffsetRgn procedure, 95, 284 
OldPts and newPts, 198-199 
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OpenPicture function, 83, 84, 280 
OpenPoly function, 88, 89, 281 
OpenPort procedure, 276 
OpenRgn procedure, 95, 284 
Order of curve, 190 
Origin 

of character, 55 
offset, 56 

in coordinate conversions, 
112-113 

of document, 104-105 
rotation about, 131-134 
and scaling, 13 5 
setting, 106, 114-115 

OR mode, 32, 33, 35, 38 
Oval, 41-42 

PaintArc procedure, 289 
Paint operation, 44, 45 
PaintOval procedure, 289 
PaintPoly procedure, 90, 281 
Paint programs, 120 
PaintRect procedure, 289 
PaintRgn procedure, 284 
PaintRoundRect procedure, 290 
Palettes in object-drawing program, 

140, 142, 144, 145 
Parametric eql.lations and curves, 

181-182, 183 
Pascal, Macintosh, 9, 10 

fixed-point data type in, 239-240 
and mouse, 76-77 
vs. QuickDraw, 43 
and sound synthesizers, 235, 236 
window routines, 295 

Patterns, pen, 29-31, 32, 34 
in shape-drawing procedures, 44 

Pen, 13-14 
in character-drawing procedure, 

54-55 
coordinates of, 28 

for text drawing, 60 
modes, drawing, 31-39 
moving between lines, 61 
patterns, 29-31, 32, 34, 44 
QuickDraw routines for, 278-279 
in shape-drawing procedures, 44 
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PenMode procedure, 278 
PenNormal, PenPat, PenSize 

procedures, 279 
Period of sound wave, 229 
Phase of sound wave, 230 
Picture elements, 124 
Pictures, 79-80 

creating, 83-87, 88 
QuickDraw routines for, 83-84, 

279-280 
Pixels, 3-4 

coordinates, 4-6, 12-13 
in cursor, 75-76 
and halftone images, 8-9 
and jaggies, 7 
and memory, 13, 106-107 
in pattern, setting, 31 
and pen size, 28 

Pointer (cursor), 38-39, 70-76, 77 
QuickOraw routines for, 72-73, 

274-275 
Points, 116 

data type, 20, 21 
fitting curves to, 180, 182, 183 

B-Spline curves, 184-185, 187 
in fractal programs, 193, 197, 

198-200, 201 
rotation about, 130-134 
rotation of, 131-133, 134 

Poiygons, 79-80, 82 
creating, 87-94 
QuickDraw routines for, 88-89, 90, 

280-281 
PortSize procedure, 276 
Printer, ImageWriter, 57-58, 105, 120 
Proportionally spaced fonts, 50 
PtlnRect function, 2 73 
PtlnRgn function, 284 
Pt2Rect procedure, 273 

QuickDraw, 9 
bit image and bit map, 106-108 
ClipRect, 24, 26 
coordinate system. See Coordinate 

system 
and cursor, 72-73, 274-275 
data structures, 267-269 

GratPort, 108-111, 112 
routines for, 275-277 
SetOrigin procedure, 114-115 

line drawing with, 6, 7, 14, 277 
pen. See Pen 
pictures, 79-80, 83-87, 88, 

279-280 
polygons, 79-80, 82, 87-84, 

280-281 
rectangles, 22-23 
regions, 79-80, 83, 94-99 

defined in GratPort, 109, 114, 
115 

routines for, 95-96, 282-286 
routines, 271-292 

cursor, 72-73, 274-275 
picture, 83-84, 279-280 
polygon, 88-89, 90, 280-281 
region, 95-96, 282-286 
text, 58-59, 61, 63, 290-292 

shapes, predefined, 40-47 
routines for, 286-290 

text drawing with, 53, 54-55, 
59-60 

and font manager, 57-58 
GetFontlnfo, 61 
kerning, 56 
routines, 58-59, 61, 63, 

290-292 
QuickDrawl and QuickDraw2, 87 

RAM, display, 13 
Random offset in fractal programs, 

200-201, 205 
Rate variable for free-form synthesizer, 

240 
Real numbers, 16 
Rectangles, 22-23, 41 

clipping rectangles, 24 
converting coordinates of, 113 
destination rectangles, 87, 

116-117 
MapRect and MapPt, 19, 116, 272 
in object-drawing program, 

145-148, 150 
vs. regions, 94 
round, 42 



several, drawing, 2 5 
StartRect, 94 

RectlnRgn function, 284 
RectRgn procedure, 285 
Regions, 79-90, 83 

defined in GratPort, 109, 114, 115 
QuickDraw routines for, 95-96, 

282-286 
using, 94-99 

Resolution, 120 
Resource file, system, fonts in, 53 
Rotate routine, 151 
Rotation, 129-134 

in object-drawing program, 151 
ROT box, 142 
Round rectangle, 42 
Row width, 107 

SCALE box, 142 
ScalePt procedure, 116 
Scaling, 15-16, 17, 19, 116-117, 

135-139 
in object-drawing program, 150 
pictures with, 87, 88 

SectRect function, 273 
SectRgn procedure, 285 
Selection box, 140 
Selection of object, 148-149 
SetClip procedure, 277 
SetCursor procedure, 73, 275 
SetDrawingRect procedure, 3 7, 295 
SetEmptyRgn procedure, 285 
SetOrigin procedure, 114-115, 277 
SetPenState procedure, 279 
SetPort and SetPortBits procedures, 

