
t .

e aoo Jee ts
A Beginner's Guide to Object,Oriented Programming

Featuring practical

C++ and Turbo

Pascal examples

that explore the

interface between

real,world

problems and OOP

techniques.

Gary Entsminger
Introduction by Bruce Eckel

M&T

-~

The Tao of Objects
A Beginner's Guide to Object-Oriented Programming

The Tao of Objects
A Beginner's Guide to Object .. Oriented Programming

.

Gary Entsminger

M&T Books
A Division of MIS:Press
A Subsidiary of Henry Holt and Company, Inc.
115 West 18th Street
New York, New York 10011

© 1990 by M&T Publishing, Inc.

Printed in the United States of America

All rights reserved. No part of this book may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage and retrieval system, without prior
written permission from the Publisher. Contact the Publisher for information
on foreign rights.

Limits of Liability and Disclaimer of Warranty
The Author and Publisher of this book have used their best efforts in preparing
this book and the programs contained in it. These efforts include tbe devef­
opment, research, and testing of the theories and programs to determine their
effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied,
with regard to these programs or the documentation contained in this book.
The Author and Publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of, the furnishing,
performance, or use of these programs.

Library of Congress Cataloging-in-Publication Data

Entsminger, Gary, 1950-
The Tao of objects: a beginner's guide to object-oriented programming I

Gary Entsminger
p. cm.

Includes bibliographical references and index.
ISBN 1-55851-155-5
1. Object-oriented programming (Computer science) I. Title.

QA76.64.E58 1990
005.1-dc20

93 4

90-22920
CIP.

All products, names, and services are trademarks or registered trademarks of
their respective companies.

Project Editor: Linda Comer Cover Design: Lauren Smith Designs
Cover Illustration: Christine Mortensen Inside Illustrations: Mike Sagara

ForAlison

Contents

WHY THIS BOOK IS FOR YOU•••••............•..•.......•..........................••....•••....•• 1

INTRODUCTION BY BRUCE ECKEL .. 3

CHAPTER 1: GREAT JOURNEYS, SINGLE STEPS .. 17
About the Book .. 18
Choose Your Language .. 19
Objects and Actions ... 21
A World of Objects .. 24
About Inheritance ... 25
Building a New Type ... 29
Inheritance Among OOP Languages ... 31
Overriding Behavior and Data ... 31
About Polymorphism ... 32
Static and Dynamic Binding .. 36
Dynamic Programming .. 38
Another View ... 39
Object Types .. 39
About Types ... 42
Constructors and Destructors ... 45
The Importance of Being Constructed ... 48
Messages .. 49

CHAPTER 2: THINKING IN OBJECTS .. 53
Complex Numbers ... 59
Operator Overloading in C++ .. 60
Types, Not Individuals ... 61

THE TAO OF OBJECTS

How Complex Should Objects Be? ... 62
Base and Abstract Types .. 63
Abstract vs. Concrete ... 67
Planning for Change ... 68
The Trickle-Up Theory .. 69
Objects, Classes, and Types ... 70

CHAPTER 3: EXTENDING THE SYSTEM ... 73
Sketching Your Objects ... 79
Reusing Code ... 80
Choosing a First Application ... 81
Checkers and Chess ... 82
Black Art .. 86
Chaos Theory and Strange Attractors .. 90
Mathematic Attraction ... 91
Inheriting Strange Attractors .. 93
Display Window .. 94
State Space ... 96
Model = State Generator .. 97
Where OOP Works Best .. 99
Extending Systems ... 100

CHAPTER 4: SHAPING THE SYSTEM .. 111
Dynamics ... 116
Constructors, Destructors, and Responsibility ... 118
Managing From the Bottom Up ... 119
Tracing Through Pointers .. 125
Some Advantages ... 127

CHAPTER 5: DYNAMIC STYLE .. 137
Expert Systems ... 140
OOP in AI .. 142
Frames vs. Objects ... 142
Finding the Objects .. 143
Programming for Change ... 152

CONTENTS

CHAPTER 6: AN OBJECT-ORIENTED NEURAL NETWORK 165
Objects and Networks .. 169
Deriving New Networks .. 176
Data Lists and Events ... 177

CHAPTER 7: DESIGNING WITH OBJECTS ..••••••.•...•.•............•...••••...•••.•.....•..... 191
An Alternative to Chaos ... 192
What's Wrong With This Picture? ... 194
Programming for Change ... 197
Object-Oriented System Design ... 199
The Five Stages of Object Design .. 202
More on Object Discovery ... 204
An Example .. 205
The Object-Oriented Design System ... 206
The Complexity Test .. 211
OOP and GUI ... 211
Libraries and Frameworks ... 212
Skeptic's Comer ... 213
The Art of Software Design ... 214

AFTERWORD BY ZACK URLOCKER .••••••............••..•....•.•..•............••••..••.••..•....•. 217

APPENDIX A: GLOSSARY••••..•.•.•.•••••••..•......•••••........•....•...••••.....•..........••..••••.• 225

APPENDIX B: REFERENCES AND RESOURCES ••••........•.......•••..•.••.••.....•....• 237

APPENDIX C: A CONCISE COMPARISON OF C++, TURBO PASCAL,
AND SMALL TALK ... 243

Acknowledgements

I'd like to thank a few folks who've supported and advised me, offered

suggestions, read the manuscript, provided software, or just plain been helpful

during the writing of this book: Brenda McLaughlin and Linda Comer at M&T

Books; Zack Urlocker, David lntersimone, Nan Borreson, and Tammy Casey at

Borland International; J.D. Hildebrand and Larry O'Brien at Computer Language;
Mike Aoyd at Dr. Dobb' s Journal; Bill Gates at Midnight Engineering; and Susan

Allen, Billy Barr, and Alison Brody at the Rocky Mountain Biological Laboratory.

I especially thank Bruce Eckel, Chester Anderson, and Larry Fogg for the many

hours of discussions and idea exchanges while I was planning and writing. I can't

wait to see what you three do next.

Small portions of this book first appeared in different form in Al Expert,
Computer Language, Dr. Dobb' s Journal, Micro Cornucopia, and Neural Network
News.

The quotes by Lao-tzu from The Tao Te Ching are from the Stephen Mitchell
translation (Harper & Row, New York, N.Y., 1988).

The quote by Douglas Hofstadter and Daniel Dennett is from The Mind's I
(Bantam Books, New York, N.Y., 1981).

The quotes by Fritjof Capra are from The Tao of Physics (Shambhala, Berkeley,

Calif., 1975).

The quote by Riane Eisler is from The Chalice and the Blade (Harper & Row,

San Francisco, Calif., 1987).

The quote by David Rumelhart and James McClelland is from Parallel Dis­
tributed Processing (MIT Press, Cambridge, Mass., 1987).

The inside illustrations are based on photographs by Chester Anderson.

Why This Book is For You

This book can help you understand the key concepts of object-oriented pro­

gramming. It's written for C and Pascal programmers who want to know how they

can rethink their programs using objects.

The Tao of Objects is a friendly, hands-on book that emphasizes the key

advantages of programming with objects. The examples in the book are general

enough to be of interest to anyone - and they 're fun.

Subjects of particular interest include:

• Object-oriented design

• Program extension

• Modeling systems

• Chaos theory and strange attractors

• Linked lists

• Expert systems

and much more. All examples are given in both C++ and Turbo Pascal, the object­

oriented successors to C and Pascal.

If you 're a C or Pascal programmer who wants a gentler introduction to object­

oriented programming than a computer manual can provide, this book is for you.

1

Introduction

Expressing the ideas of object-oriented programming in terms of an Eastern

philosophy is a wonderful concept. Gary and I spent many days in the woods and the

mountains and many hours on the phone working on this view. Time being what it

is (fleeting), I found I didn't have enough, and the book became Gary's. However,

I hope I can make additional contributions in this introduction by raising some of the

issues I feel are important.

When I explained OOP to my friend Mark (a psychologist), he replied "I don't

understand - how else would you do it? How were they doing it before?" I found

I was at a loss to describe the old way. I mean, I practiced procedural programming

and all that, but it never really made sense to me- it never seemed whole. In fact,

I never took programming that seriously before OOP, probably because it seemed to

take too much effort to get the job done. Because I can now think in much more

powerful terms, I can solve much more complex problems.

One difficulty people have when learning object-oriented programming is

finding a way to think about it. Often you hear such unhelpful things as "It's easier

for someone who doesn 'tknow how to program to learn OOP than for an experienced

programmer" or "You need to unlearn what you know." My personal experience has

not supported this. Although thinking about objects is different from thinking about

procedural programming, it's different because you're stepping into a larger world,

not because everything you know is wrong. This is especially true with hybrid

languages like C++ and Turbo Pascal; you'll see that the ability to create user­

defined data types isn't such a radical idea, since you use data types so much that you

usually don't even think about them. However, it does tend to highlight the

limitations of the built-in types and (to my mind) the relative primitiveness of what

we've been using as programming languages so far. Once you begin using an object­

oriented language, it's hard to go back.

3

THE TAO OF OBJECTS

History and Concepts
When the Simula language was developed in Scandinavia in the late sixties, its

designers were trying to make the process of simulation easier (hence the name).

Simulations always seem to involve a group of things -customers in line in a bank,

molecules of air, migrating animals - in short, a lot of objects. An object knows

things about itself: It has an internal state, or characteristics. It can also do things: It

has external operations, or behaviors. It turns out that this also describes the data

types built into a programming language. It's just that the data types cannot express

the features necessary to model a real-world system.

Existing languages engendered very messy code when a simulation was created

because their types were so limited. It looked like the only way to make simulation

easy was to change the language so the programmer could add new types of data. This

abstract data typing is a fundamental concept in object-oriented programming.

Abstract data types work almost exactly like built-in types: You can create variables

of a type (called instances in object-oriented parlance) and manipulate those vari­

ables (called sending messages; you send a message and the variable figures out what

to do with it).

The language designers also discovered that a type does more than describe the

constraints on a set of objects; it also has a relationship with other types. Two types

can have characteristics and behaviors in common, but one type may contain more

characteristics than another and may also handle more messages (or handle them

differently). Inheritance was developed to express this relationship between types.

It uses the concept of base types and derived types. A base type has all the

characteristics and behaviors that are shared among the types derived from it. You

create a base type to represent the core of your ideas about the objects in your system.

From it, you derive other types to express the different ways that core can be realized.

For example, a garbage-recycling machine sorts pieces of garbage. The base

type is garbage, and each piece of garbage has a weight, a value, and so on and can

be shredded, melted, or decomposed. From this, we derive specific types of garbage

that may have additional characteristics (a bottle has a color) or behaviors (an

aluminum can may be crushed, a steel can is magnetic). In addition, some behaviors

4

INTRODUCTION

may be different (the value of paper depends on its type and condition). Using

inheritance, you can build a type hierarchy that expresses the problem you 're trying

to solve in terms of its types.

Casting the solution in the same terms as the problem is tremendously beneficial

because you don't need a lot of intermediate models (used with procedural languages

for large problems) to get from a description of the problem to a description of the

solution (inevitably in terms of computers, in pre-object-oriented languages). The

type hierarchy is the primary model, so you go directly from the description of the

system in the real world to the description of the system in code. Indeed, one of the

difficulties people have with object-oriented design is that it's too simple for a mind

trained to look for complex ways to get from the beginning to the end. When I say

"The types are the primary model, and the best representation for the types is the

code," most people don't believe me (at first).

Once you've modeled your problem as a set of types, writing the code becomes

remarkably simple; it's mostly a matter of creating variables and sending messages

to them. The variables take care of the details and ensure their own integrity.

When dealing with type hierarchies, you often want to treat an object not as the

specific type that it is but as a member of its base type. This allows you to write code

that doesn't depend on specific types. For instance, the now-classic "shape" example

has functions that manipulate generic shapes without respect to whether they're

circles, squares, triangles, and so on. Since all shapes can be drawn, erased, and

moved, these functions simply send a message to a shape object; they don't worry

about how the object copes with the message.

Such code is unaffected by the addition of new types, which is the most common

way to extend an object-oriented program to handle new situations. For instance, you

can derive a new subtype of shape called pentagon without modifying the functions

that deal only with generic shapes. The ability to extend a program easily by deriving

new subtypes is important because it greatly reduces the cost of software mainte­

nance (the so-called "software crisis" was caused by the observation that software

was costing more than people thought it ought to).

5

·-

THE TAO OF OBJECTS

There's a problem, however, with attempting to treat derived-type objects as

their generic base types (circles as shapes, bicycles as vehicles, cormorants as birds).

If a function is going to tell a generic shape to draw itself, or a generic vehicle to steer,

or a generic bird to fly, the compiler cannot know at compile time precisely what

piece of code will be executed. That's the point - when the message is sent, the

programmer doesn't want to know what piece of code will be executed; the function

can be equally applied to a circle, square, or triangle, and the object will execute the

proper code depending on its specific type. If you add a new subtype, the code it

executes can be different without changes to the function. Since the compiler cannot

know precisely what piece of code is executed, what does it do?

The answer is the primary twist in object-oriented programming: The compiler

cannot make a function call in the traditional sense. The function call generated by

a non-OOP compiler causes what is called early binding, a term you may not have

heard before because you've never thought about it any other way. It means the

compiler generates a call to a specific function name, and the linker resolves that call

to an absolute address of the code to be executed. In OOP, the program cannot

determine the address of the code until run time, so some other scheme is necessary

when a message is sent to a generic object.

To solve the problem, object-oriented languages use the concept of late binding.

When you send a message to an object, the code being called isn't determined until

run time. The compiler does ensure that the function exists and performs type

checking on the arguments and return value (languages of which this is not true are

called weakly typed), but it doesn't know the exact code to execute.

To perform late binding, the compiler inserts a special bit of code in lieu of the

absolute call. This code calculates the address of the code to execute using a pointer

stored in the object itself. This pointer, called the VPTR in C++ and the VMT pointer

in Turbo Pascal, points to a table of function addresses. These are the addresses of

all the functions in this generic base type that have late-binding properties. Since

each object contains its own pointer, it can behave differently according to the

contents of that pointer. Thus, when you send a message to an object, the object

actually does figure out what to do with the message.

6

I

.,

INTRODUCTION

Late binding requires extra code to calculate the function address and a short

time in which to calculate it. Some programmers (especially C programmers, who

are notorious for their fanatical views on efficiency) may object to this overhead.

Some object-oriented languages force late binding for all functions, but in the spirit

of C and Pascal you have a choice. You state that you want a function to have the

flexibility of late-binding properties using the keyword virtual in C++ and Turbo

Pascal; without the keyword, slightly more efficient early binding is performed.

You don't need to understand the meaning of virtual to use C++ or Turbo Pascal,

but you can't do object-oriented programming without it. It's the key to the kingdom;

once you understand how to use virtual functions, you'll understand OOP (which,

although it may be a silly-sounding acronym, is useful partly because it keeps us

humble). You '11 find further illumination about virtual in the pages of this book.

Code Reuse
An issue that is often raised in object-oriented programming is code reuse. Many

programmers find this confusing because they feel code reuse is already embodied

in named subroutines (which we call functions in C++ and Pascal, although Pascal

uses an additional subtype of/unction called a procedure). Since calling a function

in more than one place reuses the code in that function, isn't that code reuse?

Although the answer to this may be "yes" in a discussion of pre-object-oriented

languages, OOP takes it much further. Code reuse in object-oriented programming

means type reuse. You reuse a type in two situations: when it satisfies your needs in

the form it's in and when you can make it satisfy your needs with some small

additions or modifications. The beauty of the second case is that you can make

changes without touching the original code (a statement that at first sounds con­

tradictory) using inheritance.

If you want to create a new type and you have one that does most of what you

need, you can inherit the existing type into the new one, add new data and functions,

and change the meaning of existing functions. This is a very powerful tool because

it lets you make modifications and improvements without touching (or breaking)

7

THE TAO OF OBJECTS

existing code. Any bugs that show up are automatically isolated to the new code.

Code reuse in an object-oriented language is thus a fundamentally different and more

useful concept than it is in procedural languages; it increases both your power and

your flexibility.

Language Extensibility
Because we're effectively extending the language by creating new data types

that the compiler treats like built-in types, the specter of the extensible language rears

its head. Although some extensible languages like Forth are still popular in small

circles, they are generally considered to be failures as general-purpose languages.

That's because of the propensity of programmers to create their own languages,

which is exactly what an extensible language is intended for. In a sense, it has many

similarities to object-oriented programming because you modify an extensible

language until it fits the problem you' re trying to solve, and you add types to an OOP

environment until they model the problem you're trying to solve.

The problem with extensible languages is that code written in a programmer's

own version of that language tends to be write-only. Object-oriented languages don't

suffer from this problem for two reasons.

First, extensible languages never made a clear distinction between the base

language and the programmer's extensions to the language. Although some tried to

determine the core of the language (and thus what you could expect to be there),

agreement was difficult to reach, in part because there was never a good reason to

draw the line on language extensions. In addition, you can change the basic meaning

of almost anything in an extensible language like Forth, so you don't necessarily

know if your environment has a function; if it does, you don't necessarily know

what it does.

C++ and Turbo Pascal are hybrid OOP languages, which means they were

created from existing languages. The existing languages have a distinct set ofbuilt­

in types (although the programmers who use "pure" OOP languages like Smalltalk

observe that the built-in types suffer from inadequacies absent in "real" OOP types;

this can be rectified simply, though with some overhead, by creating new types from

8

INTRODUCTION

the built-in types). The compiler only knows about the built-in types until you tell it

about the user-defined types you want to use. Thus, there's a clear line between the

core of the language - what's built into the compiler- and an extension (always

added at compile time). Neither the programmer nor the reader of the code will ever

have any doubt where this line is. Pure languages like Smalltalk don't have this

distinction, and the two primary flavors of Smalltalk differ in the types available in

the basic system (which is notably vast; one of the obstacles to learning Smalltalk is

its large library of types).

Second, the extensions in OOP languages are only in terms of types, not the

fundamental control structures and operators, and the compiler checks to make sure

instances of these types are used properly. Thus, you don't have the "shifting-sands"

approach seen in extensible languages - the rules for type extension are very clear

and are enforced by the compiler.

The bottom line is accountability - you always know how to find out what a

piece of code means in an OOP language, whereas anything can be modified and

changed in an extensible language without checking or any sort of audit trail. The

reader of the code cannot be certain what the code means because it depends on the

extended version of the language it's running on.

Advantages of Hybrid Languages
A hybrid OOP language has the disadvantage that its built-in types may behave

slightly differently from user-defined types. In addition, some programmers com­

plain about the dearth of user-defined types that come with a programming environ­

ment (in comparison to Smalltalk, which has many types). The latter will be rectified

somewhat as standards develop, but languages like C++ and Turbo Pascal weren't

meant to come with many libraries as much as to support many large and diverse

libraries.

One might find fault with hybrid OOP languages, but certain features are

undeniable advantages. First and foremost is the learning curve. Essentially, pro­

grammers in the non-object-oriented versions of the language can begin using the

object-oriented versions immediately, albeit without using any of the new features.

9

THE TAO OF OBJECTS

Although it may be theoretically convenient to say "Throw away everything you

know and learn it the right way," it's hardly practical. This is seen in the tremendous

migration of C programmers to C++.

Not only is it comfortable for programmers who aren't ready for the full force

of OOP, learning the new OOP features in the context of a familiar language seems

much easier than learning an entirely new language and new concepts at the same

time. The differences between the old and new ways of thinking are very clear, so

programmers know when they're venturing into new territory. The final comfort is

that they know they can always go back to the old style.

Not everything needs to be an object. Everything in a pure object-oriented

language is an object, even the type definitions themselves. This is the object­

oriented philosophy taken to the extreme. While it has a purist appeal, it isn't always

practical. Sometimes you need a function or an ordinary chunk of memory; to be

arbitrarily forced to make everything an object can be an unwieldy constraint.

Another advantage of hybrid OOP languages is that large bodies of existing code

are still available. C++ is designed to compile ANSI C code with few or no changes,

and Turbo Pascal is designed to compile previous Turbo Pascal with no changes at

all (this is described later). Thus, you can move to OOP without losing previous

work.

Philosophical Differences
This book attempts to highlight the similarities between C++ and Turbo Pascal,

but I think it's also helpful to note the differences and evaluate their differing

philosophies.

The ANSI C language has, by necessity, been a compromise between the many

divergent implementations of the C language that propagated as a result of the

original, incompletely specified language. Although the ANSI C committee rec­

ognized the problems and holes in the resulting language, they didn't feel they could

fill those holes without breaking significant amounts of existing code.

10

INTRODUCTION

C++ has al ways had a single definition, created by its inventor, B jame Stroustrup.

The definition is verified and formalized by the actions of the ANSI C++ committee,

but there has never been the divergence experienced by C; the definition and original

implementation came from Stroustrup and company at AT&T and has gone almost

directly to the ANSI C++ committee. Although C++ is designed to compile as much

existing C code as possible without change, it is also designed to produce very large

systems, and this requires more strict support for safety. Thus, holes in the C

language were filled so the compiler could catch errors that would otherwise go

unnoticed. Closing up these holes has restricted the C code that can be compiled. This

is a safer subset of existing C code, and C programmers will notice small differences

in the language. I feel most people will see these differences as improvements, but

they will definitely notice that C++ is not C.

In addition, some basic philosophies have been adhered to in the design of C++

that give a different feel to the language - in particular, the idea that you should

never have uninitialized variables in a program. You can define variables at any point

in a scope and wait until you have all the necessary information before defining the

variable. Also, the compiler automatically generates calls to constructors (special

functions that initialize a variable). The constructors ensure that both the data

members and the VPTR are initialized. Philosophies like this have a definite impact

on the way you program.

In Turbo Pascal, the design philosophy was very different. The intent was to

leave the core language absolutely unchanged and make sure users who didn't want

to know about OOP were unaffected by the additions to the language. No programs

need to be modified because of the changes. This approach is very insightful but has

distinctly different goals. Since type checking in Pascal was already quite strong, no

major holes remain to be closed up in that area. However, Pascal would need to be

written and compiled much differently to ensure initialized variables. The VAR

section makes it very difficult to define and initialize variables at any point in a block

and to call constructors at the point of definition; the programmer must call them

explicitly at some later point. If they're forgotten, the initialization won't take place.

This is particularly bad if the variable contains a VMT pointer.

11

THE TAO OF OBJECTS

The Turbo Pascal programmer must be vigilant. It's unfortunate, but I don't see

how it could have been circumvented without changing the language so significantly

that it would have violated the goal of full code compatibility.

In this book, the differences are only pointed out when it's absolutely necessary

(as in the need to call constructors in Pascal). The differences don't influence the

effectiveness of the basic OOP ideas in either language.

Design
The analogy of the Tao with object-oriented programming is most obvious when

you 're making a first cut at a problem or thinking about OOP design. Programmers

have become so accustomed to thinking in terms of complexity - of the hardware,

in the design process, in the implementation, and when modeling and documenting

a system - that their first reaction to OOP is often something like "Where are the

bits and bytes andfor loops?" There's great resistance when you're presented with

code that describes the system you 're trying to solve rather than the system in which

you 're trying to solve it.

In addition, we have somehow been taught that starting to program before

solving the problem on paper is heresy. This attitude is understandable; we've all

seen the spaghetti code created by programmers who dove in without any plan at all.

Coding by the seat of your pants works with small problems but stops working when

you cross some mysterious size boundary. However, the concept of planning is

usually taken to the opposite, impractical extreme. Everyone talks about it, but in the

end it appears to require too much time, so people go back to programming by the

seat of their pants.

Too much planning is impractical, anyway - we learn through experimenta­

tion, not by doing thought examples as the Greeks were wont to do with their physics.

One of the benefits of OOP is that user-defined data types tend to partition a pro­

gram into stable pieces; procedural programming requires programmer discipline to

prevent an unstable design, while OOP supports a tendency toward increasing

stability. Parts of the program that are unstable won't affect parts that are, since user­

defined data types focus behaviors of the program in tightly coupled areas of code.

12

INTRODUCTION

The two fundamental design guidelines of programming, high coupling and low

cohesion, are still valid but must be applied (like everything else in OOP) to entire

types rather than individual functions.

In the philosophy of the Tao, the focus is on the path rather than the destination,

the process rather than the goal. The same, I think, is true of OOP design and

problem-solving. If you focus on a particular implementation, you may tie yourself

to a solution that you later find to be unworkable; you may not want to end up where

you originally thought you did. That is, focusing more on the goal than on the path

may mean you'll end up in the wrong place because you ignored valuable informa­

tion -you already had all those design documents and your mind was made up. The

way of the Tao is to let the path show you the way. Applying this philosophy to

object-oriented programming means letting the process of solving the problem show

you what the objects should be and what they should look like.

The bulk of the last chapter (on design) is derived from notes I made while

musing about the design problem in OOP versus structured techniques. (Like all

zealots, I couldn't understand why all programmers didn't take up this so obviously

correct way of developing programs; only later did I figure out that programmers like

to program, not write seven different types of documentation.) I keep coming to the

conclusion that the best model for the program is the program itself. Every time I try

to come up with a different representation, I seem to end up with something more

complicated than just writing down the type declarations.

That's why I emphasize that the best approach for object-oriented programmers

is to start writing down type declarations and fill out from there. Don't worry if you

don't know everything when you start creating the types; as you develop the system,

you'll see the answers and the details will sort themselves out. This is very different

from the idea that you must know everything before you write a single line of code,

but it's one of the reasons OOP is so powerful-it's more reflective and supportive

of the way programmers actually do things (they write code).

13

THE TAO OF OBJECTS

Buying In
Programmers often feel someone is trying to sell them something. There are the

traditional folks who are simply trying to make money, but the more persistent and

zealous ones are those who try to get "mind share." Choosing a language involves

both, so the efforts heat up even more.

More intellectually sophisticated programming languages than C++ and Turbo

Pascal certainly exist, and some languages are easier to learn; both types have been

pushed as "better." As effective as the sell jobs have been, we aren't selling soap here

- programmers are a sophisticated audience, and a suspicious one. It doesn't take

long for negative reviews to get back to the pack, and a language that once seemed

promising becomes mediocre or, worse, laughable. You can't hide for long the fact

that a language has been created by someone with a particular bent or background,

an axe to grind, or a single good idea. Programmers will tolerate some flaws and

limitations in a new language, but not too many, and not if they're capricious,

gratuitous, or myopic.

Programmers often switch to object-oriented languages when offered C++ and

Turbo Pascal, even if they resisted earlier languages, because that feeling of

"rightness" has been struck: It's not too different, the learning time of the program­

mer has not been considered unimportant in favor of the proper language purity, and

those programmers who value such issues as efficiency, ROMability, real-time, and

robustness have not been dismissed. As much as possible, the practical issues as well

as the desire for conceptual purity have been mixed together in these languages, and

programmers haven't taken long to see that it's (finally) the right compromise-that

is, until the next great concept in computer science shows up (multineural nonlinear

persistent room-temperature-superconducting C++, anyone?).

Programmers work out a model in their heads of how things work and have some

trouble dislodging that model once they've tested it and come to believe in it. This

prevents them from making big mistakes, like switching to a language that's too

limited for their needs, but it also significantly slows down the shift to a more

powerful way of thinking. When I asked Andrew Koenig to name the most frequently

14

INTRODUCTION

encountered problem among people learning OOP, he said it was the belief that a

programming language is for manipulating pieces of memory rather than manipulat­

ing concepts.

A language provides an interface between us and some machine-implemented

agents. A good language attempts to insulate us, as much as possible, from the details

and limitations of the particular agents (without preventing us from getting our work

done). As long as we persist in doing assembly-language programming in whatever

high-level language we're using, we'll be constrained to solving a small subset of

problems. The really big problems are solved by dealing with the concepts, not some

intermediate representation of the concepts (chunks of memory, data-flow diagrams,

structure charts, and so on).

OOP languages support this way of thinking about problems, and languages like

Smalltalk may even force you to think about problems this way (but require the effort

of learning an entirely foreign language and set of rules). In C++ and Turbo Pascal,

you aren't forced. As simple and optional as the language extensions may seem,

remember that they are only support for OOP and won't make your programs better

unless you can eventually shift your thinking from bytes to concepts. This book

should help you make that shift.

Bruce Eckel
December 1990

15

CHAPTER 1

Great Journeys,
Single Steps

The soft overcomes the hard; the gentle overcomes the rigid.

Everyone knows this is true, but few can put it into practice.

-Lao-tzu

What makes you you, and what are your boundaries?

- Douglas R. Hofstadter
and Daniel C. Dennett

Ancient Chinese philosophers believed in a unifying reality called the Tao

(pronounced "dow"). These philosophers of the Tao, or Way, emphasized that the
world is not a static entity, but a dynamic process. The objects that compose the world
are reflections of that process-in flux and ever-changing. Thus, the ability to model
or capture an object's essence is illusory; we really only capture a bit of it for a short
while.

A computer program is a process, a tool, a way to model, capture, or simulate part
of the world. In traditional programming, static concepts impose themselves on a
dynamic world. It becomes difficult to model the world or modify the model. Object­
oriented programming is a major step toward making programming and the programs
themselves dynamic. Using object-oriented programming techniques, you can
design programs that are better suited for modeling a dynamic world, create and
destroy complex processes at both compile time and run time, and design programs
as if they evolved (which they do).

17

THE TAO OF OBJECTS

Object-oriented programming adds three key features to structured program­

ming. These features let you more clearly envision a program as a dynamic process

and plan for its inevitable evolution. While most programming systems force you to

accept a static model of the world as the best you can do, object-oriented programming

assumes that the world and the programs you use to model it will change and evolve.

It is both a new way to write programs and a new way to think about the interaction

of programs and the world ... both a method and a philosophy.

Object-oriented programming techniques allow you to analyze problems using

a programming model that more closely mirrors the way you believe the world

works. If you can map programs more closely to the world, you can revise them more

easily as the world evolves. You can design programs with a built-in capacity for

evolution. Object-oriented programming also allows you to create general reusable

objects. Programmers can be more productive and project managers a bit more sane.

But there's more to it than that. Object-oriented programming isn'tjustone way

of programming or solving problems; it's a continuum of ideas about programming

and design. It adds to rather than replaces structured programming. In some ways,

it's even more structured than structured programming. It assimilates the best

previous attempts at modularity and data abstraction into the most powerful

programming model yet.

About the Book

18

This book consists of:

• Seven chapters (each containing short examples in C++ and Turbo Pascal)

• A glossary

• An appendix of interesting developments in object-oriented programming

and other matters that don't fit into the main text

• A reference list of books and software to help you pursue object-oriented

programming

• An index.

GREAT JOURNEYS, SINGLE STEPS

Chapters 1 and 2 introduce the general features composing an object-oriented

language. Chapters 3, 4, 5, and 6 refine the concepts introduced in those chapters.

Chapter 7 completes the picture, summing up the implications of object-oriented

programming and describing a method for incorporating object-oriented program­

ming techniques in applications programming.

Examples will be given in both C++ and Turbo Pascal. Chaos and complexity

theory, phase and state spaces, agents (secret and otherwise), spreadsheets, expert

systems, neural networks, and intelligent system design are a few of the ideas we'll

explore. I think you're going to use object-oriented programming to develop your

own ideas. I do.

Although C++ and Turbo Pascal (with object extensions) are conceptually very

similar, their designers and other writers describe them differently. Throughout this

book, I'll try to use language that's consistent with the AT&T C++ 2.1 specification

(theprimarybasedocumentfortheANSIC++committee),theANSICspecification,

and the Turbo C++ and Turbo Pascal manuals.

Choose Your Language
C++ and Turbo Pascal use different terms to represent similar concepts:

Concept C++ Turbo Pascal

data structure struct record

user-defined type class object type

variable of user-defined type object instance

data field member field

behavior member function, method
method

19

THE TAO OF OBJECTS

Some languages, such as Smalltalk, Actor, and Eiffel, effectively treat every­

thing as objects. We sometimes call these languages pure. Others, such as C++ and

Turbo Pascal - the hybrids - extend structured languages to handle objects. You

have the option of using object types in a hybrid language, but you can still use

functions and ordinary data structures.

Although C++ and Turbo Pascal are two of the most popular object-oriented

languages, true to the spirit of the Tao, there are many other paths to choose from.

Each path takes a slightly different approach to the same goal: a better way to create

software. The "pure" or completely object-oriented languages treat everything

according to the same principles. This makes the languages consistent but sometimes

a bit awkward, especially for those of us who have been using traditional languages

such as C and Pascal.

For example, in Smalltalk, even simple code such as adding numbers is

considered object-oriented: Simply send a plus message to a number object to add

to itself. Or consider the case of a traditional if statement. In Smalltalk, this is written

as an If/'rue message to a Condition object that evaluates to true or false.

Languages such as Actor and Eiffel are more understandable to traditional

programmers. These languages use enough "syntactic sugar," or embellishments, to

make them accessible to those who are familiar with C or Pascal. At the same time,

they retain the elegance and consistency of a completely object-oriented world.

You can use any of these languages to explore the world of object-oriented

programming. If you're already a C or Pascal programmer, C++ and Turbo Pascal

are great ways to get your foot in the OOP door.

I'm assuming you already know how to program in C, C++, or Turbo Pascal, so

we won't spend time going over basic programming concepts. Instead, we'll focus
on the object-oriented aspects of C++ and Turbo Pascal.

Object-oriented programming will undoubtedly bend your mind a little, but if

you already know C or Pascal, the bending will be more fun than difficult.

20

GREAT JOURNEYS, SINGLE STEPS

Objects and Actions
The world consists of objects and actions. Objects (or nouns, in grammatical

terms) possess attributes or characteristics. Actions (or verbs) express or exhibit

behavior.

The wind blows.

A bird sings.

A window opens.

In programming terms, data is the characteristics of an object and operations

(functions or procedures) are its behaviors. An object-oriented programming lan­

guage encapsulates an object's characteristics and behaviors within a single block of

source code. Putting operations and behaviors in one place makes good sense; it's

safer and more convenient. Combining data with the operations to manipulate that

data into a single package is called encapsulation.

Object-oriented programming languages give programmers the power to create

their own object types, which the compiler treats just like built-in types. You build

complex types from simpler ones that share characteristics and behaviors. Pro­

grammers have been creating new types all along - by collecting variables into

structs (in C) and records (in Pascal). The only difference is that the functions to

manipulate these types have been ordinary ones.

The new object type looks a lot like its data-only counterpart (struct or record).

But it's self-contained: Data and the operations to manipulate the data are encapsu­

lated in one package. In C++ we call this new type a class - a struct plus functions

to manipulate the data fields. In Turbo Pascal, we call it an object type - a record
and the functions and procedures to manipulate the data fields. For simplicity, I'll

refer to functions and procedures in Pascal as functions, since a procedure is just a

specific type of function. In object-oriented languages, the functions are brought into
the object type, so it's not surprising that this new type - the C++ class or the Turbo

Pascal object type - looks very similar to C structs and Pascal records.

21

THE TAO OF OBJECTS

In C++, you might declare a struct like this:

struct aStruct {
char Name[lOJ:
int X,Y;

} :

In Turbo Pascal, you could declare a record like this:

type
recordl = aRecord:
aRecord = record

Name : string:
X,Y : integer:

end;

In C++, you can declare a class like this:

class aClass
public:

int X,Y;
void doSomethingWithXandY();

} :

Public is a C++ keyword meaning "anyone can use it." Things that aren't public

can only be accessed by class methods.

You define a variable of type aClass like this:

aClass cv;

and a pointer (a variable that holds the address of another variable) like this:

aClass * cp = &cv:

In Turbo Pascal, you define an object like this:

type
anObject = object

X,Y : integer;
procedure doSomethingWithXandY;

end;

22

GREAT JOURNEYS, SINGLE STEPS

A variable of type anObject looks like this:

var ov: anObject;

We can declare a pointer, op, and get the address of ov like this:

var op: AanObject;
op= @ov;

X and Y are data fields, and doSomething WithXandY is a method for manipu­

lating anObject. Notice that everything in Turbo Pascal is the equivalent of public

in C++.

To access members of a user-defined type variable, you use exactly the same

selection operators available for structs in C and records in Pascal - "."for variables

and "->" for pointers to variables in C++:

cv.X = 2;
cv.doSomethingWithXandY();
cp->x = 2;
cp->doSomethingWithXandY();

/* function call! */

and"." or a with statement and""." for pointers to variables in Turbo Pascal:

ov.X := 2;
opA.doSomethingWithXandY;

With ov do
begin

X:= 2;
y := 4:
doSomethingWithXandY;

end:

{ * function ca 11 ! *}

An object type consists of everything you know about it. Data and functions are

together in one box. If a struct or record is a container for characteristics, then this

new type (class or object) is a container for characteristics and behaviors.

23

THE TAO OF OBJECTS

Notice that you don't have to pass X and Y to doSomethingWithXandY; it already

knows about them because they 're contained within the same type (they share a local

scope). Everything in a user-defined object type (characteristics and behaviors) is

shared. It's like a small town - everyone knows about everyone else within the city

limits.

This combining of data and code in one object is an important extension of C++

translation units (source-code files) and Turbo Pascal units. (We'll refer to both

simply as units.) Programs consist of collections of units, which contain definitions

of classes, objects, functions, and variables. At the simplest level, these new object

types suggest a new way to organize code. Combining data and code - encapsu­

lation - is one of the cornerstones of object-oriented programming.

You classify objects in the world into types and extend your knowledge by

assigning the characteristics and behaviors you know (from previous types) to new

object types. Using object-oriented programming techniques, you build programs in

a similar manner: by creating base types and deriving more complex types from them.

A World of Objects
Offer a child a new type of clothing, and she '11 determine that it can be worn and

probably try to put it on. Given a new type of container, you know there must be a

way to open and close it (even if it's child- and/or programmer-proof).

Because you've driven bicycles, cars, boats, or airplanes, you know that vehicles

share many characteristics while differing in others. For example, any vehicle can

be steered. Although the steering mechanisms differ among vehicles, you can

generalize about them. Then, faced with a new type of vehicle (for example, a

spaceship), you can surmise that there's probably some way to steer it. We can say

that vehicle is a base type and spaceship is a derived type.

Object-oriented programming languages mirror these facts about the real world

by letting you create abstract data types. You can create a base type to represent

behaviors and characteristics common to derived types. With inheritance, you can

create a hierarchy of types derived from this base type.

24

GREAT JOURNEYS, SINGLE STEPS

An object is a special kind of variable of a new type that you or some other

programmer has created.User-defined object types behave just like built-in types -

they have internal data and external operations. For example, a floating-point

number has an exponent, mantissa, and sign bit and knows how to add itself to

another floating-point number.

User-defined object types contain user-defined data (characteristics) and opera­

tions (behaviors). Although they look almost exactly like functions, user-defined

operations are called methods. To call one of these methods, you make a general

request of the object; this is known as "sending a message to the object." For

example, to stop a car object, you send it a stop message. Note that this is based on

our notion of encapsulation; we tell the object what to do, but the details of how it

works have been encapsulated.

About Inheritance
Encapsulation is helpful, but there's more to object-oriented programming than

that. How do you extend the functionality of an object? Go. in and change the code

and introduce new bugs? Not if you can help it. Once you've defined a new base type,

you can build on it using inheritance. When a new type (called a derived type) inherits

from a base type, the derived type automatically gets all the characteristics and

behaviors of the base type.

Object types can share characteristics and behaviors. These shared factors can

be collected into a common type known as a base type. Apples, oranges, and bananas

are all types of edible fruit. They have different specific characteristics, but each has

a color and each can be eaten. The base type, edible fruit, encapsulates the common

characteristics has color and is edible.

The act of eating may be different in each case. You have to peel a banana before

eating it, and you eat everything but the peel. You don't have to peel an apple, and

you can eat the peel, but you don't eat the core.

25

THE TAO OF OBJECTS

You might be tempted to assume that you always use inheritance to add data
attributes and behavior to objects. In many cases, however, composition is prefer­
able. The data and behavior of an object are best thought of as those things that are
directly inherited, plus the capabilities of the fields (also called members or instance

variables). For example, a car object type inherits from the more abstract vehicle object
type, but a car does not inherit from engine, wheels, and transmission. Rather, a car
is composed of those additional objects. Thus, objects can contain other objects, just
like in the real world.

When deciding how to create objects, you must always balance what is
appropriately inherited with what is better encapsulated through the use of methods
and fields. Newcomers often make the mistake of overusing inheritance when
composition would be more appropriate. The key question to ask yourself when
using inheritance is: "Is my derived object type inherently similar to the base type?"
Only use inheritance when the answer is yes, and consider using composition in other
cases. Derivation and composition allow you to reuse old code without introducing
new bugs. This means you can program much faster and more efficiently.

Object-oriented programming is a way to build family trees (or hierarchies) for
data structures. Any type can have a long family tree, but in C++ a class can have
more than one immediate ancestor; we call this multiple inheritance (see Figure 1-1).
In Turbo Pascal, an object can have only one immediate ancestor; we call this single

inheritance.

If inheritance sounds good, you might assume that multiple inheritance is even
better. In fact, multiple inheritance is one of those hotly debated philosophical issues
among language designers. Most OOP languages - including Pascal with Objects,
Objective-C, Smalltalk, and Actor - implement only single inheritance. Eiffel and
C++, on the other hand, support multiple inheritance. Generally speaking, nothing
can be done in a multiple-inheritance language that can't also be done in a single­
inheritance language, though it's sometimes a bit more work.

26

GREAT JOURNEYS, SINGLE STEPS

-~c ~

Single Inheritance:

01 (Base)

__. 02 (derived from 01)

L 04 (derived from 02)

__. 03 (derived from 01)

__. 05 (derived from 01)

Multiple Inheritance:

01 (Base)

~ 02 (derived from 01)

L... 04 (derived from 02)

roe-~ ~

I .. 05 (derived from 03 anc104)

Figure 1-1. Single and multiple Inheritance.

A difficulty arises with multiple inheritance when you combine several object

types, each of which defines the same methods or fields. Suppose two object types,

Sound and Graphic, are combined into a new object type called Multimedia. Sound

has the data fields pitch, duration, and voice and the methods play, rescale, load, and

store. Graphic has the data fields bitmap, size, and color and the methods draw, rescale,

load, and store. When you combine these into the new object type, Multimedia, there's

a conflict between the methods rescale, load, and store.

27

THE TAO OF OBJECTS

What does it mean for a Multimedia object to rescale itself? That depends on

what you want to happen. Does it mean to rescale the sound at a different pitch (as

with Sound) or fit in a smaller space (as with Graphic)? What if you attempt to load

or store a Multimedia object? Should it store itself as a Sound or a Graphic or write

out both components? If it writes out both components, which order should be used?

Should this order always be followed when there are conflicts? In most multiple­

inheritance languages, you end up writing extra code to resolve the difficulty.

The problem is one of ambiguity. It may not be clear to the compiler in a multiple­

inheritance language which operation should take precedence when conflicts arise.

More importantly, even if the compiler resolves the ambiguity, you as the program­

mer may have difficulty remembering the rules, particularly when debugging. Some

language designers feel that multiple inheritance is essential. Most view it as a

double-edged sword: It gives power and flexibility, but at the same time it can

increase the complexity of programs. It has been called "the Goto of the 1990s"

because it adds convenience but can easily be misused.

When you want to implement in a single-inheritance language a new object type

that looks like it needs multiple inheritance, use composition. This usually means

inheriting from the most appropriate object type and using a field to contain the

object of the other type. If we combined Sound and Graphic, we would probably

choose to define the Multimedia type to have two fields, each of which contained a

Sound and Graphic object. We would then need to define "pass-through" methods

that specified unambiguously what would happen when a Multimedia object got a

message such as rescale, load, or store.

Neither multiple inheritance nor single inheritance is perfect in all cases, and

both can require a little bit of extra code to make up for differences in how they work.

There will always be times when the tool you use takes you down the wrong path,

but it's important to recognize the beauty of the path you take and use the tool as it's

meant to be used. Perhaps a future path will go beyond the notion of multiple

inheritance and take us to even better places.

28

GREAT JOURNEYS, SINGLE STEPS

Building a New Type
Let's say you've created a base type in C++:

class base
public:

int X,Y;
void doSomethingWithXandY();

} ;

or in Turbo Pascal:

base = object
X,Y: integer;
procedure doSomethingWithXandY;

end;

Now you want to build a new type derived from the existing base type.You want
the derived type to be identical to the base type, with one exception: You '11 extend
base by adding a method called doSomethingElse.

You build derived simply and quickly by inheriting from base. In C++:

class derived : public base
public:

void doSomethingElse();
} ;

In Turbo Pascal:

derived= object (base)
procedure doSomethingElse;

end;

Since derived inherits all the data and methods of base, you don't need to rede­
fine them; you simply tell the compiler you want to derive a new type (derived) from
a base type (base) and add the new method. Now you can doSomethingWithXandY

and doSomethingElse to variables of type derived. In C++:

29

THE TAO OF OBJECTS

main() {
derived d;
d.x = 5;
d.y = 8;
d.doSomethingWithXandY();
d.doSomethingElse();

In Turbo Pascal:

var
d: derived;

With d do
begin

X:= 5;
Y:= 8;
doSomethingWithXandY;
doSomethingElse;

end;

Notice again that you don't have to passX and Y to doSomethingE/se; it inherited

knowledge of them, along with everything else, from base.

Inheritance lets you build very complex data types without repeating a lot of

code. The new type simply inherits a base level of characteristics and behavior from
an ancestor. It can also reimplement, or overwrite, any method it chooses. This

reimplementation of base-type methods in derived types is fundamental to the

concept of polymorphism, which we '11 get to in a moment.

Inheritance is useful for two reasons. The first is simple: If you're given a

working object type that doesn't do exactly what you want, you can create a new

object type from it with inheritance and add a few characteristics. Not only can you

program quickly, you can isolate the existing code (which works) from your new,
experimental code (which may not).

30

GREAT JOURNEYS, SINGLE STEPS

Inheritance Among OOP Languages
Interestingly enough, object-oriented languages themselves exhibit inheritance

as they build on concepts introduced in previous languages. Most traditional

structured languages, including C, Pascal, and PL/I, have been heavily influenced by

Algol. Simula, the first OOP language, also inherited characteristics of Algol but

added the concepts of objects, classes, and messages. All OOP languages inherit

some of the characteristics and behavior of programming in Simula, either directly

or from its descendant, Smalltalk.

Although some of the inheritance is clearly from a single ancestor (for example,

BCPL begat B, which begat C), many of the languages borrowed from two or more

ancestors, demonstrating multiple inheritance. This is especially true of the hybrid

languages, including Turbo Pascal with Objects and C++, which combine character­

istics and behavior of object-oriented languages with those of their traditional base

languages, Pascal and C. That doesn't mean Turbo Pascal with Objects has multiple

inheritance, just that it's built on the concepts of the languages that preceded it.

Overriding Behavior and Data
Inheritance lets us automatically use the data and methods of a base type. Even

though you inherit methods, you can always override them to achieve some different

behavior. For example, you might create a descendant of a bar-chart type that draws

in three dimensions. You' re not locked into the implementation found in the base

type, but what if you want to use the inherited method and do some new actions? You

could simply define the new method to call the ancestor's routine. You have the

choice of calling the ancestor routine either before or after the new actions.

What if you want to "subtract" behavior that you inherit? You can do that by

defining a dummy method that does nothing at all. However, if you find yourself

writing lots of dummy methods to subtract behavior, it may be a sign that the base

type should be broken down further so you can inherit only the pieces you need.

31

THE TAO OF OBJECTS

Overriding the methods in an object is easy. Overriding the fields is a little more

difficult and requires more careful planning. For example, you can't normally

override the built-in types instructs or records without using variant record types.