277 
SetPt procedure, 273 
SetRect procedure, 22, 23, 274 
SetRectRgn procedure, 285 
SetSoundVol procedure, 299 
Shading with halftone images, 89 
Shapes 

of object, representing, 122-128 
QuickDraw, predefined, 40-43 

drawing, 44-4 7 
routines for, 286-290 

ShowCursor procedure, 73, 275 
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ShowDrawing procedure, 37, 295 
ShowPen procedure, 279 
Sine (sin) of angle, 128 
Sine waves, 229, 241 
Size of type, 51-52 
Smooth curves, drawing, 180-183 

B-Spline curves, 184-191, 192, 
208-211 

SoundDone function, 299 
Sound driver, 231, 234, 235, 236 
Sound record, 246 
Sound, 228-264 

music, making, 230-231 
Note procedure, 232-233, 299 
routines, 231, 299-300 
synthesizers, 230-231, 234-236 

four-voice, 245-251, 255-264, 
298 

free-form, 239-245, 252-254, 
298 

square-wave, 237-239, 297 
SysBeep procedure, 232, 300 
volume control, 233-234 

Sound waves, 228-230 
in four-voice synthesizer, 245-248, 

249, 251 
free-form, sounds from, 239-245 
square, tones with, 237-239 

SpaceExtra procedure, 291 
Spacing of fonts, 50-51 
Spline curves, 184-189 

program for, 190-191, 192, 
208-211 

Spline function, 190-191, 192 
Square, drawing. See DrawBox 
Square-wave synthesizer, 237-239, 

297 
StartRect, 94 
StartSound procedure, 231, 235, 236, 

239, 299 
StillDown function, 293 
StopSound procedure, 236, 300 
StringWidth function, 63, 291 
Style of type, 51, 53 
SubPt procedure, 274 
Synthesizer records (SynthRec), 

234-235, 236, 237, 239, 246 
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Synthesizers, sound, 230-231, 
234-236 

four-voice, 245-251, 255-264, 298 
free-form, 239-245, 252-254, 298 
square-wave, 237-239, 297 

SynthRecPtr, 236 
SysBeep procedure, 232, 300 
System resource file, fonts in, 53 

Text characters, 50-67 
drawing, 54-55, 58-60 
fonts. See Type fonts 
kerned, 55-57 
measurements, 53-55 
QuickDraw routines for, 58-59, 61, 

63,290-292 
size of type, 51-52 
style of type, 51, 53 

TextFace, TextFont, TextMode, 
TextSize procedures, 58, 291 

TextWidth function, 292 
Tone records, 23 7 
Transformations, coordinate. See 

Coordinate transformations 
Translation, 15, 16, 17-19, 116 
Triangle in trigonometry, 128-129 
Trigonometry, 128-130 
Triplets array, 23 7 
Typeface, defined, 50 
Type fonts, 50-51 

character set, drawing, 63-67 
files, 52, 53-54 
getting information about, 61, 63 
manager, 57-58 

names and numbers, 60-61 
in object drawing, 122-123 
setting characteristics of, 58 

Type size, 51-52 
Type style, 51, 53 

UnionRect procedure, 274 
UnionRgn procedure, 286 

Vibration and sound, 228 
VisRgn field, 109, 111 
Volume control, 233-234 

WaitMouseUp function, 293 
WaveBytes array, 240 
Wave functions, 242-244 
Waves, sound, 228-23.0 

in four-voice synthesizer, 245-248, 
249, 251 

free-form, sounds from, 239-245 
square, tones with, 237-239 

Wedge (arc}, 43, 125 
Window manager, 94 
Windows, 6, 3 7 

coordinate systems of, 102, 103, 
105, 106 

conversion routines, 112-114 
SetOrigin procedure for, 

114-115 
GrafPorts, 108 
limiting drawing areas to, 24 
Macintosh Pascal routines, 295 

XOR mode, 33, 35, 38-39 
XorRgn procedure, 286 
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"This is the best M~ 
programming b'ook that I have 
read to date by any author . ... 
I have been a programmer for 
many years and have worked 
for Apple Computer for many 
years, and this book is just 
what the doctor ordered . ... I 
found myself wanting more." 
-Ricky N. Kurtz 

Designed for programmers with 
little or no graphics experience, 
this comprehensive tutorial 
helps you use the QuickDraw 
ROM routines to generate and 
manipulate images on your 
512K Macintosh. 

The M agic of Macintosh will get you 
started writing your own graphics 
programs immediately. You'll learn how to 
• draw in 2 dimensions and in different 

coordinate systems 
• draw text in various type fonts 
• work with polygons. regions , and 

data structures 
• create such advanced graphics as 

spline curves and fractals 
• use a variety of graphics techniques 

found in CAD programs 
• make music on the Macintosh 
and more. 

The Magic of Macintosh 
offers an abundance of 
practical examples for each Leoding 

major concept covered in 
the book-there are over 
50 sample programs in 
Macintosh Pascal and 1 82 
helpful illustrations. And 
you 'll find a collection of 
useful technical information 
in the appendixes. Unleash • • 
the magician in your 
Macintosh with this • 
enjoyable guide. 

• 

William B. Twitty is a 
cofounder of a Silicon Valley 
consulting firm and makes his 
living consulting and writing. 
He has been designing 
computer hardware and 

•• software for over 20 years. 
A resident of Southern •• 
California, Mr. Twitty is also • 
the author of Programming the •• 
Macintosh: An Advanced Guide • • [Scott, Foresman]. 
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