The key is to make fields that must be overridden into objects themselves. For

example, if you have a car hierarchy and different car models use different types of

transmissions, then Transmission itself should be an object type with derived types

for Automatic, Manual, FiveSpeed, and so on. It may not always be obvious when

to divide things into objects, but when you start creating objects that contain other

objects, you're on the road to object-oriented programming.

The second use of inheritance concerns the behavior of derived object types that

descend from the same base. When you learn to steer a bicycle, you learn something

that can also be applied to a car or boat. When you pilot any of these vehicles, you

don't have to think about which type of vehicle it is to steer it-you tum the controls

in one direction, and the vehicle moves in that direction. Since this is true in the

world, why shouldn't it be true of programming as well?

About Polymorphism
Let's represent this system with a base object type called vehicle and derived

object types called bicycle, car, and boat. Any vehicle can be steered, and vehicles

do different things to steer themselves depending on their type. Vehicle can respond

to a message called steer, so any type that inherits vehicle can also accept that mes­

sage.

Thus, bicycles, cars, and boats can be steered because they're vehicles, although

the method each specific type uses when it gets the steer message is different. This

is called polymorphism. You tell the vehicle to steer itself (send it a steer message),

and it figures out what to do with the message.

Why is this so important? Because you don't have to reimplement everything

each time you create a new type of vehicle; you build on the existing objects. An

object-oriented program that steers vehicles doesn't have to be rewritten just because

it needs to handle a new type of vehicle. It already knows that any vehicle can respond

to the steer message and act accordingly.

32

GREAT JOURNEYS, SINGLE STEPS

Using polymorphism to create extensible programs is important because pro­

grammers can't know everything about a program or the problem it needs to solve

while developing the program. Programs need to change in response to new

information.

Word processors dido 't know about desktop publishing when they were created;

new features had to be added as user needs changed. The need to change and evolve

has been a nemesis of software development because change is expensive and the

inability to change often leads to obsolescence.

Change must be considered an integral part of a program. New information

might come from understanding a system in a new way or because the problem

changes in the real world. Either way, change is inevitable. Polymorphism reflects

that by letting you create extensible programs.

Behaviors like steering a vehicle and opening a container can be common to a

group of types but implemented differently for each (such as the mechanisms for

steering a bicycle and steering a car). Using polymorphism, you can create a system

that knows vehicles can be steered but not how a particular vehicle will be steered;

those details can come later. The system is extensible because we can add new types

of vehicles (and new ways of steering) without redesigning the program.

The ability to create abstract data types is a powerful one. Because people view

the world in terms of types, representing a real-world system as a program of base

and derived types is a natural process. Ideally, the model of the system in the

computer is a direct mapping of the system in the real world. This means that if the

system in the real world changes, it's easy to change the model in the computer. This

simplicity makes software design, development, and maintenance faster and cheaper.

Abstract data types also tend to localize changes in a system. Using traditional

function-oriented techniques, you may make a change that propagates bugs through­

out the system. But changes in an object-oriented system tend to be localized in an

abstract data type. Since the data and functions are in one package, changes aren't

as likely to propagate bugs outside that package. Therefore, you can change part of

a working system without disrupting the rest.

33

THE TAO OF OBJECTS

When we talk about objects, we often talk about the protocol they understand.

We can think of protocol as the set of messages an object can respond to. Generally,

you'll find that objects that share a common base type or are compatible with each

other have the same protocol. When designing your objects, try to follow a

consistent, generic protocol so that your objects are more easily reused.

Inheritance and polymorphism let you create a base type that establishes a

common interface to a group of types (which are created by inheritance from the base

type). This interface defines which messages an object can receive and what the

protocol is.

If your system understands and uses the interface to the base without knowing

the particulars of the derived types, it can easily be extended. If you need to add a type

to an existing system, you simply derive it from the base type. The system only uses

the base interface, so it immediately knows what to do with your new type.

You can easily create any number of variables of a type, even at run time.

Libraries of abstract data types are easy to reuse in new applications and can be

extended when used in conjunction with inheritance, even if you don't have the

source code for the library.

For example, if you' re creating a motel management system using someone

else's general-purpose room type, you can create your own type, motel_room, by

inheriting from room and adding characteristics and behavior to tell the user whether

the room is occupied, has been cleaned, needs painting, and so on. Thus, you can

easily reuse code by using an existing type or by inheriting and adding to an existing
type.

When you call a method for an object, you send a message to the object. You

think of a message as a function call. Why the distinction between sending a message

and calling a function? Normally, it's just like a function call: You knew when you

wrote the code what would be executed for that call.

34

GREAT JOURNEYS, SINGLE STEPS

With polymorphism, however, the code to be executed isn't determined until run
time. You can send a message to an object of a generic type and let the object figure
out which method to call. "Put on the item of clothing" will evoke different responses
depending on whether the item is a hat or a shoe.

Polymorphism means that a method can have one name that's shared throughout
an object-type hierarchy. Each object type may have a different implementation for
the method. The name of the method is the same for each object type, but what it does
is different.

Suppose you want to define derived2, which inherits the data and methods from
derived and reimplements the method doSomethingElse. You define it as follows in
C++:

class derived2 : public derived
public:

void doSomethingElse();
} ;

and in Turbo Pascal:

derived2 =object (derived)
procedure doSomethingElse;

end:

Now when you use a variable of type derived2, it will inherit the data fields from
derived but can use its own doSomethingElse method.

When you send a message to an object, the compiler first looks to see if the
object's type definition contains the method you want. If it finds the method in the
type definition, that's what it uses. If the type definition doesn't contain the method,
the compiler searches the inheritance hierarchy until it finds the appropriate method.
If it doesn't find the method in any ancestor, it reports an error.

35

THE TAO OF OBJECTS

Making the compiler search through the inheritance hierarchy for the correct
method takes time and can decrease performance. The overhead is generally not that
great, especially in hybrid languages like C++ and Turbo Pascal. However, there will
be times when you want to reduce the impact by optimizing your code.

Although we think of inheritance as requiring a search up the hierarchy to find
the correct method, this technique would have disastrous results for large applica­
tions; the more you used inheritance, the slower your program would get. No object­
oriented language that I know of uses this kind of linear search. Instead, an efficient
indirect function call is used so that only one additional instruction is required on a
method call. In most cases, less code is required to do this "call indirect" than to
mimic the flexibility of object-oriented programming using an if, switch, or case

statement.

Static and Dynamic Binding
Each object created so far uses statically bound methods. Static binding (also

called early binding) means the compiler resolves all references to functions by the
time the program is loaded. When you call a statically bound method, the compiler
figures out exactly which function to call at compile time.

With polymorphism, you want to send a message to an object and let the object
figure out which method to use. What you're asking the compiler to do is resolve
some references at run time. This is called late or dynamic binding.

Why is late binding important? Because it lets you defer decisions and connec­
tions until run time, thus making the system more flexible and easier to extend. It also
means we can give our objects general requests, and they can determine how to
respond. We tell the objects what to do, and they figure out how to do it.

To resolve references to methods at run time, you create virtual methods. To
create a virtual method in C ++,add the keyword virtual to a function in the base class:

36

GREAT JOURNEYS, SINGLE STEPS

class aClass
public:

int X,Y;
virtual void doSomethingWithXandY();

} :

That's it; dynamic binding happens automatically for doSomethingWithXandY

in all classes derived from aClass. But there's a catch: A method can't be statically
bound in one type and virtual in another. You must anticipate that by declaring these
methods as virtual from the beginning.

In Turbo Pascal, the story is slightly different-you add the keyword virtual to
the method and include a special procedure, called a constructor, within the object
(constructors happen automatically in C++). A constructor sets up the machinery for
virtual methods and specifies how a new object type will be initialized.

Methods must also be declared as virtual in all inherited types. For example, you
must declare doSomethingWithXandY as virtual at its earliest declaration and in all
subsequent declarations:

derived = object(base)
constructor init;
procedure doSomethingWithXandY; virtual;

end:

an0bject4 = object(derived2)
constructor init;
procedure doSomethingElse: virtual:

end:

Virtual methods allow derived types to have their own versions of a base-type
method. This is a powerful (but sometimes thorny) aspect of object-oriented program­
ming, one we '11 return to again and again as we learn more about the Tao of objects.

37

THE TAO OF OBJECTS

Dynamic Programming
Object-oriented languages support a dynamic style of programming, allowing

variables to be created and destroyed as easily at run time as at compile time. Think
about it: The situations where you know all the types and quantities of objects while
you're writing the program are really the special cases. In general, you don't know
those factors. In a CAD system, for example, you don't know until the program is
running which shapes or types of shapes the user will want to display. Object­
oriented programming is dynamic; it lets you design systems that are flexible enough
to accommodate change.

C and Pascal programmers have been able to program dynamically for a long
time. Dynamic memory allocation and pointers allow you to get and release space
for variables at run time. You can decide when to create and destroy the variables and
how many variables to use. You use a pointer to hold the address of a dynamically
allocated chunk of memory (you can think of a pointer as simply a way to change,
at run time, the storage used by an identifier).

Unfortunately, dynamically allocated memory in C and Pascal is a poor relation
to a real variable. You have to treat dynamic memory as a special case, making it
harder and less reliable to use. In C++ and Turbo Pascal, the ability to create and
destroy real variables at run time was considered so important that it's now in the core
of those languages in the form of constructors and destructors. When you create a
new, user-defined object type, making a dynamic variable of that type is as easy as
making an automatic variable.

This means you can easily build an object-oriented program that doesn't need to
know the number or type of objects involved in a problem before it begins to solve
it. This idea fits beautifully with the world, where you seldom know all the tools
you'll need when you begin working on a project. Object-oriented languages allow
you to write programs that adapt to new situations.

38

GREAT JOURNEYS, SINGLE STEPS

Another View
You might find it helpful to think of an object as a little program. It has its own

internal data and an interface through which you request operations and information.

This is how you use, for example, a word processor (an object), which manages its

own data. With the keyboard, you send the word processor such messages as "insert

this character" and "delete that word."

Writing an object-oriented program is also like using a computer that allows you

to run more than one program at once. You might use a communication program to

fetch data, a spreadsheet to analyze it, and a word processor to prepare a report.

Although you can (in theory, at least) write any of these programs yourself, you don't

have to. It's easier to use programs someone else has written.

When you request data (a report, for example), you only want to see the report.

Building a program using objects is similar. You "run" objects (just as you run

programs) that perform various tasks. You may write the code for these objects or

use someone else's. The program consists of objects and the messages you send

them.

By now, you should be getting the message that a program is a static implemen­

tation of a solution. Object-oriented programming is a process for anticipating

change in programs, one that lets them adapt to new situations.

Object Types
Although structured languages such as Pascal, C, and Modula-2 allow you to

combine data and functions in distinct packages called units,files, or modules, they

don't let you manipulate these packages of code as if they were built-in types.

Built-in types are special because the compiler knows how to handle them before

you ever write a line of code. In contrast, the compiler must learn how to handle types

that aren't built in.

39

THE TAO OF OBJECTS

Units, files, and modules do help organize and coordinate code, but they don't

explicitly establish or maintain relationships among their components. Neither the

data nor the functions in a module, unit, or file are explicitly protected. Thus, unless

you declare data locally (within functions), any function in any module can

manipulate and possibly corrupt it. If you declare a data element locally, you make

it safer but limit access to a single function. If you declare it globally, everyone can

get at it - definitely a dilemma.

Object-oriented languages give you a way out by introducing a new kind of

structure that protects data elements and creates specific relationships for them. We

call this new structure a user-defined object type, or just plain object type. The

compiler knows about object types and treats them as if they were built into the

language. Although object types are the key to object-oriented programming, not all

object-oriented languages treat them exactly the same way.

For example, C++ and Turbo Pascal differ significantly in how they let you

access the data in a user-defined type. C++ gives you more control over the degree

to which the data and methods of a type can be accessed. The keywords private,

public, protected, and friend are used to control access.

40

• Public means that anyone can use it. Any methods following the keyword

can only be accessed by methods declared within the same class.

• Private means that any members following the keyword can be accessed

only by member functions declared within the same class.

• Protected means that any members following the keyword can be accessed

by member functions within the same class and by member functions of

classes derived from this class. For example:

class Access
int X;
int Y:

{

II private by default
II private by default

GREAT JOURNEYS, SINGLE STEPS

public:
Access();

private:
int X;

protected:
int A;

};

II Constructor is public and can be accessed
II from anywhere within the same scope.

II explicitly declared private

II can now be accessed by any class
I I derived from Access

• Friends are functions that are given permission to access a class's private
data. You declare friend functions within a class declaration, as follows:

class Has_friends
int X; II X and Y are private by default.

intY;
public:

Has_friends();
-Has_Friends();
friend void Access_X_Y();

};

The functionAccess_X_Y() isn't one of HasJriends' methods, but it can access
the private characteristics, X and Y, because it's a friend.

Turbo Pascal has only one access keyword: private. You define private methods
at the end of an object after you've defined its public characteristics. Any character­
istic declared after the keyword private can only be accessed by objects, procedures,
or functions within the same unit. Objects and functions outside the unit can access
the public parts of the object. Turbo Pascal has established its access firmly along the
lines of units.

type
Myobject = object
Fieldl: {These characteristics are public by default. }
Field2;
procedure Behaviorl;

41

THE TAO OF OBJECTS

private
Field3;

end;
{ This characteristic is private. l

An object type protects data by establishing the relationships between data and

methods. Data can only be accessed by methods explicitly created for accessing the

data or by functions outside the type given permission to access the data. You 're less

likely to manipulate the wrong data with the right methods and vice versa.

When you plan and define object types thoroughly enough, users of the object

won't want or need to access its characteristics directly; they'll access them by

sending a message to the object, which will in tum access its own data.

Once you define an object type (a C++ class or Turbo Pascal object), anyone can

use it without knowing specifically how it's implemented. Object types are the

fundamental difference between object-oriented languages and traditional proce­

dural languages.

About Types
The concept of type is essential to programming. The type of a variable tells us

the range of values or states it can assume and the operators you can apply to it.

Specific instances of a type have values or states determined by the operators that can

manipulate them.

For example, in C++, any variable of type int can have a value from -32,768 to

32,767 and can be added, subtracted, multiplied, divided, compared, and so on. An

integer in Turbo Pascal has the same range. A longint (in Turbo Pascal) or long (in

C++) can have a value in the range -2,147,483,648 to 2,147,483,647 and can be

added, multiplied, and so on.

Types come in all shapes and sizes (one byte, two bytes, four bytes, eight bytes,

and so on) and are either built into the language or built from simpler types.

42

GREAT JOURNEYS, SINGLE STEPS

The built-in types in C++arechar, int,float, and double. Four specifiers-long,

short, signed, and unsigned - expand these simple types into a larger set. A

structured type (such as array or struct) holds more than one simple type. These and

others, such as pointers, are built into the language. The compiler already knows how

to handle these types and doesn't have to learn about them each time it encounters

an instance of one.

Pascal has a slightly different group of built-in types that the compiler knows

about in advance (int, char, string, real, and boolean). It too can handle these types

without having to learn about them.

To define an instance of a built-in type, you simply name a variable and specify

its type. (When you define a variable, you create space for it; when you declare a

variable, you tell the compiler that space exists for it and what it looks like.)

You define an instance of a built-in type in C++ as follows:

int AnyNumber;

In Turbo Pascal:

AnyNumber : integer;

Declaring a composite type of built-in types is almost as simple. In C++:

struct Numbers {
int X:
double Y:

} ;

and in Turbo Pascal:

Numbers = record
X: integer:
Y: double;

end;

43

THE TAO OF OBJECTS

A type describes the general characteristics and behaviors of a group of related
objects. A variable is an instance of the type. C++ and Turbo Pascal make it easy to
package, extend, and use these user-defined types. This new ability encourages you
to rethink how you create systems and write code.

To create your own object types, you declare the type, then define an instance
of it. In C++, you can declare a class to represent the characteristics and behaviors
of fruit:

II Enumerated types - colors and sizes:
II these can also be declared inside the class.
enum Colors {red, yellow, green, brown, orange}:
enum Sizes {small, medium, large}:

class AnyFruit {
colors Color: II private by default
sizes Size:

public:
void Growth_behavior();

} :

In Turbo Pascal:

Colors=(red,yellow, green, brown, orange):
Sizes=(small, medium, large);

AnyFruit =object
Color : colors: { public by default }
Size : sizes;
procedure Growth_behavior;

end;

You can then define a variable of the type in C++, as follows:

aFruit AnyFruit;

where the variable aFruit is an instance of the class Any Fruit. In Turbo Pascal, the
declaration is:

AnyFruit : aFruit;

44

GREAT JOURNEYS, SINGLE STEPS

You implement classes and objects by implementing their methods, just as you

implement functions in C++ and procedures and functions in Turbo Pascal.

A possible implementation of the Growth_behavior method in C++ is:

void AnyFruit:: Growth_behavior()
{

if (size !=large) II Check enumerated values.
size++:

} :

and in Turbo Pascal:

procedureAnyFruit.Growth_behavior:
begin

If (Size <> large) then
Size :=Size+ l;

end;

The compiler treats user-defined object types just like types built into the

language. Growth_behavior already knows about Size (they' re part of the same type,

AnyFruit), so you don't have to pass Size to it.

Constructors and Destructors
When you define an instance of a built-in type, the compiler creates space for it

in memory. In effect, the compiler constructs the variable. When the variable is no

longer needed, the compiler releases the space it used. In other words, it destroys the

variable.

To make user-defined types as similar as possible to built-in types, the compiler

needs comparable construction and destruction power. With built-in types, the

compiler already knows the size of each type. When you define a type, the compiler

must figure out how much space to allocate and deallocate for it.

45

THE TAO OF OBJECTS

In C++ and Turbo Pascal, constructors and destructors handle initialization and

cleanup. In C++, if you don't supply a constructor (or constructors - there can be

more than one) and a destructor (there can only be one) for a class, the compiler

automatically constructs and destructs the class the simplest way it can. If the

simplest way isn't sufficient, you can define your own.

The constructor in C++ is a method with the same name as the class. The class

destructor is the class name preceded by a tilde (-). The following fragment declares

a class, AnyClass, with a constructor and destructor:

class AnyClass
public:

AnyClass:
-AnyClass:

} :

II constructor
11 destructor

The following declares an object with a constructor and destructor in Turbo
Pascal:

AnyObject = object
constructor Init:
destructor Done:

end:

Any Object. In it:
begin
end:

AnyObject.Done
begin
end:

{ constructor }

{ destructor }

In Turbo Pascal, you name constructors and destructors explicitly. They can be
any names (not just /nit and Done):

AnyObject = object
constructor Setup:
destructor Reset:

end:

46

GREAT JOURNEYS, SINGLE STEPS

{ implementation

AnyObject.Setup:
begin
end:

AnyObject.Reset
begin
end;

You can also have the constructor do something with an object's characteristics.

The declaration in C++ is:

class Gauge I
int Temp; II private characteristics by default
int Pressure;

public:

I;

Gauge(int Init_Temp, int Init_Pressure):
-Gauge ();

and the implementation:

Gauge::Gauge(int Init_Temp, int Init_Pressure);
Temp = Init_temp:
Press = Init_pressure;

I:

The declaration in Turbo Pascal is:

Gauge= object
Temp : integer; I public by default
Pressure : integer;

II constructor

constructor init(lnit_Temp : integer: Init_Pressure integer);
destructor done;

end;

and the implementation:

constructor Gauge.Init(lnit_Temp
Init_pressure

integer:
integer);

47

THE TAO OF OBJECTS

begin
Temp := Init_temp;
Pressure ·= Init_pressure:

end:

The Importance of Being Constructed
Turbo Pascal programmers take note: Since the addresses of methods in the

VMT are initialized in the constructor call, it's absolutely critical that you call a

constructor before attempting to use any methods in an object that has virtual

methods. It's good programming practice to write a constructor, even if you don't

initially need virtual methods. If you forget to write and call a constructor in an object

that has virtual methods and then make a method call with the object, the table will

contain garbage addresses and your program will most likely lock up.

You can't achieve the same level of privacy in Turbo Pascal as in C++ (even by

using the Turbo Pascal keyword private) without some very restrictive coding. That

means declaring private characteristics and putting only one type in a unit:

Gauge = object
constructor init(lnit_Temp integer: Init_Pressure integer);
destructor done:

private:
Temp : integer; private; only accessible from this unit }
Pressure : integer;

end:

In Turbo Pascal, you must explicitly declare a constructor if you use virtual

methods and a destructor if you intend to create dynamic objects. Because a static

object's memory requirements are known at compile time, however, constructors

and destructors are unnecessary. Turbo Pascal is picky about construction and

destruction and requires that you call the constructor and destructor yourself. C++
calls them for you and, if you haven't declared any, will call a default constructor and

destructor for you.

48

GREAT JOURNEYS, SINGLE STEPS

Don't get the wrong impression; I'm not recommending one language over the

other. Their distinctive implementations of object-oriented features emphasize one

of the important themes of the Tao of objects: that object-oriented programming is

an evolving, dynamic vision of what a programming language should be. If you're

already using Pascal or C, the "best" language for learning object-oriented program­

ming is one that builds on what you know.

Messages
Conventional programming systems typically view a program as a collection of

procedures. Procedures are the active components; data is passive. If we declare data

globally, any procedure can get at it and the likelihood of incorrect data manipulation

is high.

If we declare data locally (within a procedure), only that procedure can access

it; the data is safer, but it's overly restricted. What's needed is more flexibility so that

data can be accessed by any number of defined procedures. In object-oriented

programming, a method knows which data it can manipulate, and data knows which

methods can manipulate it.

In a procedural program, the flow of control is determined by the ordering of

procedur~s and control mechanisms, such as if, while, switch, and so on. This implies

that we know how to structure the entire program during program creation. In
programs designed to capture the essence of a dynamic world, this assumption is

unrealistic. The world is changing, and our ideas and models of the world must adapt.

A better alternative captures the design flow in terms oflogical relationships among

objects.

Object-oriented programming captures these logical relationships in objects,

and the flow of control in an object-oriented program is determined by the messages

sent to objects. When you send a message, you clarify the communication among the

components of a program. Objects respond to the messages sent to them and can send

messages to other objects.

49

THE TAO OF OBJECTS

The term message is somewhat unfortunate since it's easily confused with

method and seems to imply that operations take place asynchronously (like broad­

cast messages on a network or phone messages in an office). In fact, messages are

implemented as indirect function calls and thus take place immediately, just like a

traditional function call.

Messages, rather than data, move around the system. Instead of saying "invoke

a function on a piece of data" (the procedural approach), you say "send a message

to an object" (the object-oriented approach). To send a message to an object, you

specify the object and the method you want to invoke.

Let's say you've declared the following Point type in C++:

class Point
int X;
int Y;

public:

I;

int state;
Point(int InitX, int InitY);
int IsVisible();

II constructor
II Is point on or off?
II Return state.

Point's characteristics are its location on the screen (X and Y coordinates). Its

behaviors are to construct itself and to say whether or not it's visible.

You can define an instance of Point and initialize it at the same time using

Point's constructor:

int Visible;
Visible= Point ThisPoint(5,10); //Define/initialize ThisPoint.

You can then ask ThisPoint if it's visible by sending it a message:

ThisPoint.IsVisible();

You can define a similar Point type in Turbo Pascal:

Point = object
X : integer;

50

GREAT JOURNEYS, SINGLE STEPS

Y : integer:
State : integer:
constructor init(InitX, InitY: integer):
function IsVisible: integer: { Is the point on or off?)

{ Return state. }
end:

In Turbo Pascal, you use two lines of code to first declare the Point object and

then initialize it by calling the constructor:

var

ThisPoint Point:

begin
ThisPoint.Init(5,10):

end:

You can ask ThisPoint if it's visible by sending it a message:

var
Visible integer:

begin
Visible:= ThisPoint.IsVisible:

end:

Sending a message means calling an object's method, which manipulates or

interprets the type's characteristics. In other words, if you want something done, you

send a message to an instance of an object type, and the object handles it. Sending

messages is a crucial aspect of object-oriented programming.

In this chapter I've introduced some of the concepts of object-oriented pro­

gramming, the most important being the three cornerstones: encapsulation, inher­

itance, and polymorphism. These are the building blocks that will be used in the

following chapters as you learn more about the details of object-oriented program­

ming through examples and ideas.

51

CHAPTER 2

Thinking in Objects

The world is formed from the void, like utensils from a block of wood.

The master knows the utensils, yet keeps to the block: thus he can use

all things.

In the practice of the Tao, every day something is dropped.

-Lao-tzu

The ability to create user-defined types helps clarify relationships between data

and operations, between distinct blocks of code, and between the world and our

programming model of the world.

Objects are more powerful than units and modules because you can create and

destroy instances of a type at run time. Real-world events are dynamic, and systems

that model or simulate real-world events require that types be created and destroyed

on the fly.

While most programming languages treat programs (and the modules or units

that compose them) as static entities, object-oriented languages let programs

anticipate change, both in themselves and in the world they model. A user-defined

type can do anything a module can (and considerably more).

A big problem, even if you agree that objects are useful, is envisioning them.

What should go into an object? What should its boundaries be? Should the object be

big or small? More or less general? And how restrictive? Should it expect to change?

We' 11 get to all these questions as we begin describing a system for designing and

building objects.

53

THE TAO OF OBJECTS

You write programs to answer questions about the world outside the program,
to interact with that world, or to create tools that help you model or understand that
world. Since the world you 're modeling already consists of objects, you can organize
object-oriented programs around representations of these objects.

For fun (one of the best reasons I can think of to program), and to get you thinking
in objects, let's look at a few of the many objects in the real and computing worlds.
We'll just describe (or prototype) things without concerning ourselves with the
objects' implementation details.

One interesting design implication of object-oriented programming is that you
can sketch out a system and delay writing the implementation code. You can see if
things work at the earliest possible moment (in other words, that your code compiles)
without linking in all the modules that use the interface. This saves time and
encourages you to experiment rather than become locked into ideas. And if you plan
your interface well, you can isolate the code you need to change and isolate errors
in code.

How would you represent a simple object like a clock? Let's say it consists of
the characteristics current _time, current_ date, and alarm _time and the behaviors
tick (the mechanism for running the clock) and get_alarm_status. You could de­
scribe it like this in C++:

class clock (
int current_time;
int current_date;
int alarm_time;

public:
clock(); //Initialize current time, date, and alarm to O.
int get_alarm_status(); //Return 1 if alarm is on.
void tick();

} ;

54

THINKING IN OBJECTS

and like this in Turbo Pascal:

Clock= object
Current_time : integer;
Current_date : integer;
Alarm_time : integer;
constructor init:
destructor done;
function get_alarm_status: integer:
procedure tick:

end:

Or how about an object type to describe the clothing worn by a fashion model?
In C++:

char underwear[12]:
char shirt[15J;
char socks [8]:
enum Clothes (underwear, shirt, socks);

class Fashion_Model {
his_underwear underwear:// private by default

public:
his_shirt shirt: //public by declaration

protected:
his_socks socks: //protected by declaration

) :

In Turbo Pascal:

var

Underwear: string[12J;
Shirt string [15];
Socks : string [8]:

type

Clothes= (Underwear, Shirt, Socks):

Fashion_Model =object

55

THE TAO OF OBJECTS

Shirt His_shirt:
Socks His_socks;

private
Underwear : His_underwear:

end:

{ public by default }

{ private to unit by definition }

How about a window? Not the one you 're looking out of now, but one on your

gloriously colored VGA screen. Let's define one consisting of dimensions, a title

box, a border state, and a way to change the border state. In C++:

class Window
int Xl;
int Y1;
int X2;
int Y2;
char Title[40J;
int border state:

public:

II upper left
II upper left
II bottom right
II bottom right

void change_border_state();
} ;

In Turbo Pascal:

Window= object
Xl integer; (*upper left*)
Yl integer; (*upper left*)
X2 integer; (* upper right *)
Y2 integer: (* upper right *)
Title : string[40];
Border_state : integer;
procedure Change_border_state;

end;

Don't fret that the window is too simple. Part of the beauty of object-oriented

programming is that it lets you extend objects without penalty. If you want to create

a fancier window, skip ahead to Chapter 3 and derive it from this one.

The first way you should think about objects is in small, simple chunks. The

second way is to think generally by imagining the fundamental concepts, character­

istics, and behaviors of objects.

56

THINKING IN OBJECTS

Consider a buffer, in this case a structure for holding chars or strings. Give it the

characteristics size,front, and rear and a constructor to initialize the buffer. In C++:

class Buffer {
char buf[256J:
int size;
int front:
int rear:

public:
Buffer()
-Buffer():

} :

II constructor to init Buffer
II destructor

The constructor initializes the buffer by setting each char to 0. In C++:

Buffer::Buffer() {
int count:
for (count= 0: count< 257: buf[count] = 0: count++):
} ;

In Turbo Pascal:

Buffer = object
Buf string[256J:
Size integer:
Front integer:
Rear integer;
constructor init;
destructor done:

end;

The constructor implementation is:

constructor Buffer. I nit;
var

Count : integer:
begin

For Count := 1 to 256 do
Buf[Count] ·= 0:

end;

57

THE TAO OF OBJECTS

This simple buffer might not be what you had in mind. You might want to add

and delete items from the buffer, for example. Don't worry about it; you can add

the parts you need as you go along. When you first imagine an object, think of it only

as an experiment, a start. Object-oriented programming encourages this kind of

thinking.

Imagine you need to simulate the activity of a group of teachers to come up with

an efficient schedule for a school. You can think of teachers as objects and describe

them accordingly, in terms of the behavior that affects the school's schedule. You

might need to know what their free periods are, which subjects they can teach, how

they teach, and so on. You could represent a teacher as follows in C++:

enum Subjects {music, English, physics, biology, calculus}

class Teacher
int FreePeriod;
subjects Subject;

public:
Teacher();
-Teacher();
void Teaching_Behavior();

} :

In Turbo Pascal:

II Construct a teacher.
II Destroy a teacher.

Subjects= (music, English, physics, biology, calculus);

Teacher = object
FreePeriod: int:
Subject : subjects;
constructor init;
destructor done;
procedure Teaching_behavior();

end;

You might then build a complete scheduling system out of a group of objects:

teacher, students, school, and so forth. There might be different types of teachers,

each inheriting from the abstract type shown above.

58

THINKING IN OBJECTS

Complex Numbers
A complex number represents a point on a plane. You can represent this point

using either Cartesian (an X,Y pair) or polar coordinates (an angle from an axis and

a distance), as shown in Figures 2-1 and 2-2. A type for manipulating complex

numbers might consist of methods for returning the values of X and Y (the Cartesian

representation), returning the distance and an angle (the polar representation),

adding complex numbers, and so on.

y

Figure 2-1. Cartesian coordinates.

/
R

Figure 2-2. Polar coordinates.

59

THE TAO OF OBJECTS

Here's one possible declaration in C++:

class Complex {
float X, Y, Distance, Angle:

public:

} :

float FindX();
fl oat FindYC);
float FindDistance();
float FindAngle();
fl oat Add():

In Turbo Pascal:

Complex= object
X, Y. Distance, Angle : real:
function FindX : real;
function Fi ndY : rea 1 ;
function FindDistance : real:
function FindAngle : real;

II Return X.
II Return Y.
II Return Distance.
II Return Angle.
II Return sum.

function Add: real; { Return sum. }
end;

Operator Overloading in C++
We can easily define methods such as add, subtract, and so on for a complex

number object type in C++ or Turbo Pascal. However, using add or subtract in place

of+ or - isn't quite consistent with the built-in types for integers or floating-point

numbers. In C++, we can use operator overloading to define methods that are the

same as any of the built-in operators.

Strictly speaking, operator overloading isn't a requirement in object-oriented

programming; rather, it's another example of"syntactic sugar" since it makes things
look more like what the programmer has in mind. It's a nice touch, though,

particularly in mathematical and scientific programming. Perhaps future versions of

Turbo Pascal will incorporate this feature.

60

THINKING IN OBJECTS

Types, Not Individuals
It's important to realize that you're interested less in individual objects than in

types of objects. When you create a type, you need to imagine not the specific case,

but the general case. If you 're modeling a system that needs to describe employees,

create a type that represents the general class of employees and go from there,

creating instances and deriving subtypes.

InC++:

class employee

} ;

char last_name [28]:
char first_name [15]:
double employee_id:
double SS_number;
float salary:
void do_j ob();

In Turbo Pascal:

Employee= Object
Last_name : string[28]:
First_name : string[15J;
Employee_id : double;
SS_number : double;
Salary : real:
procedure do_job;

end;

An individual of the employee type is an instance of employee. In C++:

emp 1 oyee An Emp 1 oyee:

In Turbo Pascal:

An Emp 1 oyee : Employee:

61

THE TAO OF OBJECTS

Let's go a step further and outline a few simple rules for creating object types.

We'll assume the object types you create will share the following characteristics:

• They might need to be extended.

• Methods within the object might be customized, overridden, or reimplemented

by descendants.

• You might want to create instances of these types at run time.

• The types exist within a system, which will likely grow into a hierarchy of

types.

If this is the case, you want to decide at least a few things as early as possible.

The most important of these is the interface or protocol for the object types that will

compose the hierarchy.

How Complex Should Objects Be?
When you define objects, it's important to balance functionality and reusability.

Resist the urge to create large "kitchen-sink" objects that do everything.Unfortunately,

this kind of object suffers from being hard to understand and, worse, hard to reuse.

Instead, try to create objects that have a single, well-defined purpose. Rather than

creating a complex application (such as an integrated spreadsheet, database, word

processor, and video game), break one or two main objects down according to their

basic functionality.

You '11 find that these objects, in tum, are composed of simpler objects, each

dedicated to a single purpose. For example, the word-processor object might be

broken down into a text-buffer object, a formatter, a printer, a window, a menu, and

so on.

When you break objects down into simple ones, you '11 find that your programs

are easier to understand and maintain. They can also be smaller because of the high

degree of reusability. If you start creating objects that can't be explained in a few

sentences or have more than 50 or 60 methods, it's time to break things down into

smaller pieces.

62

THINKING IN OBJECTS

You '11 also find that the pieces you write tend to be smaller when you use object­

oriented techniques. If you're used to writing 100- to 200-line functions or proce­

dures, you may find that your methods are much shorter, perhaps 30 to 40 lines of

object-oriented code. This is because each message can do more and because you

want to program with a finer level of granularity. In the pure object-oriented

languages, it's not uncommon to find very useful methods consisting of fewer than

10 lines.

Base and Abstract Types
A base type defines a common interface to a group of similar types. It generalizes

the intended uses for a hierarchy of types. In other words, it describes the range of

messages, or protocol, an object of a type can respond to.

Object-oriented programming clearly distinguishes the interface from the

implementation. The interface in C++ is the class declaration; in Turbo Pascal, it's

the object definition. The interface says "here's what a type looks like, and here are

its behaviors." It doesn't specify how the type behaves; it leaves that to the

implementation.

The interface must be visible everywhere an object type is used. The implemen­

tation must be in only one spot. From a design perspective, this allows you to

prototype code (via the interface) without implementing it and therefore reduce

errors, since you can modify the implementation without disturbing the interface.

A base type can be simple. In C++:

class Base
public:

Base();
-Base();

I;

63

THE TAO OF OBJECTS

In Turbo Pascal:

Base = object
constructor init:
destructor done:

end:

A base type can also be more complex. In C++:

class Base {
int Some_characteristic:

public:

} ;

Base():
-Base();
void Behavior!();
void Behavior2();
void Behavior3(); //and so on

In Turbo Pascal:

Base = object
Some_characteristic integer:
constructor init:
destructor done;
procedure Behavior!;
procedure Behavior2;
procedure Behavior3;

end;

An object type is, in itself, a very useful concept. However, object types aren't
restricted to working in isolation. Just as you think of types in the world as hierarchies
(an aspen is a type of tree, a type of plant, and a type of living entity), you can treat
types in object-oriented programming as hierarchies. From a hierarchical perspec­
tive, a base type is a node in the hierarchy and can itself be a derived type.

64

Base can be the head of a hierarchy:

01 (base)

02 (derived from 01)

Lo4 (derived from 02)

03 (derived from 01)

05 (derived from 01)

a node in a hierarchy:

04 (another base)

06 (derived from 04)

07 (a new base, derived from 04)

08 (derived from 04)

09 (derived from 04)

and subsequently a Base for another hierarchy:

07 (another base)

10 (derived from 07)

11 (derived from 07)

12 (derived from 07)

THINKING IN OBJECTS

65

THE TAO OF OBJECTS

A particular kind of base type called an abstract type is used strictly for creating

other object types. An abstract type has no instances and thus is normally used to

derive new types. It specifies an interface for all types derived from it. Abstract types

are the pathways to extending an object-oriented system.

C++ explicitly supports abstract classes via the pure virtual function. The

keyword virtual is important in object-oriented programming, one we'll be using in

many examples. We' II discuss the use of virtual in more detail later, but for now think

of it in terms of early and late binding.

When you call a statically bound method, the compiler figures out at compile

time exactly which function to call. Static (or early) binding means the compiler

allocates and resolves all references to functions at compile time. In an object­

oriented system, you want to send a message to an object and let the object decide

how to respond.

You're asking the compiler to resolve some references at run time (late or

dynamic binding). To resolve references to methods at run time, you create virtual

methods. These allow derived types to have their own versions of a base-type

method.

In C++, you specify that a virtual function is pure by assigning its definition to

zero:

class abstract
I I ...
public:

abstract()
virtual void behavior()= 0;

II ...
I;

Turbo Pascal doesn't allow explicit assignment during the interface. To declare

an abstract object in Turbo Pascal, describe its interface and make its definition

empty:

66

Abstract = object
constructor init;
destructor done;
virtual procedure Behavior;

end;

Its implementation is:

procedure Abstract.Behavior;
begin
end;

THINKING IN OBJECTS

You can alternatively use the standard procedure, Abstract, when implementing

an abstract object type. This will ensure that attempts to use instances of the abstract

type will cause a run-time error.

An abstract class supports the idea of generality. The classic example of an

abstract class is a shape, which might consist of concrete variants such as ellipse,

circle, rectangle, triangle, and so on. By definition, an abstract class in C++ can only

be used as a base class of some other class.

If you use abstract object types, you can change the interface and immediately

propagate changes throughout the system. All changes to the abstract type are

retroactive through its derived types.

Abstract vs. Concrete
No formal language distinction exists between how you declare abstract data

types and how you declare "concrete" or derived objects. Instead, the difference is
found at the implementation level in how they are defined and used. Abstract types,

by their nature, usually aren't fully complete; they tend to have some abstract

methods that are implemented only in descendant types. Nonetheless, abstract types

are the key to providing reusable objects.

You should always try to solve general problems and therefore come up with
generic, reusable abstract types, then create derived types that solve the specific

problem at hand. This will ensure that you have some reusable objects for similar

67

THE TAO OF OBJECTS

problems.You can also have several layers of abstract types that build on each other,

each becoming a bit more concrete, a bit more problem-specific, as you move down

the hierarchy.

One clear distinction between abstract and more concrete types is that abstract

types serve only to gather common code; you never create objects of the abstract

types, except for testing. Instead, you create descendants of the abstract types. When

creating abstract types, be careful to document completely the public protocol used

in descendants.

Planning for Change
A system developed using object-oriented techniques allows you to reuse and

extend code you didn't write without having access to source code. The only

requirement is that the designers and coders of the classes you want to reuse planned

for change by creating abstract classes, creating classes that are general enough to

allow themselves to be extended, and using virtual methods.

When defining your own object types, you should consider how your types

relate to the types they model in the real world and how reusable they are. For

example, the following code segment creates an abstract user-defined type (called

AnyClass in C++ and AnyObject in Turbo Pascal) that contains a virtual abstract

AnyBehavior method. This method allows any class or object derived from

AnyClass or AnyObject to create its own AnyBehavior method.

InC++:

class AnyClass
public:

} ;

AnyClass;
-AnyClass;
virtual void

68

II constructor
II destructor

AnyBehavior() = 0:

In Turbo Pascal:

AnyObject = object
constructor init;
destructor done;
virtual procedure AnyBehavior;

end;

THINKING IN OBJECTS

You don't know how any future types derived from AnyClass or AnyObject will
implement AnyBehavior. AnyC lass and AnyObject are generalizations and thus can
easily be extended to create any number of specific types and behaviors. Classes and
objects built up this way (from abstract, extensible types) can be distributed in
libraries that can themselves be extended, even without access to the library's source
code, through inheritance. To extend the library, you simply derive a new object type
and reimplement its virtual behaviors.

The Trickle-Up Theory
You'll find that your first attempts at creating reusable abstract types aren't very

successful. A method here or there is missing, and you end up implementing
something in the derived object type. If you create another derived type, you may find
yourself writing almost the same code. With some careful attention to these
situations, you '11 be able to make these two methods more general-purpose and move
them up to the base type.

This is what I call the "trickle-up theory." It says that as you implement new
descendant types, you often find some of the functionality moving up into the base
type, where it can also be inherited by other derived types. This happens to even the
most experienced object-oriented programmers and is part of the dynamic evolution
of object types.

Until you've successfully reused base objects two or three times with new
derived types, you' 11 find that some changes are required. But if you keep at it, you '11
become better at solving general problems and will eventually create abstract types
almost instinctively.

69

THE TAO OF OBJECTS

Brad Cox, designer of the object-oriented programming language Objective-C,

coined the phrase "the software IC" to refer to objects that are completely encapsulated

and reusable. Just as in the hardware world, our goal is to create reusable components

that are "plug-compatible" with each other. That way, you can substitute different

objects that implement the same protocol as your programs respond to the changing

needs of users.

Objects, Classes, and Types
Objects are all around us. They help us learn, remember, and organize our lives.

We group the world (often subconsciously) into related object types.

For example, dogs represent a template for a group of dogs with similar

characteristics and behaviors. M alamute,Labrador Retriever, and German Shepherd
are subtypes of the type Dog. My dog Luke is an instance of the subclass Labrador
Retriever of class Dog.

Font is a name we use to depict the size and shape of characters. It's a type (no

pun intended) that can consist of many subtypes, such as Courier, Prestige, Tiffany,
and so on. The list of types (classes or objects) goes on and on.

This book is a plan for anticipating growth and change in the world in which you

live and work. A common pitfall of procedural systems is what is sometimes called

"the one-function solution": You assume you're writing code as if there's only one

instance of a problem. The solution is hard-wired into the system. When faced with

a slightly different problem later, you have to redesign the system. Not a good

approach.

When you create a new object type, you're extending the abilities of the

language. And by establishing an interface to a group of types, you open the door for

the sensible development of huge projects. This interface can remain the same even

if you later improve the implementation, so you can modify code without affecting

the rest of the system.

70

THINKING IN OBJECTS

The interface of a type is enforced by the compiler, not by a person or a set of

guidelines. This makes the integration of types into the final product much easier and

simpler. The compiler enforces the proper use of the type, ensures the proper

initialization and cleanup of objects, and verifies that message passing is performed

properly.

Object-oriented programming offers the best techniques I know of for anticipat­

ing and incorporating change in program development.

It's as easy to create a type as it is to create an individual- almost. And once

you've created a type, you can generate an entire system of types from it through

inheritance.

Although many of the benefits of encapsulation are convenient for small

programming projects, encapsulation is particularly valuable when you begin to

"program in the large." It helps you build programs more quickly and easily.

Many languages can easily handle small- to medium-sized programs; the

problems crop up when the programs get really big. C and Pascal, with extensions

for separate compilation, allow programming in the large, but little nuisances of the

languages become tremendous liabilities when you 're creating large programs. They

can easily bring a project to its knees.

The little inconveniences become very important as the system grows. C++ and

Turbo Pascal, by supporting encapsulation and the rules associated with the new data

types, remove many of the problems that prevent programming in the large. This

means not only that a big team working on a big project can easily construct and

integrate the system, but that a small team or a single person, using predefined types
created for earlier projects or distributed by vendors, can build and maintain systems

they previously couldn't have conceived of. This opens up amazing possibilities for
creativity.

71

CHAPTER 3

Extending the System

To find the origin, trace back the manifestations. When you recognize
the children, and find the mother, you' II be free of sorrow.

-Lao-tzu

Like modern physicists, Buddhists see all objects as processes in a
universal flux, and deny the existence of any material substance.

- Fritjof Capra

We learn about, use, and organize objects in the world by classifying them into

general and specific types based on similarities and differences in states and

behaviors. For example, mandolins, fiddles, banjos, and guitars are all types of

stringed musical instruments. Their common behaviors are that they can be played

and that playing them makes music. Their common state is whether they're being

played.

The way you play each instrument depends on its characteristics. One charac­

teristic is the number of strings. A mandolin has eight strings, a fiddle four, a banjo

four or five, and a guitar four, six, or 12. Mandolin ,fiddle, banjo, and guitar are spe­

cific types of the general type stringed musical instrument. In object-oriented pro­

gramming, we express this kind of specification with inheritance.

Through inheritance, an object type inherits all the characteristics of an existing

type and adds some specific characteristics or behaviors of its own. Examples of

inheritance are common. In the programming world, for example, you can organize

languages by classifying them into a base type and specific types derived from it.

Figure 3-1 shows how you might do that. Beginning with a general type (language),
you could derive the specific types (functional, imperative, and logical) and the more

specific types (C, Pascal, LISP, Prolog, C++, Turbo Pascal, and Prolog++).

73

THE TAO OF OBJECTS

Language

1--~--· Functional

._I ---1.-.. LISP

t-----1--• Imperative

~ I.____ ... C++ L Pascal

'----t•~ Turbo Pascal

'-----1--~ Logic

I._ ---1 .. • Prolog

._I ---1•• Prolog++

Figure 3-1. Beginning with a general type (Language), you can derive specific types.

In this scenario, C and Pascal are derived from imperative and thus have features

in common with al I imperative languages. C + + is derived, in tum, from C. And Turbo

Pascal is derived from Pascal. C++ and Turbo Pascal are extended: imperative

languages with object-oriented extensions.

The simplest way to extend a system is to add new features to an existing type.

In the language hierarchy, Prolog is a type of logic language. Prolog++ is a type of

Prolog, extended by the addition of object-oriented features. Extension in this case

is mostly organizational.

In a more complex scenario, you extend a system by adding subtypes to it

without disrupting outside control of the system.

74

EXTENDING THE SYSTEM

Imagine a system consisting of functions for controlling related shapes

(Figure 3-2). Using object-oriented techniques, you can add a new shape to the

system without changing the shape controller (Figure 3-3).

Controller (graphic shape editor)

LShape
1------il_.~ Circle

1------1·~ Square

I• ----.---~ Triangle

Figure 3-2. A system consisting of functions for controlling related shapes.

The controller (in this case, a graphic shape editor) already knows how to handle

shapes, so it will know how to handle new ones derived from the base shape. The

controller sends the same message (say, display) to any of the shapes, and each shape

figures out how to display itself. We call this polymorphism.

Imagine an air traffic controller system that directs traffic in a metropolitan

airport (Figure 3-4). You can add a new type of flying object (a flying saucer, for

example) without modifying the air traffic controller (Figure 3-5).

75

THE TAO OF OBJECTS

Controller (graphic shape editor)

LShape
1------t-=-P. Circle

1-------~~ Square

1-----~ Triangle

.__ _____ _,,~ Pentagon

Figure 3-3. You can add a new shape to the system without changing the shape
controller.

Once you've defined a new base type, you can build on it using inheritance.

When a new type inherits from a base type, the derived type gets all the characteristics

and behaviors of the base type.

Inheritance allow you to reuse code without introducing bugs. Let's say you've

created a base type in C++:

cl ass base I
int statel ;
i nt state2;

public :
void Behavior() ;

} ;

76

EXTENDING THE SYSTEM

Controller (air traffic control unit)

L Flying objects

1------.......... ~ Airplanes

1-----?- Jets

'------1--=-~ Gliders

Figure 3-4. Air traffic controller system.

Controller (air traffic control unit)

L Flying objects

1-----.... _..~ Airplanes

1-----_ _..,_ Jets

1-----~- Gliders

~---.... --- Flying saucers

Figure 3-5. You can add a new shape to the system without changing the shape
controller.

71

THE TAO OF OBJECTS

or in Turbo Pascal:

base = object
Statel : integer;
State2 : integer;
procedure Behavior;

end;

Now you want to build a new type derived from the existing base type. The

derived type should be identical to the base type, with one exception: You want to

extend base by adding a second method, called Behavior2. You can build derived
simply and quickly by inheriting from base. You don't recode anything in the derived

type that you want to keep from the base type; you just add the new behavior.

In C++:

class derived : public base {
public:

void Behavior2();
} ;

In Turbo Pascal:

derived= object (base)
procedure Behavior2;

end;

Since derived inherits all the data and methods of base, you don't need to rede­

fine them. You simply tell the compiler you want to derive a new type (derived) from

a base type (base) and add the new method.

Now you can send either message (Behavior 1 or Behavior2) to variables of the

derived type, and derived can handle it. In C++:

78

main () {
derived d:
d.statel = 1984:
d.state2 = 1992:
d. behavi orl():
d.behavior2();

In Turbo Pascal:

var
d: derived:
With d do

begin
State!:= 1984:
State2:= 1992:
Behaviorl:
Behavior2:

end;

EXTENDING THE SYSTEM

Notice again that you don't have to pass the variables State] and State2 to

Behavior2; derived inherited knowledge of them from base.

Sketching Your Objects
Although there's no formal methodology for object-oriented design, one of the

most important steps when you begin is to make sure you understand the objects

you 're creating. You can do this by sketching out the data and functionality for each

thing you think will be an object. Just write down the data fields and methods for each

type on paper or index cards. Don't worry about the low-level details of how the

fields or methods are implemented; concentrate on the high-level view. If some

functionality is related to the data, it may be that you only need a struct or record

instead of an object. In a hybrid language, there's nothing wrong with that.

79

THE TAO OF OBJECTS

As you sketch out the objects, try to draw upon the real-world system you 're

modeling, whether it's a business system, scientific application, or whatever. If there

aren't any real-world components to start with, as with some of the examples

presented later in this chapter, you can abstract them based on the user interface. For

example, what kinds of windows will there be? What does each window contain?

Similarly, you'll want to break down the more complex objects into their own

objects, which also consist of data and methods.

When you create your list of objects, don't worry too much about the inheritance

structure. It's much easier to list the objects on index cards and then see which have

duplicate fields or methods. One advantage of using index cards is that you can move

them around to try out different approaches to creating hierarchies. Remember that

inheritance should only be used when you inherit both the data and the functionality.

In many cases, you'll want to use composition so that some objects are contained in

others.

Reusing Code
Inheritance encourages the reuse of code, which saves time and makes code

maintenance easier. In addition, inheritance lets you use and extend code you didn't

write - even if you don't have access to the source code - and write extensible

libraries that you can pass on to others without releasing source code. You can do

this by:

• Creating abstract types

• Creating types that are general enough to allow themselves to be extended

• Using virtual methods

• Clearly defining an interface to these types.

The separation of interface and implementation is especially important in object­

oriented programming. The interface says what the class does; the implementation

says how the class works. You can compile a program using only the interface, but

80

EXTENDING THE SYSTEM

you can't link it. You can find out how a system works, vary the implementation as

often as you like, and link it in without recompiling the entire project. This lets you

extend the system by deriving related types and not disrupt the working system. It

also lets you describe and compile a system (prototype it) without actually writing

an implementation. You can experiment with design and implementation and not pay

too much for that experimentation.

In this chapter, you '11 leam how to use encapsulation and inheritance to describe

systems in types that represent aspects of the world and develop a modeling system

that you can use as a blueprint. This system will show how types make it easier to

model real-world problems, describe a particularly interesting (and universal) aspect

of the world, called chaos, and show the peculiar order you can discover in chaos

through strange attractors.

Choosing a First Application
The best way to learn object-oriented programming is to try it. For your first

project, pick a new programming task rather than reimplementing a program you've

written using a traditional approach. If you reimplement a known program, you

probably won't be pushed to explore the relationships between the objects and will

revert to traditional techniques rather than using encapsulation, inheritance, and

polymorphism. Instead, try to pick a small but new problem. Ideally, it should map

to a model found in the real world, where the objects aren't too abstract.

For example, you might choose to implement a game (such as chess or checkers),

a simulation (a hardware simulation of a CPU or something more abstract, like

different types of fractal curves), or a simple business application (such as a

calculator, spreadsheet, or project manager). If the application models the real world,

you have a starting point for determining what the objects should be. Throughout the

rest of this book I'll present sketches of applications that would make good first or

second projects.

81

THE TAO OF OBJECTS

Checkers and Chess
Consider two board games, checkers and chess. Each game consists of related

characteristics: an eight-by-eight-square board, two sets of playing pieces, rules for

moving pieces, and rules for determining the end of the game. Since the games have

so much in common, you can use an abstract type to create a common interface to

a group of related subtypes.

Your approach might be to start with the smallest unit (a board piece) and work

your way up. What are its characteristics? A board piece has a position, a set of legal

moves, and a set of possible moves. To determine the legal and possible moves, we

use a method.

In C++, an abstract board piece might look like this:

class BoardPiece
int X:
int Y:

II position along X axis
II position along Y axis

public:
BoardPiece(): II Construct a board piece.
-BoardPiece(); II Destruct a board piece.
virtual void Legal_moves(); I}

virtual void Possible_moves(): {}
} :

and like this in Turbo Pascal:

BoardPiece =object
X : integer: position along X axis
Y : integer; position along Y axis
construct !nit: Construct a board piece.
destructor Done: Destruct a board piece. }
pro c e du re Leg a l _moves ; v i rt u a l :
procedure Possible_moves; virtual;

end;

Procedure Legal_moves:
begin
end;

82

I abstract }

EXTENDING THE SYSTEM

Procedure Possible_moves;
begin I abstract }
end;

Notice that the behaviors are abstract and thus are reimplemented by the types

derived from BoardPiece. In C++, you can use the in-line feature to implement

default code. The code between the braces does nothing, but by declaring the

behaviors in the abstract type you emphasize that each derived type must implement

its own Legal_ moves and Possible_ moves behaviors. Turbo Pascal has no in-line

feature, so you must implement all methods (including abstract ones) separately

from the declaration.

Each board piece has a position (X,Y) on the board and a way to determine its

legal and possible moves. In checkers, a piece is a pawn or a king. In chess, a piece

is a pawn, knight, bishop, rook, queen, or king. In both games, the pieces are related

but have different legal and possible moves. By beginning with a generic BoardPiece,
you can derive each piece without reimplementing the basic piece code. In C++, you

can derive a checker pawn from the base type BoardPiece:

class CheckerPawn public BoardPiece [
public:

} ;

CheckerPawn();
-CheckerPawn();
void Legal_moves();
void Possible_moves();

In Turbo Pascal:

II Construct a checker.
II Destruct a checker.
II Implement pawn's legal moves.
II Determine possible moves.

CheckerPawn =object CBoardPiece)
construct !nit:
destructor Done:
procedure Legal_moves: virtual;
procedure Possible_moves; virtual:

end:

83

THE TAO OF OBJECTS

You can reimplement Legal_ moves as follows in C++:

CheckerPawn:: Legal _moves ()
{ II Implement here.
}

In Turbo Pascal:

CheckerPawn.Legal_moves;
begin

{ Implement here. }
end:

Checker King is another board piece that reimplements Legal_ moves and

Possible moves. In C++:

class CheckerKing public BoardPiece {
public:

} :

CheckerKing();
-CheckerKing();
void Legal_moves():
void Possible_moves();

In Turbo Pascal:

II Construct a king.
II Destruct a king.
II Implement king's legal moves.
II Determine possible moves.

CheckerKing =object (BoardPiece)
construct Init:
destructor Done:
p raced u re Legal _moves: virtual :
procedure Possible_moves: virtual:

end:

A chess piece (a knight, for example) is just another board piece with
reimplemented behaviors. In C++:

class Knight : public BoardPiece
public:

Knight(); II Construct a knight.

84

EXTENDING THE SYSTEM

} ;

-Knight();
void Legal_moves();
void Possible_moves();

In Turbo Pascal:

II Destruct a knight.
II Implement legal moves.
II Determine possible moves.

Knight= object (BoardPiece)
construct !nit:
destructor Done:
procedure Legal_moves: virtual:
procedure Possible_moves: virtual:

end:

Note: Once you declare a method as virtual in C++, it remains virtual through

any derived classes. Turbo Pascal requires that the keyword virtual be repeated every

time you redeclare the method. If you don't, the compiler will behave unpredictably ...

but always incorrectly.

As systems become more complex, the need to derive new types and reimplement

the behaviors of types becomes more noticeable and important. Object-oriented

programming' s strength lies in letting you extend parts of a system without

reimplementing the rest.

In the game example, we derived new related types - a simple hierarchical

extension. In the shapes and traffic-controller examples, we extended the system by

deriving new types without disrupting the mechanism for controlling the types.

In the next section, we' 11 use these ideas to develop an extensible modeling

system from which we can derive a variety of models.

85

THE TAO OF OBJECTS

Black Art
Modeling is a black art, a way to encapsulate part of the real world in terms of

the mathematical relationships among variables. You select the variables you think

are important in determining changes of state in the system, then stand back and

watch the action.

For example, in a two-dimensional system with variables X and Y, we might say

that the current state of Y is equal to twice the current state of X (in mathematical

terms, Y = 2X). ln a simple linear model like this one, you can easily visualize how

the system will change from state to state: Y is always twice as big as X

(Figure 3-6).

Figure 3-6. A simple linear model: Y = 2X.

86

EXTENDING THE SYSTEM

In recent years, researchers in various fields that involve dynamics have used

computers to model nonlinear systems. Because the parameters don' t vary propor­

tionally, these systems' behavior is not easily visualized or understood just by

looking at numbers. The key to understanding many of these systems is to discover

and study their attractors.

An attractor is, loosely, a state toward which a system evolves. You study

attractors by looking at their pictures in a computer-generated phase, or state, space.

In sta.te space, a point represents all the information known about a system's state,

and the space itself is a picture of the system's current state plotted against its next

state (Figure 3-7).

Figure 3-7. State space.

x
x
Cl> z

......
x

You want to know how the system is evolving or which state it's evolving

toward. Attractors "attract" a system. As the system evolves (changes state), the

collection of points representing successive states can either settle to one point (a

87

THE TAO OF OBJECTS

point attractor; see Figure 3-8), repeatedly return to a group of points (a periodic

attractor; see Figure 3-9), or not return to a clearly defined group of points (possibly

strange; see Figure 3-10).

l

x
i z

x

Figure 3-8. Point attractor.

Figure 3-9. Periodic attractor.

88

EXTENDING THE SYSTEM

Figure 3-10. Strange attractor.

The system evolves as the values of the current state become the initial values

of the next state. Before each loop into the next state, we plot the current system's
state in state space.

Modeling systems are easily described with object-oriented techniques for

several reasons:

• They can be abstracted easily.

Every model is related to other models; they share low-level graphics

primitives like points and are plotted in space, but they differ in how they

generate states.

Graphics programming in general lends itself to object-oriented techniques.

• A model like object-oriented programming connects the real world to the

programming world.

Each type (model) consists of its own characteristics, operations, and construc­

tors. It uses constructors to initialize variables, types to divide the screen into

multiple graphic displays, and inheritance to derive related types. Each type explores

the world of the strange attractor (nonlinear, chaos, or complexity theory) using the

89

THE TAO OF OBJECTS

Borland Graphic Interface, included with Turbo C++ and Turbo Pascal, for display.

However, if you 're using another version of C++ or another graphics toolbox, you

can use your own graphics type and still use the general model to send a message with

the appropriate coordinate information.

Chaos (or complexity) theory is already changing the way scientists think about

the evolution of dynamic systems. Because it's an excellent example of how

computers have changed the way we think about the world, we'll look into its

background to help you understand all the fuss about chaos and to illustrate an

approach for finding types.

Chaos Theory and Strange Attractors
A dynamic system (don't confuse modeling and programming here) is anything

you can describe by knowing the value of a variable whose current state depends on

its previous states. The state of the system can be something you measure on a

continuous scale or something with logical changes. (Is it on? Has something

happened since we last checked?)

In a speech-recognition system, for example, each word in a sentence not only

carries some individual weight but affects (and is affected by) all the other words in

the sentence. Consider the sentence a dynamic system that changes state through the

addition of words and punctuation marks. Initially you have nothing (an empty or

"no-sentence" state). You add a word and it becomes the new sentence; add a word

and the two words are the new sentence; add a word and the three words are the new

sentence; add a punctuation mark and the three words plus punctuation are the new

sentence; and so on.

When you speak, words necessarily follow each other. When you write, they

follow or displace one another. Each new state represents your attempt to clarify the

state of the sentence. (But each new state can either clarify or confuse, one reason

parsing sentences is so difficult.) The sentence in its next state is very sensitive to its

current and previous states.

90

EXTENDING THE SYSTEM

You could say that meanings are the attractors in the dynamic system. At any

state, the sentence may have no meaning (an extinction state), one meaning (a stable

state), or many meanings (possibly a chaotic state), depending on any number of

things - point of view, reading or writing skill, and so on.

Mathematic Attraction
Folks from many diverse fields are trying to understand dynamic systems. Their

discoveries have led to at least one conclusion - anything whose state can change

is incredibly complex.

Mathematicians and computer scientists try to wring meaning out of complex

systems by representing them with equations and pictures. Some particularly useful

pictures exist in state space, where each point holds all the information needed to

describe a dynamic system at one time.

For example, suppose a system changes state depending on a variable, such as

size ornumber. Call the variableX and its rate of changeR. Then equations likeNextx

= R * X(* (l-X)) can describe the system.

In this case, 1 represents unity (the entire system or all we can have of it) and 0

represents nothing. Either extreme state (whenN extx = 1 or 0) translates into oblivion

when Nextx = 1 and Nextx is everything.

The previous equation, the so-called standard map or logistic equation, has been

studied by mathematically inclined folks in many fields. They've discovered that it

(and presumably the dynamic system it describes) behaves unpredictably. In gen­

eral, any system you describe with a nonlinear equation or equations will behave

unpredictably because it's extremely sensitive to initial conditions. Nearby values of

X in one state may lead to values of Nextx that are far apart in the next state.

You can complicate matters even further by increasing the number of variables

in a system (that is, your representation of a system). For example, two rules for

changes in state -Nextx =AX - (1-(Y*Y)) and Nexty = BY - can present an infinite

91

THE TAO OF OBJECTS

number of states (Nextx values) responding to infinitely small changes in the condi­

tion of the previous state (or X value). This infinity of values is the chaotic set for this

dynamic system.

You can see this chaos by plotting the values of each state (Nextx) in time. The

X axjs is time; the Y axis is the value of each X (Figure 3- 11) .

Figure 3-11. Chaos.

. •.:·=· ··· .~ ·.
.. . . . ,, ...

.
. .. . ·. \ - •. : , : - ·: , .. :·

• •I • • .- :: • • • ,, . : --

There 's a certain order in most chaotic systems. One way to see this order is in

state space. When we plot values of Nextx against values of current X, we uncover

the attractor for the chaotic set. This attractor lives in state space and consists of all

the points in the chaotic set. By mutual agreement, it 's called strange. Figure 3-12

shows the strange attractor corresponding to the chaotic set in Figure 3-11.

92

EXTENDING THE SYSTEM

.. _ ... : :.-

Figure 3-12. The strange attractor corresponding to the chaotic set In
Figure 3-11.

The fractal (or self-similar) nature of the system becomes apparent when you

zoom in on any area of the attractor. The deeper you go, the more complex (and

detailed) the attractor becomes, yet the more orderly it seems.

Inheriting Strange Attractors
Inheritance can help describe and implement a modeling system to create and

display strange attractors. Figure 3-13 shows one hierarchy for generating and
displaying a model.

93

THE TAO OF OBJECTS

a state space { a space for evolving a system }

L a Wi'11loW {a SCl88n type fQt dlsplaying'.a !!PllC8 } ·

L a state model {generates states}

Figure 3-13. A hierarchy for generating and displaying a model.

Any state model will share the characteristics of having a window (a way to
display evolving states) and a state space for creating state values without concern
for how the space will be displayed. If you decide to reroute the generated states to
something other than a window, you can easily change or bypass the window. And
since the state space is independent of the display itself, you can display the space
anywhere on the screen.

Display Window
A display window is characterized by four variables representing its comers and

an initial point in the window. The Window constructor initializes the window, draws
a border around it, and initializes a point within the window.

You can describe a window like this in C++:

class Window
protected:

int X,Y:
int Xl, X2, Yl, Y2:

public:
Window(int InitX,

int InitWinXl,

94

II point in window
II window location

int InitY,
int InitWinX2,

EXTENDING THE SYSTEM

} :

int InitWinYl, int InitWinY2);
-Window() { } :

and like this in Turbo Pascal:

WindowPtr = AWindow;
Window= object

x' y'
Xl, X2, Yl, Y2 : integer;

point in window
window location

constructor init(lnitX,InitY,
InitWinXl, InitWinX2,
InitWinYl, InitWinY2 :

destructor Done: virtual;
end;

integer);

The display window is independent of any model and thus can be treated as a

separate object type. Any model will generate values independently of the display­

window specifics. These values can then be scaled into a display window.

Three likely candidates for becoming object types are the display window, the
state space, and the model generator. Each model will have a state space, where

values are initially produced, and a window for displaying the scaled values.

Since a model will need to have both a display window and a state space, we can

compose a model out of the object types (display window and state space) or derive

a model from them.

If you' re a purist, you might object to deriving a model from these components;

a model isn't exactly a kind of state space, nor is a state space a kind of display

window.

A composed model might look like this in C++:

class Modell
float A,B;

public:
Window DWindow:
SSpace StateSpace;

II composed

95

THE TAO OF OBJECTS

Modell(int InitWinXl, int InitWinX2.
int InitWinYl, int InitWinY2);

-Mode 11() { } ;
virtual void Generator();

} ;

and like this in Turbo Pascal:

ModelPtrl = AModell;
Modell =object

A. B : real ;
DWindow: Window:
SSpace : StateSpace;
constructor !nit;
destructor Done: virtual;
procedure Generator; virtual;

end;

variables in the model
composed of objects }

Initialize the model.

Generate the model. }

One problem with this approach is that it requires you to create and manipulate
three objects instead of one. A single object knows about itself, so you don't have to
send messages to individual objects. Sometimes more objects are better, of course.
In the remainder of this attractor example, I '11 opt for non purism and derive a model
from a state space and display window.

State Space
A state space is an area characterized by four range variables representing its

comers and the "zoom factor" of the space. It's derived from a display window. The
state-space constructor initializes the space and an initial point in the space and calls
the display window to construct itself.

You can describe a state space as follows in C++:

class StateSpace : public Window
protected:

float Xpoint, Ypoint;
float SpaceXl: //boundaries of space
fl oat SpaceX2:
float Spa ceYl:

96

EXTENDING THE SYSTEM

fl oat SpaceY2:
public:

} ;

StateSpace(int InitX, int InitY,
int InitWinXl, int InitWinX2,
int InitWinYl, int InitWinY2,
float InitXpoint, float InitYpoint,
float Minx, float Maxx,
float Miny, float Maxy);

void Scale(); II Scale space to window.
-StateSpace(){};

and like this in Turbo Pascal:

StateSpacePtr = AStateSpace;
StateSpace = object(Window)

Xpoint, Ypoint,
SpaceXl, SpaceX2,
SpaceYl, SpaceY2 : real :
constructor Init(lnitX, InitY,

point in space }

boundaries of space

InitWinXl, InitWinX2,
InitWinYl, InitWinY2 : integer:
InitXpoint, InitYpoint,
Minx, Maxx, Miny, Maxy : real);

procedure Scale:
destructor Done: virtual:

end;

{ Scale space to window.

Note that the space is independent of the display type; it's the state space of the

system without any specific display characteristics.

To display the space on a screen, we send a message to a display window.

Model = State Generator
A state generator creates states for the system. Its constructor also initializes its

own variables and sends a message to Window to construct itself. In tum, Window

sends the message to StateSpace. The generator (Mode/ 1) doesn't concern itself with

any of Window's or StateSpace's implementation details; it only wants to know that

a display window is open and a state space exists.

97

THE TAO OF OBJECTS

A state generator (or model) might look like this in C++:

class Modell : public StateSpace {
fl oat A, B:

public:
Modell(int InitWinXl, int InitWinX2,

int InitWinYl, int InitWinY2):
-Modell(){}:
virtual void Generator():

I:

or like this in Turbo Pascal:

ModelPtrl = AModell;
Modell =object CStateSpace)

A, B : rea 1 :
constructor Init;
destructor Done: virtual;
procedure Generator: virtual:

end;

variables in the model J

Initialize the model. J

Generate the model. I

This model generates the Henon attractor, introduced in 1976. Its implementa­

tion in C++ is:

void Modell::Generator()
float TempX, TempY:
setviewport (Xl, Yl, X2. Y2, CLIP_ON);
TempX = Xpoint: II Save last state.
TempY = Ypoint; II Save last state.
Xpoint = TempY + 1 - (A* TempX * TempX): II this model
Ypoint = B * TempX; II this model
Scale(); II Scale new state to a window.
putpixel(X,Y,7);

I:

This model generates the wild attractor, introduced in 1989. Its implementation

in Turbo Pascal is:

Mode1Ptr2 = AModel2:
Model2 = object (Window)

98

EXTENDING THE SYSTEM

R: real;
constructor initCinitX, InitY. Minx. Maxx. Miny, Maxy integer:

InitXpoint, InitYpoint.
InitRangeXl, InitRangeX2,
InitRangeYl, InitRangeY2,
Rate: real); { factor for this model l

destructor Done: virtual:
procedure Generator: virtual:

end;

Since each model has its own space and display, you can display more than one

model on the screen (as in Listings 3-1 and 3-2) simultaneously, or even overlap

displays.

Where OOP Works Best
People often wonder where object-oriented programming should be used.

"Everywhere" is only a slight exaggeration since object-oriented programming is a

general-purpose approach to programming. Much like structured programming

before it, there are few places where object-oriented programming is not useful.

The best applications for object-oriented programming are those that are likely

to require ongoing change and are inherently complex. In fact, the more these two

characteristics are true, the greater the benefit of object-oriented programming.
Large, complex applications require techniques such as encapsulation and inheri­

tance to make them manageable.

The areas where object-oriented programming are not suitable are quick and

dirty programs, where it's probably not worth creating reusable objects (though you

might benefit tremendously if you have a library of existing objects to build on), and
low-level routines that are time-critical, such as device drivers. Otherwise, if you 're

developing systems or applications, you'll probably benefit from object-oriented
programming. And the more you use it to build reusable objects, the greater the

advantage on future projects.

99

THE TAO OF OBJECTS

Extending Systems
Object-oriented programming makes it easy to extend systems like these; just

add features or reimplement existing ones to create new functions. As programs

become larger, they become difficult to understand, maintain, and extend. The use

of types can improve understanding and help make programs easier to maintain and

extend by reducing the amount of code you need to rewrite.

Object-oriented techniques can reduce confusion, improve programming effi­

ciency, and change the way you think about the relationships between the world and

your programs. Sounds pretty good, right? So enjoy what you've learned so far and

extend yourself a little more: Stand up and stretch those weary muscles before

moving on to the next chapter.

Listing 3-1. Complete C++ attractor.

II program AttractP;

/!include <graphics.h>
/!include <conio.h>
/!include <math.h>
/!define CLIP_ON 1

class BGI {
public: II could be a struct or class.

} ;

int graphdriver;
int graphmode;
int errorcode;

class Window
protected:

int X,Y;
int Xl, X2, Yl, Y2:

public:

} ;

Window(int InitX, int InitY,
int InitWinXl, int InitWinX2,
int InitWinYl, int InitWinY2):

-Window() {}:

100

II point in window
II window location

EXTENDING THE SYSTEM

class StateSpace : public Window
protected:

float Xpoint. Ypoint;
fl oat SpaceXl;
fl oat SpaceX2;
fl oat SpaceYl;
fl oat SpaceY2;

public:
StateSpace(int InitX. int InitY.

II boundaries of space

int InitWinXl, int InitWinX2.
int InitWinYl. int InitWinY2.
float InitXpoint. float InitYpoint.
float Minx. float Maxx. float Miny, float Maxy);

void Scale(); II scale space to window
-StateSpace(){};

} ;

class Modell public StateSpace {
float A,B;

public:
Modell(int InitWinXl, int InitWinX2,

int InitWinYl. int InitWinY2):
-Mode 1 1 () { } ;
virtual void Generator();

} ;

class Model2 public StateSpace {
float R;

public:
Model2(int InitWinXl, int InitWinX2.

i~t InitWinYl, int InitWinY2);
-Mode 12 () { } :
virtual void Generator();

} ;

Window::Window (int InitX. int InitY.
int InitWinXl. int InitWinX2.
int InitWinYl. int InitWinY2)

X = InitX;
Y = InitY; Xl = InitWinXl;
X2 = InitWinX2;

II initial point in window
II window location

101

THE TAO OF OBJECTS

Y1 = InitWi nYl;
Y2 = InitWinY2;
rectangle CXl. Yl, X2, Y2);

} :

StateSpace::StateSpaceCint InitX. int InitY,
int InitWinXl, int InitWinX2,
int InitWinYl, int InitWinY2.
float InitXpoint. float InitYpoint.
float Minx. float Maxx.
float Miny. float Maxy)
Window(InitX.InitY,

InitWinXl. InitWinX2,
InitWinYl, InitWinY2)

SpaceXl =Minx; SpaceX2 = Maxx;
SpaceYl = Miny: SpaceY2 =Maxy:
Xpoint = InitXpoint: Ypoint = InitYpoint:

} ;

void StateSpace: :Scale() { //Scale point in space to window.

X = ceil((Xpoint - SpaceX1)/(SpaceX2 - SpaceXl) * (X2 - Xl)):
Y = Y2 - (ceil((Ypoint - SpaceYl)/(SpaceY2 - SpaceYl) *

CY2 - Yl))):
} :

Modell: :Modell{int InitWinXl, int InitWinX2,

II Set factors.
A= 1.4:
B = 0.3:

} ;

102

int InitWinYI. int InitWinY2)
StateSpace(O,O.
InitWinXl,lnitWinX2,
InitWinYl,lnitWinY2,
0.4.0, -1.03, 1.27. -0.3, 0.45) {

EXTENDING THE SYSTEM

Model2::Model2Cint InitWinXl. int InitWinX2,
int InitWinYl, int InitWinY2)

StateSpace(O,l,
InitWinXl,InitWinX2,
InitWinY1,InitWinY2.
0.4.0. -0.5. 1.0. -1. 0.5) {

II Set factors.
R = 4.0;
} ;

void Modell: :Generator()
float TempX. TempY;
setviewport (Xl. Yl. X2. Y2. CLIP_ON);
TempX = Xpoint: II Save last state.
TempY = Ypoint: II Save last state.
Xpoint = TempY + 1 - (A* TempX * TempX): II this model
Ypoint = B * TempX; II this model
Scale(); II Scale new state to a window.
putpixel (X. Y. 7);

} ;

void Model2::Generator()
float Tempx. Tempy;
setviewport (Xl. Yl. X2. Y2. CLIP_ON);
Tempx = Xpoint: II Save last state.
Tempy = Ypoint: II Save last state.
Ypoint = Tempx - Cl - CTempy * Tempy)); II this model
Xpoint = R * Tempx * (1 - Tempx): II this model
Scale(); II Scale point to a window.
putpixel(X.Y,7);

} ;

main()
{

II { BG! stuff

BG! Graph;

103

THE TAO OF OBJECTS

Graph.graphdriver =DETECT, Graph.graphmode;
II Let the BGI determine what board
II you're using.

initgraphC&Graph.graphdriver, &Graph.graphmode, '');

II Set screen and window dimensions.

int WXl = O;
int WX2 = ceil(getmaxx()l2 - 5);
int WYl = O;
int WY2 = ceil(getmaxy()l2 + 150);

II Create a model.

Modell *Ml= new ModellCWXl,WX2,WYl,WY2);

II Set screen and window dimensions.

int WWXl = ceil(getmaxx()l2 + 5);
int WWX2 = getmaxx();

II Create a model.

Model2 *M2 = new Model2CWWX1,WWX2,WY1,WY2);

char cmd;

for (; ;)

}

{

Ml->Generator();
M2->Generator();

II { Iterate the models. }

while Ccmd = getch() != 'q');
closegraph();
delete Ml;
delete M2;
return 0;

104

EXTENDING THE SYSTEM

Listing 3-2. Complete Turbo Pascal attractor.

program AttractP;

uses crt. graph;

type

BG! = object
GraphDriver
GraphMode
ErrorCode

end:

: Integer:
Integer;
Integer;

WindowPtr = AWindow;
Window= object

X. Y,
Xl, X2, Yl. Y2 : integer;
constructor init(InitX,InitY.

point in window
window location

InitWinXl. InitWinX2.
InitWinYl, InitWinY2 : integer);

destructor Done; virtual;
end;

StateSpacePtr = AStateSpace;
StateSpace = object(Window)

Xpoint, Ypoint,
SpaceXl, SpaceX2,
SpaceYl, SpaceY2: real;
constructor Init(InitX, InitY,

point in space I

boundaries of space

InitWinXl, InitWinX2.
InitWinYl, InitWinY2 : integer;
InitXpoint. InitYpoint,
Minx, Maxx, Miny, Maxy : real);

procedure Scale;
destructor Done; virtual;

end;

l scale space to window

105

THE TAO OF OBJECTS

ModelPtrl = AModell;
Medell= object CStateSpace)

A, B : real ;
constructor Init;
destructor Done: virtual;
procedure Generator; virtual;

end;

Mode1Ptr2 = AModel2;
Model2 =object (StateSpace)

R : rea 1 ;
constructor Init;
destructor Done; virtual;
procedure Generator; virtual;

end;

var
Ml
M2
Graphic

ModelPtrl;
Mode1Ptr2;
BGI;

variables in the model
initialize the model }

generate the model }

variable in the model }
Initialize the model. }

Generate the model. }

constructor Window.lnit (lnitX, InitY,
InitWinXl, InitWinX2,

begin
X := InitX;
Y := InitY;
Xl ·= InitWinXl;
X2 ·= InitWinX2;
Y1 ·= InitWinYl;
Y2 ·= InitWinY2;

InitWinYl, InitWinY2 : integer);

initial point in window

window location }

Rectangle (Xl, Yl, X2, Y2);
end;

destructor Window. Done;
begin end; abstract

constructor StateSpace. I nit(InitX, InitY,

106

InitWinXl, InitWinX2,
InitWinYl, InitWinY2 : integer;
InitXpoint, InitYpoint,
Minx, Maxx, Miny, Maxy: real);

EXTENDING THE SYSTEM

begin
Xpoint := InitXpoint;
Ypoint := InitYpoint; { initial point in a space }
SpaceXl := Minx;
SpaceX2 := Maxx;
SpaceYl := Miny;
SpaceY2 := Maxy;
Window.Init(InitX.InitY.

end;

InitWinXl. InitWinX2.
InitWinYl. InitWinY2};

destructor StateSpace.Done;
begin end;

procedure StateSpace.Scale;
begin { Scale point in space to window. }

If CXpoint = SpaceXl} then { a little troubleshooting }
X := Xl;

If CXpoint = SpaceX2} then
X := X2; { and here }

If CXpoint > SpaceXl) then

end;

X := roundCCXpoint - SpaceX1)/(SpaceX2 - SpaceXl) *
(X2 - Xl));

Y := Y2 - Cround((Ypoint - SpaceYl)/(SpaceY2 - SpaceYl) *
(Y2 - Yl)));

constructor Modell.Init;
var

LowX. HighX. LowY. HighY integer:

begin
{ Set screen and window dimensions.
LowX := 0:
HighX := round(GetMaxx/2 - 5};
LowY := 0;
HighY := round(GetMaxy/2 + 150);

factors
A := 1.4;
B := 0.3;

107

THE TAO OF OBJECTS

StateSpace.Init(O, 0, initial X and Y values }

screen/window dimensions
{ Set InitX and Y points. }

LowX. HighX,
LowY, HighY,
0.4. o.
-1.03, 1.27, -0.3, 0.45): {Set scales. }

end:

destructor Mode 11. Done:
begin end;

constructor Model2.Init:
var

{ abstract }

LowX,HighX,LowY,HighY integer:
begin

{ Set screen and window dimensions.
LowX := round(GetMaxx/2 + 5):
HighX := GetMaxx:
LowY := O:
HighY := round(GetMaxy/2 + 150):
R := 4. 0:

StateSpace.InitC0.1.

end:

LowX, HighX,
LowY, HighY,
0.4. o. -0.5,
1.0, -1. 0.5);

destructor Model2.Done:
begin end:

procedure Mode 11. Genera tor:
var

TempX, TempY : real:
begin

{ abstract }

SetViewPort (Xl, Yl, X2, Y2, True);
TempX := Xpoint: l Save last state. }
TempY := Ypoint: { Save last state. }
Xpoi nt := TempY + 1 - (A * TempX * TempX): { this model
Ypoi nt := B * TempX: { this model

108

EXTENDING THE SYSTEM

StateSpace.Scale;
putpixel (X, Y, 7);

end;

{ Scale new state to a window. }

procedure Model 2. generator;
var

Tempx, Tempy : real;
begin

SetViewPort (Xl, Yl, X2, Y2, True);
Tempx := Xpoint; { Save last state.)
Tempy := Ypoint; { Save last state.)
Ypoint := Tempx - (1 - (Tempy * Tempy)); { this model
Xpoint := R * Tempx * (1 - Tempx); { this model
StateSpace.Scale; { Scale point to a window. }
put pixel (X, Y, 7);

end;

Main program:)

main

begin
Graph.GraphDriver :=Detect; { Let the BGI determine what

{ board you're using. }
DetectGraph(Graph.GraphDriver, Graph.GraphMode);
InitGraph(Graph.GraphDriver, Graph.GraphMode, '');
if GraphResult <> GrOK then

begin
Writeln('>>Halted on graphics error:',

GraphErrorMsg(Graph.GraphDriver));
Halt(l)

end;

Construct and initialize models. }

new(Ml,lnit);
new (M2, In it) ;

109

THE TAO OF OBJECTS

repeat
begin

Ml".Generator;
M2".Generator:

end;
until keypressed;
disposeCMl.done);
dispose(M2.done);
CloseGraph;
RestoreCRTMode;

end.

110

{ Iterate the models. }

{ back to text }

CHAPTER 4

Shaping the System

The Tao is like a well: used but never used up. It's like the eternal void:

filled with infinite possibilities. It's hidden but always present.

-Lao-tzu

Since motion and change are essential properties of things, the forces

causing the motion are not outside the objects, but are an intrinsic

property of matter.

- Fritjof Capra

The word polymorphism comes from the Greek meaning "having many shapes."
In object-oriented programming, you can create a type and derive new types from it
using inheritance. The new derived types inherit characteristics and behaviors from
their ancestors. They can also reimplement behaviors and thus change the specific
behavior of a type without changing its general interface. This is polymorphism.

Programs you design using polymorphism are easy to maintain, amend, and
extend because change doesn't disrupt the system. The messages you send are
general; an instance's response to a message is specific.

For example, say you've created a base type in C++. You can derive new types
from an existing base type (using inheritance) and allow derived types to reimplement
the base type's behavior by making behaviors virtual. In C++:

class base {
int statel; II private by default

public: //Make the virtual method accessible.
virtual void SayWho();

} ;

111

THE TAO OF OBJECTS

In Turbo Pascal:

base = object
procedure SayWho; virtual;

private:
Sta tel integer;

end;

By default, this wi 11 be }
accessible. }
Restrict access to current
unit. }

Since Say Who is a virtual method, any type derived from base can reimplement
Say Who however it likes. Using virtual behaviors, you create systems that can send
general messages to any variables in a group of types. The system just sends the
message; it doesn't need to know how a type will carry it out.

For example, suppose you derive two new types from a base type. In C++:

class derivedl : public base t
public: //Make this accessible.

void SayWho();
} ;

class derived2 : public base t
public: //Make this accessible.

void SayWho();
} ;

In Turbo Pascal:

derivedl =object (base)
procedure SayWho: vi rtua 1 :

end;

derived2 =object (base)
procedure SayWho; virtual:

end:

t accessible by default }

t accessible by default }

Suppose you then implement derived] and derived2. In C++:

void derivedl::SayWho() t
cout <<"I'm derived 1":
I:

112

II derivedl's behavior

SHAPING THE SYSTEM

void derived2: :SayWho() {
cout <<"I'm derived 2";
} ;

II derived2's behavior

Note the use of cout. This predefined stream object for standard output is

convenient because it simplifies output formatting. Cout can be used to output both

built-in and user-defined object types while avoiding the complications of print/.

In Turbo Pascal:

procedure deri vedl. SayWho:
begin

write('l'm derived 1'):
end;

procedure deri ved2. SayWho:
begin

write('l'm derived 2');
end;

{ derivedl's implementation}

{ derived2's implementation }

Now you can send the Say Who message to both derived] and derived2, and each

will respond to the message according to its implementation of SayWho.

The following piece of cereal code (not to be confused with serial code)

illustrates polymorphism in a mouthful. For maximum enjoyment, use a debugger
to trace through it. In C++:

II CRISPIES.CPP: virtual functions made simple
#include <stdio.h>
struct rice { II base class

virtual void talk() {} II common interface to all types of rice
II in-line implementation
II different implementations for each type

} ;

struct snap : rice
void talk() l puts("SNAP!");

} ;
II in-line implementation

113

THE TAO OF OBJECTS

struct crackle : rice {
void talk() { puts("CRACKLE!");

} ;

struct pop : rice {
void talk() { puts("POP!");

} ;

main()

II in-line

II in-line

rice* bowl[]= { new snap, new crackle, new pop};
II C++ aggregate initialization

for(inti= O: i < sizeof(bowl)lsizeof(bowl[OJ): i++)
bowl[iJ->talk(): II Send one talk message to bowl.

In Turbo Pascal, you can do something similar:

type
RicePtr = ARice:
Rice= object base class }

constructor !nit:
procedure talk: virtual; { common interface to all types of }

{ rice }
end:

SnapPtr = ASnap:
Snap= object(rice)

constructor !nit:
procedure talk: virtual: {"SNAP"}

end:

CracklePtr = ACrackle:
Crackle= object(rice)

constructor !nit;
procedure talk: virtual: { "CRACKLE!" }

end;

PopPtr = APop:
Pop= object(rice)

constructor !nit;
procedure talk: virtual; { "POP!" }

end;

114

SHAPING THE SYSTEM

{ constructors }
constructor Rice.Init:
begin
end:

{ methods
procedure Rice.talk:
begin
end:

procedure Snap.talk:
begin

writeln(·snap!'):
end;

procedure Crackle. talk;
begin

writelnC'Crackle! '):
end:

procedure Pop.talk;
begin

writeln('Pop!•);
end:

{ main
var

Bowl

begin

RicePtr;

There's no in-line feature in
Turbo Pascal. }

common interface to all types }
of rice }

{ specific Snap behavior }

{ specific Crackle behavior }

{ specific Pop behavior }

New requires a pointer to a type }
as its first parameter. }

Bowl := New(SnapPtr,Init):{ Allocate memory and construct.
BowlA.talk; { Talk message produces a Snap. }

Bowl := NewCCracklePtr,Init):
BowlA.talk; { Talk message produces a Crackle.

Bowl := New(PopPtr,Init);
Bowl A.talk; { Talk message produces a Pop. }

end.

115

THE TAO OF OBJECTS

The virtual function talk establishes an interface to the various derived types of

rice - Snap, Crackle, and Pop. (Rice is abstract and thus only exists as an interface

to the derived types.) Thus, you can send one message, talk, and the correct behavior

results.

Note that Turbo Pascal's New procedure requires a pointer as the first parameter,

while C++ requires a type (in this case, an object type). More on that later.

Figure 4-1 is a different kind of illustration. The talk message sent to Rice will

produce specific Snap, Crackle, and Pop behavior.

Talk { accesses Snap, Crackle, and Pop through Rice }

I

Figure 4-1. The talk message sent to Rice will produce Snap, Crackle, and Pop
behavior.

Dynamics
Using polymorphism, you can take generalization a step further and send

messages to any number of types (derived from a base type) without knowing how

the types will behave or even what the types are. You need to:

• Define a base type with virtual methods (a common interface)

• Use inheritance to derive new types

• Create a container/collection to hold dynamically created instances

• Implement a method for accessing the list.

116

SHAPING THE SYSTEM

Since you 're going to create dynamic types whose sizes aren't necessarily

known at compile time, let's backtrack for a moment and discuss how a compiler

allocates memory for instances of types.

When you create an instance of a type at compile time by declaring a local

variable, the compiler allocates memory for the variable on the stack at compile time.

You can do that in C++ with int Number and in Turbo Pascal with Number : integer.

You can create an instance of a type at run time (on the Turbo Pascal heap or in

the C ++ free-memory store) by using a pointer containing the address of a variable.

In C++, you can declare a pointer to a built-in type with int* Number. In Turbo Pascal,

it's NumberPtr: "integer.

In object-oriented programming, you can declare an instance of a user-defined

type at run time (dynamically) and simultaneously initialize it. This would be

complicated if you had to do all the work; fortunately, C++ and Turbo Pascal do most

of it for you through the built-in operators new and delete (in C++), the procedures

New and Dispose (in Turbo Pascal), and constructors and destructors.

For example, you can create and initialize an instance of SomeCoordinates in

one step. In C++, you declare a pointer to the type and assign the result of the

expression new type to the pointer:

AnyCoordinates * SomeCoordinates =new AnyCoordinates(l,l);

SomeCoordinates, a pointer to the type AnyCoordinates, gets the address of a block

of memory large enough to hold an instance of AnyCoordinates. AnAnyCoordinates
constructor is then called automatically to initialize an instance of AnyCoordinates
with the values 1, 1.

In Turbo Pascal, you call New with two parameters, a pointer to the type and a

constructor that specifies how a new object type will be created:

var
SomeCoordinates : AnyCoordinates:
Co_Ptr : ASomeCoordinates;
New(AnyCoordinates(Co_Ptr, Init(l,1));

117

THE TAO OF OBJECTS

Memory deallocation is handled in C++ by delete and in Turbo Pascal by

Dispose and a destructor. In C++, the delete operator is used to destroy an instance

of a type:

delete Pointer_to_type;

Any destructor you've defined for the type is automatically called when delete
executes.

In Turbo Pascal, the procedure Dispose has been extended to take a second

parameter, a destructor:

var
N : TypePtr:
Dispose(N,Done);

Done is the destructor for this type and must be specified explicitly. (Unlike C++,

Turbo Pascal doesn't automatically call constructors and destructors for you.)

During this call, Done looks up the size of the instance in the type's Virtual Method

Table (VMT) and passes the size to Dispose. Dispose deallocates the memory used

by the instance.

Note: Each user-defined object type in Turbo Pascal that has or inherits virtual

methods or has a constructor has a VMT associated with it. The compiler automatically

creates the VMT through the type's constructor. (The C++ equivalent of the VMT,

the VT ABLE, isn't created through the constructor; the value of the VPTR is

initialized in the constructor.) If a type has virtual methods, you must send a message

to the object type's instance constructor before you send the first message to a

method. Otherwise, if range checking is off, the compiler leaps into the ozone. It's

a good idea to tum on range checking when testing code.

Constructors, Destructors, and Responsibility
Constructors and destructors are used to both initialize field values and, more

importantly, allocate and deallocate memory for dynamic objects. You should
always write your constructors and destructors so that they take full responsibility

for creating and destroying dynamic objects. This means that if some action must

118

SHAPING THE SYSTEM

have occurred before a kind of object is used (read a data file, reset some device, and

so on), it should take place in the constructor that initializes the object. No other steps

should be required to use an object since the object itself should be responsible for

these things. It also means that the construction process should in tum allocate

memory for any other objects it contains.

When deallocating an object, you should deallocate any memory it uses without

disposing of any objects allocated in the constructor. For example, when disposing

of a linked list, you must also dispose of each node it contains. An easy way to do

that is to call the destructor of each node object. That way, if the nodes themselves

allocate other objects, they '11 dispose of those objects in their destructor. The general

rule is that objects should allocate and deallocate the things for which they are

responsible.

Managing From the Bottom Up
A linked list is an excellent data structure for problems involving data elements

whose exact size, shape, and number aren't known at compile time. In this example,

you'll define and implement a type, called a cell manager, that manipulates a linked

list of cells. Those cells are instances of types. A linked list (also a type) consists of

cells and the methods needed to manipulate the cells.

Cells consist of a node (a pointer to the next cell) and any type: string, real,

integer, or user-defined.

The cell manager can process the list without knowing exactly which type a cell

contains. Each cell is an instance of a specific type and links to the next cell through

a pointer:

I String/NodePtr ~ Integer/NodePtr ~ Formula/NodePtr I
At the heart of the cell manager are three types: a base type that defines the

interface to a group of types, a cell, and a linked list to connect cells.

119

THE TAO OF OBJECTS

The base type consists of a destructor, which guarantees that every type derived

from Base will have a destructor as well. (In this example, Base serves as a check and

could be omitted.)

The base type looks like this in C++:

class Base {
public:

virtual --Base();
} ;

and like this in Turbo Pascal:

Base = object
destructor Done; virtual;

end;

A cell consists of a pointer to the next cell (a link), a constructor (to create the

cell), a destructor (to delete it), and a virtual method for handling itself. Cell is the

interface for a group of cells that will reimplement their own behaviors. Any type

derived from Cell will automatically have a link (the pointer) to the next cell. In C+7i-:

cl ass Cel 1 : public Base {
Cell *Next; II a pointer to the next cell

public:
Cell(){}; II in-line
--Ce 11(){ } ; I I in -1 i ne
virtual void Action(){}; 11 In-1 ine: each eel 1 wi 11 reimple-

}; II ment Action to suit itself.

In Turbo Pascal:

Ce 11 Pt r = "Ce 11 :
Cell =object

Next: CellPtr:
constructor Init;
destructor Done; virtual;
procedure Action; virtual:

end;

120

{ a pointer to the next cell }

Each cell will reimplement
Action to suit itself. }

SHAPING THE SYSTEM

Note that C++ lets you declare the pointer type within the class itself, while Turbo
Pascal's CellPtr declaration precedes that of Cell.

Since there's no best way to implement a linked list in both C++ and Turbo
Pascal, the following fragments (and the complete source code in Listings 4-1 and
4-2) show two alternatives. You can, for example, create a list by first creating a node
consisting of a pointer to a cell (or any type derived from Cell), a pointer to the next
node (a link), and a constructor and destructor. In C++:

struct Node {
Cell *Item;
Node *Next;
Node(Cell *F. Node *N) :

-Node() delete Item;}
} ;

II The list item can be Cell or
II any class derived from Cell.
II pointer to next Node type

Item= F; Next= N; {}
II constructor
II destructor

A cell list might then consist of a pointer to a node, a constructor for creating a
node, and methods for managing cells:

class CellList
Node *Nodes;

public:

} ;

CellList(){ Nodes= NULL;
-CellList();
void AddCCell *Newitem);
void Manipulate();

II List of types pointed to by
II Nodes points to a node.

II constructor
II destructor
II Add a new cell to the list.

The Add method adds a node - an instance of a cell or any type derived from
a cell - to the list:

void CellList::AddCCell *Newitem)
{

Nodes= new Node(Newltem. Nodes);

Add accepts a pointer to a cell or any type derived from a cell and can add a cell
without knowing its specific type.

121

THE TAO OF OBJECTS

The Manipulate method sends a message to each instance of the object type

telling it to act according to its own implementation of the Action behavior:

vo id Cell Lis t: :Mani pula te()
{

} ;

Node* Current= Nodes;
wh ile (Current)
{

Current->Item->Action();
Curren t = Current->Next;

} ;

II Sta rt at top of li st .
II Do until end of l ist .

II Eva lu ate this node .
II Point to t he next node .

Like Add, Manipulate doesn't know how any cell will behave; it just sends them

general messages, and each cell takes care of itself (see Figure 4-2).

Manipulate

I
Cell

E
lntCell

StrlngCell

FonnulaCell
AnyCell

cj

Figure 4-2. Manipulate sends the cells general messages, and each cell takes care
of Itself.

Another approach to creating a linked list of cells omits the separate creation of

a node. In Turbo Pascal:

Cel llistPtr = ACelllist ;
Cel l List = objectCBase)

Last: CellPtr;
constructor Init ;
destructor Done ; virtual;
procedure Add (N: CellPtr) ;

122

{ end of list I

{Add new cel l to list. }

SHAPING THE SYSTEM

function NextCN: CellPtr): CellPtr: { Return a pointer
{to the next cell. }

procedure Manipulate: virtual: { Process Cell List: }

end:

{ controls that can manipulate
{ any cell regardless of type.

As in the previous C++ example, the method Add adds a new cell to the list:

procedure CellList.AddCN: CellPtr);

begin
if Last= nil then Last := N
else NA.Next := LastA.Next:
LastA.Next ·= N;
Last := N;

end:

Add gets a pointer
to a eel l. }

Manipulate processes the list using nodes (instances of cell types) without

knowing the specifics of any instance:

procedure Cell Li st.Manipulate:
var

P : CellPtr:
begin

P := CellPtr(LastA.Next):
while P <> nil do
begin

PA.Action;
P := CellPtr(Next(P));

end:
end:

{ Process the cell list. }

{ Set pointer to first node. }

generic message to all cells
Get pointer to next node. }

Cell is an abstract type; it contains no data. However, you use it to derive specific

types: string cell, integer cell, formula cell, and so on. The abstract type defines the

general characteristics and behaviors of a group of related subtypes. In a spreadsheet,

for example, any cell might contain numerical data (reals or integers), methods for

handling data (formulas), names (strings), and so on.

123

THE TAO OF OBJECTS

A string cell might look like this in C++:

class StringCell : public Cell {
char *Value;

public:

} ;

StringCell(char *V);
-StringCell() {};
void Action();

and like this in Turbo Pascal:

Stri ngCel 1 Ptr = "Stri ngCel 1;
StringCel 1 = object(Cel 1)

Value: StringPtr;
constructor Init(V: String);
destructor Done; virtual;
procedure Action; vi rtua 1 :

end:

II in-line destructor
11 Process a Stri ngCel 1.

{ Process a StringCell. }

The virtual Action method will determine how StringCell processes itself. An
integer cell might look similar. In C++:

class IntCell : public Cell {
int Number;

public:

} ;

IntCell(int V);
-IntCell() {};
void Action();

In Turbo Pascal:

I ntCe 11 Pt r = "I ntCe 11 :
IntCell = object(Cell)

Number: integer;

II in-line destructor
II Process an IntCell.

constructor Init(V: integer);
destructor Done; virtual;
procedure Action; virtual; { Process an IntCell. }

end;

124

SHAPING THE SYSTEM

A formula cell might look like this in C++:

class FormulaCell : public Cell {
char *Formula;

public:
FormulaCell(char *V);
-FormulaCell() {};
void Action();

II in-line destructor
II Process a Formula.

} :

and like this in Turbo Pascal:

FormulaCellPtr = AFormulaCell;
FormulaCell = object(Cell)

Formula: StringPtr;
constructor Init(V: String);
destructor Done; virtual;
procedure Action; virtual:

end;
{ Process a Formula. l

Any new cell derived from Cell need only declare its own data and reimplement

the Action method. The general Manipulation method inherited from Cel/List

controls the action.

To access the entire list of cells, you can send one message-manipulate-and

let each cell respond to it according to how the object type has implemented the

method. Figure 4-3 shows the complete object hierarchy for this example.

Tracing Through Pointers
If you 're new to using pointers, it can be helpful to trace through them

interactively with a debugger. In Turbo C++ or Turbo Pascal, you can do this by

putting breakpoints in your program where you create or use dynamic objects. You

can then use the Debug Evaluate menu command to enter an expression that refers

to some pointer.

125

THE TAO OF OBJECTS

BASE

CELL

CELLLIST

FORMULACELL

INTCELL

STRINGCELL

BASE

L-1 --11 ... ~ CELL

CELLLIST

Figure 4-3. The complete object hierarchy.

INTCELL

FORMULACELL

STRINGCELL

-

For example, suppose you were looking at the code for the Pascal method
CellList.Manipulate shown earlier. This method sets a variable P to the first item in
the list. If you enter P in the expression field and press Return, the debugger will

display the address to which it refers. Entering P" will display the object P points to,

which is usually more interesting.

To look at the next pointer in the list, enter P".Next. To see its contents, enter

P".Next". You can continue tracing through the list by evaluating the expressions
P".Next".Next", P".Next".Next".Next", and so on to examine pointers and their
contents until you feel more comfortable with them.

126

SHAPING THE SYSTEM

Some Advantages
Object-oriented programming techniques have significantly increased pro­

grammers' potential to create more complex programs. It's much easier to get a

prototype up and running quickly in C++ or Turbo Pascal than in conventional

structured languages, and large programs are easier to extend and maintain.

By considering a program a hierarchy of types and thinking of the general (or

abstract) case while solving problems, you can significantly increase your produc­

tivity. Inheritance hierarchies are conceptually simple and flexible. Programs

designed to use polymorphism and dynamic techniques are powerful and extensible.

In C++ and Turbo Pascal, the ability to create and destroy variables at run time

is important enough that it's part of both languages. When you create a user-defined

data type, you can easily make a dynamic variable of that type.

This means you can build an object-oriented program that doesn't need to know

the number or type of objects involved in a problem before it begins to solve it. This

fits beautifully with our world, where we seldom know all the tools we need when

we begin working on a project. Object-oriented languages allow us to write programs

that adapt to unexpected situations.

Listing 4-1. C++ cell manager.

II program cells

#include <string.h>
#include <iostream.h>
#include <stdlib.h>

class Base
{

public:
-Base();

} ;

127

THE TAO OF OBJECTS

class Cell : public Base {
public:

} ;

Cell *Next;
Cell(){};
virtual -Cell(){};
virtual void Action(){};

struct Node {
Cell *Item;
Node *Next;

II a pointer to the next cell
II in-line
II in-line
II Each cell will reimplement its
II own Action to suit itself.

II The list item can be Cell or
II any class derived from Cell.
II pointer to next Node type

Node(Cell *F, Node *N) :
-Node() {delete Item;}

Item= F; Next= N; {} II constructor
I I destructor

} ;

class CellList {
Node *Nodes;

public:

} ;

II constructor
Cell List() : { Nodes= NULL; }
11 destructor
-CellList();
II Add an item to Cell List.
void Add(Cell *Newitem);

II List the items.
void Manipulate();

class StringCell public Cell {
public:

} ;

char *Value:
StringCell (char *V):
-StringCell(} {}:
void Action(};

class IntCell : public Cell {
public:

128

int Number;
IntCell(int V);

II List of types pointed to by
II Nodes points to a node.

II in-line destructor
11 Process a StringCel 1.

SHAPING THE SYSTEM

} ;

-IntCell() {};
void Action();

class FormulaCell public Cell {
public:

} ;

char *Formula;
FormulaCell(char *V);
-FormulaCell() {};
void Action():

II constructors

StringCell: :StringCel l (char *V)
int length= strlen(V);
Value= new char[length + l]:
strcpy(Value,V);

} ;

IntCell: :IntCell (int V)
Number= V;

} ;

Formul aCel l:: Formul aCel l (char *V)
int length= strlen(V):

II in-line destructor
11 Process an IntCel l.

II in-line destructor
II Process a Formula.

Formula= new char[length + l];
strcpy(Formula,V);

} :

II methods

void StringCel l : : Action()
cout << Value << "\n":

} ;

void IntCell :: Action() {
cout << Number << "\n":

} ;

II Just write the string.

II Write the integer.

129

THE TAO OF OBJECTS

void FormulaCell :: Action()
cout << Formula << u\n":

} ;
II Just write the formula
II for now.

II member functions for List class

Ce 11 Li st : : -Ce 11 Li st ()
{

while (Nodes) {
Node *N =Nodes:

} :

Nodes = Nodes->Next:
delete N:

void Cell List: :Add(Cell *Newltem)
{

I I destructor

II until end of list
II Get node pointed to.
II Point to next node.
II Delete pointer's memory.

Nodes= new Node(Newltem, Nodes):

void Celllist::Manipulate()
{

Node *Current= Nodes:
whi 1 e (Current)
{

Current->Itern->Action():
Current = Current->Next:

} :

II Main program
main()
{

130

char CurrentChar = · ':
char *S:
int I;

Cell List Ali st:

II Evaluate this node.
II Point to the next node.

SHAPING THE SYSTEM

while CCurrentChar != '-')
{

II - says there are no more
II cells to initialize.

cout << "Enter cell value: "; II Add instances of cell

cin » S;
CurrentChar = S[OJ;

switch CCurrentChar)
case'#':

II types by evaluating input.

II Determine type from first
II char.

Alist.Add(new FormulaCell(S)); II# indicates a formula.
break:

} :

case · 1.:
case • 2.:

case '3':
case '4':
case • 5.:
case • 6.:

case • 7.:

case ·a·:
case •g.:

case ·o·:
I= atoi(S);
Alist.Add(new IntCell(I));
break:

default :
AList.AddCnew StringCell(S));

} :

Alist.Manipulate();

Listing 4-2. Turbo Pascal cell manager.

program eel ls;
uses CRT, DOS;

type

StringPtr = AString:

II It's a number.

II It's a string.

131

THE TAO OF OBJECTS

Base = object
destructor Done; virtual;

end;

CellPtr ="Cell:
Cell = object(Base)

Next: CellPtr:
constructor Init;
destructor done; vi rtua 1 ;
procedure Action: virtual;

end;

CelllistPtr ="Cell List;
Cell List= object

Last: CellPtr:
constructor Init;
destructor Done; vi rtua 1 :

I a pointer to the next cell I

Each cell will reimplement
Action to suit itself. I

{ the end of the list I

procedure Add(N: CellPtr); I Add a new cell to the list. I
function Next(N: CellPtr): CellPtr; I Return a pointer to I

I the next ce 11. I
procedure Manipulate; virtual; { Process Celllist; I

{ controller that can manipulate any cell I
I regardless of the type it's an instance of. I

end;

StringCellPtr = "StringCell;
StringCell = object(Cell)

Value: StringPtr;
constructor Init(V: String);
destructor Done; virtual;
procedure Action; virtual:

end;

IntCellPtr = "lntCell;
IntCell = object(Cell)

Number: integer;
constructor Init(V: integer);
destructor Done; virtual:
procedure Action; virtual;

end;

132

I Process a StringCel l. I

I Process an IntCell. I

SHAPING THE SYSTEM

Formul aCel 1 Ptr = "Formul aCel 1;
Formul aCel 1 = object(Cel 1)

Formula: StringPtr;
constructor Init(V: String);
destructor Done; vi rtua 1 ;
procedure Action; virtual;

end;

{ constructors

constructor Cel 1. i nit;
begin
end;

constructor Celllist.Init;
begin

Last ·= n i 1 ;
end;

constructor StringCel 1. Init(V: String);
begin

GetMem(Value, Length(V) + 1);
Value" ·= V;

end:

constructor IntCel 1. Init(V: integer);
begin

Number := V;
end;

constructor Formul aCel 1. Ini t(V: string);
begin

GetMem(Formula, Length(V) + 1):

{ Process a Formula. }

Formula" := V; { Formula gets V. }
In a more complex example, you might parse the formula here.

end;

{ destructors

destructor Base.Done;
begin
end:

133

THE TAO OF OBJECTS

destructor Cell. Done;
begin
end;

destructor Cell Li st. Done;
begin
end;

destructor StringCel l .Done:
begin

FreeMem(Value, Length(ValueA) + 1):
end;

destructor FormulaCell .Done:
begin
end:

destructor IntCell .Done:
begin
end;

{ methods

procedure Cell .Action:
begin
end:

procedure StringCell .Action:
begin

writeln(ValueA):
end:

procedure IntCell .Action:
var

S : string:
begin

Str(Number,S):
writeln(S):

end:

134

{ Just write the string. }

{ Write the integer. }

procedure FormulaCell .Action;
begin

writeln(FormulaA);
end;

{ eel l 1 i st methods }

SHAPING THE SYSTEM

Just write the formula }
for now. I

procedure CellList.Add(N: CellPtr); I a pointer here, so any
I type or descendant of type I
I can be passed }

begin
if Last= nil then Last := N
else NA.Next := LastA.Next:
LastA.Next ·= N;
Last ·= N:

end;

function CellList.Next(N: CellPtr): CellPtr: I Return a pointer I
(to the next cell. }

begin
if N = Last then Next ·= nil
else Next :=NA.Next;

end;

procedure CellList.Manipulate;
var

P : CellPtr;
begin

P := CellPtr(LastA.Next);
while P <> nil do
begin

PA.Action;
P := CellPtr(Next(P));

end;
end;

(Process the cell list. I

Set pointer to first node. }
unti 1 the end of the 1 i st }

message to each cell
Set pointer to next node.

procedure InitCells(L CellListPtr); Initialize all cells I
at once. }

var
CurrentChar : char;
S : string;
I, Code : integer;

135

THE TAO OF OBJECTS

begin
while CurrentChar <> · ' do

begin

- says there are no more
cells to initialize. }

writeln('Enter cell value: ·): {Add instances of cell
{ types by evaluating input.

readln(S);
CurrentChar := S[l]; Determine type from first }
case CurrentCha r of { char. }
'#' : LA.Add(New(FormulaCellPtr,Init(S)));

{ #indicates a formula. }
'1 · • · 2' . '3 • , · 4' , '5' , • 6' , '7' , '8' , '9' • • 0' : { It's a number.
begin

Val CS, I ,Code);
LA.Add(New(IntCellPtr,Init(l)));

end:
else { It's a string.

LA.Add(New(StringCellPtr,Init(S)));
end; (case }

end:
end:

(main

var
Pointer _to_l i st Cell Li stPtr:

begin
Clrscr:
new(Pointer_to_list,Init); (Initialize a new

(the heap.}
cell list on }

(Note: new's first parameter must be a pointer.
InitCells(Pointer_to_list);
Pointer_to_listA.Manipulate;
Dispose(Pointer_to_list.Done);

end. (main }

136

Process the cell list.
(Clean up. }

CHAPTER 5

Dynamic Style

Blunt your sharpness, untie your knots, soften your glare,
settle your dust.

-Lao-tzu

The use of polymorphic types is fundamental to object-oriented programming.
A type is polymorphic if it uses virtual methods and has a method whose name is
shared by more than one type in the hierarchy.

For example, in a hierarchy of musical scales, the method name Play _minor _scale
can be shared by all musical keys. Each key actually implements its minor scale using
different notes, but the message Play_minor _scale can be carried out without the
sender's knowing the specifics of each key's implementation (see Figure 5-1).

Although you can create an instance of a polymorphic object on the stack without
using pointers, creating an instance at run time is convenient and useful. You can do
this by allocating it on the heap using a pointer. Both C++ and Turbo Pascal make
manipulation of dynamic variables easy and efficient through the new and delete
operators in C++ and the New and Dispose procedures in Turbo Pascal.

To create an instance of a dynamic variable in C++, you pass new the type to be
created:

new(Shape);

In Turbo Pascal, you pass New a pointer to the instance of the type to be created:

var ShapePointer : AShape:
New(ShapePointer);

137

THE TAO OF OBJECTS

Play_minor_scale

I
Keys

Key..A

L_ Play_mlnor {plays A, B, C, D, E, Fl, G#}
l<fiy_C

l_. Play_mlnor {plays C, D, Eb, F, G, A, B}

Key_G

l_. Play_mlnor {plays G, A, Bb, C, D, E, F# }

Figure 5-1. The message Play_mlnor_scale can be carried out without the sender's
knowing the specifics of each key's Implementation.

As with structs (in C++) and records (in Turbo Pascal), new allocates enough
space on the heap for an instance of the pointer's base type and returns that space's

address via the pointer. If the dynamic variable contains any virtual methods, you

must use a constructor to initialize the type before sending any messages to the

object. You can allocate space and initialize the instance of the type in one call. In

C++:

Circ l e *T hi sCirc l e = new Ci rcl e(l40, 75, 50); //poin t s and radius

In Turbo Pascal:

var
Ci rel eP tr : "Ci re l e;

New(CirclePtr.Init(l40,75,50)); { poin ts and radius l

Dynamic variables are useful because you can add any number of instances of

them at run time without knowing the exact number of instances at compile time.

138

DYNAMIC STYLE

By delaying system-determining decisions until run time, you disconnect the

code from a type's details and the system becomes more flexible. A working system

can be modified and adjusted long after it's "finished." And you can add instances

of new types to the system without disrupting it.

Returning to our musical example, you can add a new key to the system by

deriving it from Keys and let each descendant implement the Play_minor_scale

behavior in its own way. In C++:

class Keys {
public:

Keys () : { }
-Keys C): { }
virtual void Play_minor_scale(); { } II Will be reimplemented

II by ancestors.

class Key_F : public Keys {
public:

Key_F(); { }
-Key _F () : { }
void Play_minor_scale(): II Implement specific play behavior.

} :

In Turbo Pascal:

Keys = object
constructor Init:
destructor Done: virtual:
procedure Play_minor_scale: virtual:

end:

Key_F = object(Keys)
constructor Init:
destructor Done: virtual:
procedure Play_minor_scale: virtual;

end;

Will be reimplemented
by descendants. }

139

THE TAO OF OBJECTS

The next example shows how to create a frame-based expert system and

maintain it in a linked list of polymorphic types. Frame is just a synonym (in the

artificial intelligence world) for a type consisting of characteristics and behaviors.

Expert Systems
Expert systems lend themselves particularly well to object-oriented program­

ming techniques. These systems let nonexperts do the work of experts, simplify

complex operations, and automate repetitive processes.

Through a knowledge base of expert information, they map the input character­

istics and behaviors of a system, problem, pattern, or object. Input characteristics and

behaviors represent colors, sizes, processes, events, symptoms, and so on. Output

represents a solution, advice, pattern match, decision, and so on. Figure 5-2

illustrates this idea.

Search

L Knowledge_Base ..,

(consists of BaseFrames
and descendants)

Output

Figure 5-2. Expert systems map the input characteristics and behaviors of a
system, problem, pattern, or object.

The information in an expert system's knowledge base is put there by an expert

who has skill or knowledge in a specific domain. This information is almost certainly

dynamic- needing to be updated, corrected, and so on. A new expert, for example,

might contribute new information. The system itself might generate new information

or even correct itself. What this means for developers is that an expert system should

be built so that it can evolve easily.

140

DYNAMIC STYLE

An expert system's inference engine can map input characteristics to some

output behavior in two ways, usually referred to as backward chaining and forward

chaining.

A backward-chaining model reasons from known results back toward the

current state of the world. For example, a set of symptoms might chain back to a

disease having those symptoms. The system finds a match by selecting a disease and

asking whether the user has the symptoms of that disease. In an or-based system

(Symptom] or Symptom2), a single symptom usually produces a match. In an and­

based system (Symptom] and Symptom2), all symptoms must be present to produce

a match. The system works from a disease back to the symptoms until it finds a

disease that matches.

A forward-chaining system reasons from the current state of the world toward

a result or solution. For example, you might inform the system of your symptoms first

and ask it to find the correct disease. In this case, the system works from the

symptoms to the disease.

In this chapter, we' 11 construct a forward-chaining model whose knowledge base

consists of frames. We'll use all the key elements of object-oriented programming

and thus be able to:

• Create instances of object types at run time

• Modify a type's behavior and derive new types without disrupting the

working system

• Maintain the hierarchy of types in a linked list

• Modify the mechanisms that manipulate the lists without disrupting the
types.

You can, for example, continue to use the list machinery as is and change the

knowledge base to hold other types of information. The list handler doesn't need to

know which object types it's sending messages to; it just sends messages and the

objects handle themselves. Thus, you can let any type determine whether it's the
correct one in the knowledge base to produce output for the problem.

141

THE TAO OF OBJECTS

OOP in Al
Object-oriented programming is used extensively in artificial intelligence

applications ranging from expert systems to pattern-recognition programs, diagnos­
tic programs, learning programs, natural-language parsers, and neural networks.

Traditionally, AI work has been done using specialized languages like LISP and

Prolog. LISP was developed in the 1950s and is based on the manipulation of lists

of symbols. It doesn't make a distinction between code and data, so programs

themselves are lists of special symbols that define functions. LISP is considered a
flexible language, but it's also primitive; it has few built-in types or functions.

Prolog emerged in the 1980s as the preferred way of doing AI programming in

Europe. It's based on the idea of logic programming, where programs query or

manipulate a database of facts and rules. This higher-level language is very good at

implementing expert systems because it contains a built-in inference engine for

resolving complex queries.

Not surprisingly, object-oriented versions of LISP and Prolog have been

developed. LISP-based languages that have objects include Loops, flavors, XLisp,
and CLOS. XLisp, one of the most affordable LISP implementations, is freely

distributed by its author, David Betz, and is available for almost all computers.

Several object-oriented variations of Prolog are available; the most widely used is

Prolog++.

Despite their flexibility for AI applications, LISP and Pro log are not widely used

outside of research areas. For many programmers, C++ and Turbo Pascal are

considered more efficient, though perhaps not as flexible, for AI programming.

Frames vs. Objects
Some AI languages implement a more flexible type of frame that has many of

the same characteristics as objects. Think of a frame as consisting of slots that have
facets. Frames can be used to derive "fuzzy knowledge" based on rules stored in the

frames themselves. For example, you could describe animals through frames that
explain some of the default characteristics and provide rules for determining
information that's not directly stored.

142

DYNAMIC STYLE

In this case, we might have a Marsupial frame that has slots for what it eats and

where it lives. The facets for these slots could specify that the default values are

Eucalyptus and In Australia. We could also have a special slot called AK 0 for "a­

kind-of." This could be used to say that a Kangaroo is a kind of Marsupial. This gives

a kind of inheritance between the Kangaroo and Marsupial frames. In very flexible

frame-based systems, the rules for evaluating slots and the relationships between

frames can be changed dynamically at run time.

Finding the Objects
Let's begin by envisioning the kinds of types we'll need. When you design a

system around types, try to think simply first and extend your ideas later. The more

you can think in the abstract, the better.

This expert system will consist of a template of characteristics to evaluate (input

characteristics), an inference engine (rules for mapping input to output), a knowl­

edge base of expert information (which the inference engine will use to infer output),

and output behaviors (results).

Let's first create an abstract BaseFrame, the base type for our expert system.

BaseFrame will consist of a constructor and a destructor and serve as the ancestor

for the frames derived from it. In C++:

class BaseFrame {
public:

BaseFrame(); {}
virtual -BaseFrame(); {}
virtual void input(); {}

virtual void eval (); {}

virtual void output(); {}
} ;

In Turbo Pascal:

II Get input characteristics for
II comparison.
II Evaluate input
II characteristics.
II Determine output behavior.

143

THE TAO OF OBJECTS

BaseFramePtr : ~saseFrame:
BaseFrame = object

constructor Init:
destructor Done: virtual:
procedure Input: virtual:
procedure Eval: virtual:

procedure Output: virtual :
end:

constructor BaseFrame. I nit:
begin
end:

destructor Base Frame. Done:
begin
end:

procedure BaseFrame. Input:
begin
end:

procedure BaseFrame. Eval:
begin
end:

procedure BaseFrame. Output:
begin
end:

Get input. }
Evaluate input using derived }
Frame's rule. }
Determine output. }

To keep this expert system pertinent, say it contains information about sports
teams and the behaviors for getting input and determining correct output. The correct
output might correspond to predictions about how well this team is expected to do
in its next game.

Sports Frame, then, is an object type containing information about a sports team.
lnC++:

class SportsFrame public BaseFrame {
public:

int Total_points; //this team's characteristics

144

DYNAMIC STYLE

int Points_against:
int Wins:
int Losses:
int Cur_Tp:
int Cur_Pa:

II input characteristics to compare with
II this team's characteristics

} ;

int Cur_W:
int Cur_L:

SportsFrameCint 11, int 12, int 13, int 14)
II constructor for creating a frame

{ Total_points = Il: II in-line initialization
Points_against = 12:
Wins = 13:
Losses = 14:

virtual -Sports Frame(): {}
void input():
void eval():
void output();

II Get input characteristics for comparison.
II Evaluate the input characteristics.
II Determine output behavior.

In Turbo Pascal:

type
SportsFramePointer = ASportsFrame; { a pointer to the frame }

{ so you can create it dynamically with New }
SportsFrame = object(BaseFrame)

Total_points : integer;
Points_against : integer;
Wins : integer;
Losses integer;
Cur_Tp : integer;
Cur_Pa : integer:
Cur_W : integer:
Cur_L : integer;
constructor I nit(11, 12. 13,

destructor Done; virtual;
procedure Input; virtual;
procedure Eval; virtual:

procedure Output: virtual:
end;

{ this frame's characteristics }

{ input characteristics }

14 : integer):
{ Create a SportsFrame.
{ Destroy a SportsFrame. }
(Get input. }
{ Evaluate input using the
{ SportsFrame's rule. }
(Determine output. }

145

THE TAO OF OBJECTS

constructor SportsFrame.lnit(Il, 12, 13, 14: integer);

begin
Total_points := 11:
Points_against ·= 12:
Wins := 13;
Losses ·= 14;

end:

destructorSportsFrame.Done:
begin
end;

{ constructor implementation

{ destructor implementation }

SportsFrame has four characteristics-Total_points, Points_against, Wins, and

Losses - but you can easily add more, either by adding variables to SportsFrame
or by deriving a new type from BaseFrame (more on that later).

The current input (Cur _Tp, Cur _Pa, Cur_ W, and Cur _L) is also encapsulated in

SportsFrame, allowing each SportsFrame to have its own input. BaseFrame is

general and could represent anything from a simple lookup system to an advisory

system to a real-time system that receives input from devices. To create a gauge, for

example, we might derive Gauge Frame fromBaseFrame with variables to represent

such characteristics as temperature, pressure, and flow.

We'll need to decide how to store and access each frame derived from

BaseFrame. Remember, we want the system to be as flexible as it can be and to grow

and evolve. The most flexible structure for handling unknown growth is a collection

(a list, for example). Recall the one we created in Chapter 4. It began with a node

consisting of pointers to the next node and to an instance of the base type or any type

derived from the base. Next, we used the node to create a list of nodes. Each node

on the list could accept a BaseFrame using the Add(BaseFrame ...) behavior.

In this example, the base type is BaseFrame. In C++:

146

DYNAMIC STYLE

II Node and List

II A struct's characteristics are public by default.

struct Node {
BaseFrame *Item;
Node *Next:

II The list item can be BaseFrame or any
II class derived from BaseFrame.

} ;

NodeCBaseFrame *F, Node
-Node() {delete Item:}

class List (
Node *Nodes;

public:

II Point to next node type.
*N) : Item= F; Next= N; {}

II The list of types pointed to by Nodes
II points to a node.

Li st(); { Nodes = NULL } 11 constructor
-List(); II destructor
void add(BaseFrame *Newitem); II Add item; can be a BaseFrame

II or a descendant of BaseFrame.
void input();

void report();

} ;

In Turbo Pascal:

{ Node and List

type

II Send input message to
II BaseFrame.
II Send report message to
II BaseFrame.

{ In Turbo Pascal, an object's behaviors are public by default.
NodePointer = ANode:
Node= object The list item can be BaseFrame

Item : BaseFramePointer: { or any object derived from it.
Next : NodePointer; { Point to next node type. }
constructor Init(F BaseFramePointer: N : NodePointer):
destructor Done; {Delete Item.}

end:

147

THE TAO OF OBJECTS

constructor Node.InitCF BaseFramePointer; N NodePointer);
begin

Item ·= F;
Next ·= N;

end:

destructor Node.Done;
begin
end:

type

List= object
Nodes : NodePointer:
constructor !nit:
destructor Done:
procedure Add(Newltem
procedure Input;
procedure Report;

end;

The list of types pointed to by }
Nodes points to a node. }

Add an item to the list. }
BaseFramePointer);
{ Input to items.
{ List the items. }

The List method's implementation is shown at the end of the chapter in Listings

5-1and5-2.

Again, note that a C++ struct is a class with all its members public by default.

All members of a class are normally private by default. By using C++'s access

keywords, you can use struct and class interchangeably.

The three keys to making this system flexible are inheritance, which lets you

modify BaseFrame by deriving new types from it; polymorphism, which lets the

same name represent different behaviors; and dynamic memory allocation, which

lets you create instances of BaseFrames and types derived from BaseFrame at run

time. The interface to the different implementations stays the same. In this example,

List sends a message (Report), which in turn sends a message to each BaseFrame (or

descendant of BaseFrame) to compare each descendant's characteristics to those

coming into the system.

148

DYNAMIC STYLE

Report sends an evaluation message to each derived frame, which uses its own
implementation of eval to decide the input. If the frame can't determine an output
based on its characteristics, it outputs nothing and Report continues to traverse the
list of frames derived from BaseFrame. In C++:

Node* Current= Nodes:

while (Current !=NULL)
Current->Item->eval();
Current= Current->Next:

} :

In Turbo Pascal:

var
Current : NodePtr;

begin
Current :=Nodes:

{ Do while we have BaseFrames
while (Current <> NIL) do
begin

CurrentA.ItemA.eval;
Current := CurrentA.Next:

end:
end:

II Do while we have BaseFrames.
II Check rule for this node.
II Point to the next node.

or descendants. }

Check rule for this node.
Point to the next node. }

The more general an object type, the easier it is to extend. The input, evaluation,
and output methods for BaseFrame are all virtual, so you can derive new frames and
reimplement any or all of a frame's behaviors.

In this example, SportsFrame implements its evaluation behavior in terms of an
and rule. In other words, a SportsFrame produces an output if two of its existing
characteristics match the current state of those characteristics. In C++:

void SportsFrame::eval() {
if ((Cur_Tp == Total_points)

} :

&& CCur_Pa == Points_against))
output ():

II evaluation AND:

149

THE TAO OF OBJECTS

In Turbo Pascal:

procedure Sports Frame. Eva l ;
begin
if CCCur_Tp = Total_points)

and CCur_Pa = Points_against))
then

output:
end:

{ evaluation AND }

You can easily derive a new frame from SportsFrame to implement another rule
(or, for example). In C++:

class Orframe : public Sportsframe {
public:
Orframe(int 11, int 12, int 13, int 14):

} ;

SportsFrameCil,I2,I3,14){}
void eval();

void Orframe: :eval()
if ((Cur_Tp == Total_points)

} ;

I I (Cur_Pa == Points_against)
I I (Cur_W ==Wins)
I I (Cur_L == Losses))
output();

In Turbo Pascal:

type
OrFramePointer = AQrFrame;
Orframe = objectCSportsFrame)

11 lmpl ement OR.

constructor lnit(Il, 12, 13, 14 integer):
destructor Done: virtual;
procedure Eval; virtual;

end:

constructor Orframe.lnit(Il,12,13,14 integer);
begin

SportsFrame.InitCil,12,I3,14):
end;

150

DYNAMIC STYLE

destructorOrFrame.Done:
begin
end:

procedure Or Frame. Eva 1 : { I mp 1 ement OR.
begin

if ((Cur_Tp = Total_points)
or (Cur_Pa = Points_against)
or (Cur_W =Wins>
or (Cur_L =Losses))

then
output:

end:

You can add instances of SportsFrames and OrFrames to a single list (that is,
a single system) and thus implement both and and or rules simultaneously. The

following code constructs and adds two SportsFrames and one Or Frame to the same

list. In C++:

main() {
II Declare a list (calls List constructor).
List AList:

II Create and add knowledge frames to a list.
AList.add(new SportsFrame(75. 82. 1. 5));
AList.add(new SportsFrame(51. 82. 6. 3)):
AList.add(new OrFrame(86. 84. 7. 2)):

In Turbo Pascal:

var
AList List:

begin

{Declare a list (calls List constructor). }
Alist.Init:

{ Create and add knowledge frames to a list. }
AList.Add(New(SportsFramePointer,Init(75. 82. 1, 5)));
AList.Add(New(SportsFramePointer,Init(51. 82. 6. 3))):
AList.Add(New(OrFramePointer.Init(86. 84. 7. 2)));

end:

151

THE TAO OF OBJECTS

The following code sends input to SportsFrames and OrFrames on the list. It

traverses the list, displaying and evaluating the system, to produce specific output.

InC++:

II Input to BaseFrames and descendants.
Alist.input();

II Traverse list. display frames in expert system, and evaluate.
Alist.report();

In Turbo Pascal:

{ Input to BaseFrames and descendants. }
Ali st.Input:

{Traverse list. display frames, and evaluate. }
AL i st. Report:

Programming for Change
Programs composed of object types are more powerful and flexible because of

their built-in capacity for change. Object-oriented design anticipates the evolution

of real-world systems and programs. Any program of even modest complexity will

change, so anticipating change is a natural process.

Change can take two forms. External changes take place in the outside world. For

the system to continue modeling the outside world accurately, it must be able to

change. A simple example is adding new printers or graphics terminals to a system.

Adding desktop publishing features to a word-processing program is more compli­

cated. Most programming systems (particularly structured systems) assume that all

changes are external.

Internal changes take place in your understanding of a problem. Nothing has

necessarily changed in the outside world; rather, your perception of the problem has

changed. For example, you might rewrite an algorithm to increase its execution

speed or reorganize code to improve its readability. You might also discover that

three different types have features in common and decide to create an abstract base

type from which to derive them.

152

DYNAMIC STYLE

You may discover that you can improve a type you created for a program by
modifying its design. Most non-object-oriented languages assume you understand
the system completely before you begin coding and either won't make mistakes or
won't learn from them. In short, non-object-oriented languages don't adapt easily to
internal changes.

Object-oriented languages, on the other hand, provide techniques for creating
systems that adapt easily to external or internal changes. Object-oriented design uses
these techniques and thus lets you and your ideas grow with the system. You don't
need to know everything about the system before you begin to code. Of course, you
can never know everything about a system, yet that's exactly what most non-object­
oriented languages require.

Complex projects, such as those associated with artificial intelligence, must be
explorative, creative, dynamic, and experimental - requirements easily met by
object-oriented languages.

Listing 5·1. And/orframe-based expert system In C++.

#include <iostream.h>
#include <conio.h>

II class hierarchy

class BaseFrame
public:

BaseFrame(); {}
virtual -BaseFrame(); {}
virtual void input();{}

virtual void eval(); {I

virtual void output(); {}

II for cout

II Get input characteristics for
II comparison.
II Evaluate input
II characteristics.
II Determine output behavior.

153

THE TAO OF OBJECTS

class SportsFrame : public BaseFrame
public:

} ;

int Tota l_poi nts:
int Points_against:
int Wins:
int Losses:
int Cur_Tp:
int Cur _Pa:
int Cur_W:
int Cur_L;

SportsFrame(int 11. int 12. int 13, int 14)
{ Total_points = 11;

Points_against = 12:
Wins = 13;
Losses = 14;

-SportsFrame();
void input();
void eval();
void output();

void Frame::input()

Cur_Tp = 86;
Cur_Pa = 84:
Cur_W 7:
Cur _L = 2;

II Display current values.
cout << "Current_Points =" << Cur_Tp << " ":
cout << "Current_Against =" << Cur_Pa << " ":
cout << "Current_Wins = " << Cur_W << " ":
cout << "Current_Losses = " << Cur_L << "\n":

void SportsFrame: :output()

cout << "Match!\n";
II Implement specific output here.

} :

154

DYNAMIC STYLE

void SportsFrame::eval() {

if ((Cur_Tp == Total_points)

} ;

&& (Cur_Pa == Points_against))
output();

II evaluation AND;

class OrFrame : public SportsFrame
public:

} ;

OrFrame(int Il. int I2. int 13. int I4):
SportsFrame(Il.12,I3.14){}

void eval();

void OrFrame::eval() I I Implement OR.

} ;

if ((Cur_Tp == Total_points)
I I (Cur_Pa == Points_against)
I I (Cur_W ==Wins)
I I (Cur_L ==Losses))
output();

II Node and List

struct Node II The list item can be BaseFrame or any

} ;

BaseFrame *Item; II class derived from BaseFrame.
Node *Next; II Point to next node type.
Node<BaseFrame *F. Node *N): ltem(F), Next(N) {}
-Node () { de 1 ete I tern; }

class List {
Node *Nodes;

II The list of types pointed to by Nodes
II points to a node.

public:
List() : Nodes(NULL) {} II constructor
-List(); II destructor
void add(BaseFrame *Newitem); II Add an item to the list.
void input(); II Input to items.
void report(); II List the items.

} :

155

THE TAO OF OBJECTS

II member functions for List class
List::-List() II destructor
{

while (Nodes)

} ;

Node *N =Nodes:
Nodes = Nodes->Next;
delete N:

II until end of list
II Get node pointed to.
II Point to next node.
II Delete pointer's memory.

void List::add(BaseFrame *Newltem)
{

Nodes= new NodeCNewitem, Nodes):

void List:: input()
Node* Current= Nodes:
while (Current) {

Current->Item->input();
Current = Current->Next;

void List::report()
{

156

Node *Current= Nodes:
while (Current)
{

II Display Total_points of item in current node.
cout << "Total_points = u <<
Current->Item->Total_points << u u:

II Display Points_against of item in current node.
cout << UPoints_against = u <<
Current->Item->Points_against << u u

II Display Wins of item in current node.
cout << uWins = u << Current->Item->Wins <<

II Display Losses of item in current node.
cout << ulosses = u << Current->Item->Losses << u\n":

DYNAMIC STYLE

} ;

II Evaluate this node.
Current->Item->eval();

II Point to the next node.
Current= Current->Next:

II main program
main()
{

II Declare a list (calls List constructor).
List AList:

II Create and add knowledge frames to a list.
AList.add(new SportsFrame(75, 82, 1, 5));
Alist.add(new SportsFrame(51, 82, 6, 3));
AList.add(new OrFrame(86, 84, 7, 2));

II Input to BaseFrames and descendants.
Ali st. input():

II Traverse list, display frames in expert system, and
II evaluate.
AList.report();

getch(); II Wait for a keypress.

Listing 5-2. And/or frame-based expert system In Turbo Pascal.

{ object hierarchy }
type

BaseFramePtr : ABaseFrame:

Get input. }

BaseFrame = object
constructor Init:
destructor Done: virtual :
procedure Input; virtual:
procedure Eval: virtual: Evaluate input using derived }

frame's rule. }

157

THE TAO OF OBJECTS

procedure Output: virtual :
end:

{ Determine output. }

SportsFramePointer = ASportsFrame:
SportsFrame = object

Total_points : integer:
Points_against : integer:
Wins : integer;
Losses integer:
Cur_Tp : integer:
Cur_Pa : integer:
Cur_W : integer;
Cur_L : integer;
constructor Init(Il. 12. 13. 14 integer);
destructor Done: virtual:
procedure Input;
procedure Eval: virtual:
procedure Output:

end:

constructor Base Frame. Ini t:
begin
end;

destructor BaseFrame Done:
begin
end;

procedure BaseFrame. Input;
begin
end:

procedure Base Frame.Ev al :
begin
end:

procedure BaseFrame. Output;
begin
end:

158

DYNAMIC STYLE

constructor SportsFrame.Init(Il, 12, 13, 14 integer);
begin

Total_points := Il;
Points_against ·= 12;
Wins := 13;
Losses ·= 14;

end;

destructor SportsFrame.Done;
begin
end;

procedure SportsFrame.Input;
begin

Cur_Tp
Cur_Pa
Cur_W
Cur_L

:= 86;
:= 84;
·= 7;
:= 2;

{ Display field values of item in current node. }
Write('Current_Points = ', Cur_Tp. • ');
Write('Current_Against = ',Cur_Pa, • ');
Write('Current_Wins = ',Cur_W,' ');
Writeln('Current_Losses = • ,Cur_L);

end;

procedure SportsFrame.Output;
begin

Writeln('Match!·);
{ Implement specific output here. }

end;

procedure SportsFrame.Eval;
begin

if ((Cur_Tp = Total_points}
and (Cur_Pa = Points_against))

then
output;

end;

{ evaluation AND }

159

THE TAO OF OBJECTS

type

OrFramePointer = AQrFrame:
OrFrame = object(SportsFrame)

constructor lnit(Il, 12, 13, I4 integer):
destructor Done: virtual:
procedure Eval: virtual;

end:

constructor OrFrame.lnit(ll.12.I3,14 integer);
begin

SportsFrame.Init(ll,I2.13,I4):
end:

destructor OrFrame. Done:
begin
end:

procedure OrFrame.Eval:
begin

if ((Cur_Tp = Total_points)
or (Cur_Pa = Points_against)
or CCur_W =Wins)
or (Cur_L =Losses))

then
output;

end:

{ Node and List }

type

NodePointer = ANode:
Node = object

Item : BaseFramePointer:

{ Implement OR. }

The list item can be }
BaseFrame or descendants.
Point to next node type } Next : NodePointer:

constructor Init(F
destructor Done:

BaseFramePointer; N: NodePointer);
{Delete Item.}

end:

160

DYNAMIC STYLE

constructor Node.InitCF BaseFramePointer; N NodePointer);
begin

Item ·= F:
Next ·= N:

end:

destructor Node. Done:
begin
end:

type

List= object
Nodes : NodePointer;
constructor Init;
destructor Done:
procedure Add(Newitem
procedure Input;
procedure Report:

end:

{ methods for List }
constructor List.Init:
begin

Nodes ·= NIL;
end;

destructor List.Done:
var

N : NodePointer:
begin

while (Nodes <> NIL) do
begin

N :=Nodes;
Nodes := NodesA.Next:
dispose(N);

end:
end;

The list of types pointed to
by Nodes points to a node. }

Add an item to the list. }
BaseFramePointer);

{ Input to items.
{ List the items.

until end of list }

Get node pointed to.
Point to next node. }
Delete pointer's memory.

161

THE TAO OF OBJECTS

procedure List.Add(Newitem: BaseFramePointer);
var

N : NodePointer:
begin

New(N); NA.Item:= Newitem;
NA.Next :=Nodes;
Nodes := N:

end:

procedure List.Input:
var

Current : NodePointer:
begin

Current :=Nodes:
while (Current <> nil) do
begin

CurrentA.ItemA.Input:
Current := CurrentA.Next;

end:
end:

procedure List.Report:
var

Current : NodePointer:
begin

162

Current :=Nodes:
while (Current<> nil) do
begin

{ Display Total_points of item in current node. }
Write('Total_points = · ,CurrentA.ItemA.Total_points,' '):

{ Display Points_against of item in current node. }
Write('Points_against = · ,CurrentA.ItemA.Points_against, • ');

{ Display Wins of item in current node. }
Write('Wins = ·.currentA.ItemA.Wins,' '):

{ Display Losses of item in current node.
Writeln('Losses = · ,CurrentA.ItemA.Losses);

{ Evaluate this node.
CurrentA.ItemA.Eval:

DYNAMIC STYLE

{ Point to the next node.
Current := CurrentA.Next:

end:
end:

{ main program }
var

Alist : List:
begin

{ Declare a list (calls List constructor). }
Ali st. I nit:

{ Create and add knowledge frames to a list. }
AList.Add(newCSportsFramePointer.Init(75. 82. 1. 5)));
AList.Add(newCSportsFramePointer.Init(Sl. 82. 6. 3))):
AList.Add(newCOrFramePointer.Init(86. 84. 7. 2))):

{ Input to BaseFrames and descendants. }
Alist.Input;

{ Traverse list. display frames. and evaluate. }
Alist.Report:

Readln:
end.

{ Wait for a keypress. }

163

CHAPTER 6

An Object-Oriented
Neural Network

If you want to shrink something, you must first allow it to expand. If you

want to take something, you must first allow it to be given. This is called

the subtle perception of the way things are.

-Lao-tzu

Not even our technological evolution has been a linear movement from

lower to higher levels, but rather a process punctuated by massive

regressions.

- Riane Eisler

Object-oriented techniques make it easier to represent the world in programming

models. Ideally, a user-defined type in a program corresponds to a type in the world

you want to represent. Thus, finding or discovering types is your first task in object­

oriented programming.

If you describe a problem or system in terms of object types and build programs

out of those objects, the programs will be easier to maintain and revise. As the

problem or system changes, you revise or reimplement an object to correspond to

those changes. The act of revision becomes an act of extension rather than

reconceptualization.

In recent years, computers have become the preeminent representational (or

modeling) tool. An excellent example of how scientists use computers to represent

an aspect of the world is the neural network, which attempts to capture aspects of how

we believe the brain works.

165

THE TAO OF OBJECTS

A neural network is a dynamic system consisting of layers of neurons connected
to each other. Each neuron's state is determined by the messages sent to it by all the
neurons connected to it. These messages tell the neuron the state of each neuron
sending a message and the weight (or strength) of the connection between them. In
most commercial neural network systems on the PC, the neurons in one layer connect
only to the neurons in immediately adjoining layers. Neurons within a layer don't
connect to each other.

Each layer of neurons can be one of three types:

• An input layer consisting of a pattern to classify or match, a problem to solve,
and so on

• A hidden layer - the network's internal representation of connections

• An output layer - a resulting classification, pattern, or solution.

In most neural network models, all the neurons in a single input layer are
connected to all the neurons in a hidden layer; all the neurons in the hidden layer are
connected to all the neurons in an output layer (see Figure 6-1). A neural network
can have more than one hidden layer, but the connection scheme is similar - the
neurons in the second hidden layer are connected to the neurons in both the first
hidden layer and the output layer.

A neuron is always in one of two states: on or off. The combined, weighted states
of all the neurons connected to a neuron determine its state. The neurons in the input
layer are connected to sources (devices or a program) outside the network, and the
initial states of these neurons are determined by the messages sent to them from the
outside world.

The states of neurons in the hidden layer are determined by the messages sent by
neurons in the input layer; the states of neurons in the output layer are determined by
the messages sent from the hidden layer. These messages are determined by several
factors: the network model that calculates the weights of inputs, an activation
function, and a transfer function. Figure 6-2 illustrates how input messages generally
produce output messages in these neural network models.

166

AN OBJECT-ORIENTED NEURAL NETWORK

Input Layer Hidden Layer Output Layer

Figure 6-1. Connections between layers.

When messages have been sent to all the output neurons in the network, the

network has reached a temporary state. The network then evaluates its state (by

comparing it to some desired state) to determine how much error it contains. The total

error in the network is equal to the sum of the errors in individual neurons and

determines what the network does next.

167

THE TAO OF OBJECTS

Input Layer Output

Summed Activation Transfer Output
Messages Function Function Message

Figure 6-2. Input messages generally produce output messages.

For example, if a back-propagation network finds the error too large, it sends a

message back through the network from neuron to neuron (to the hidden layer, back

to the input layer, forward to the hidden layer, then on to the output layer). The

message tells every neuron to adjust itself and therefore reduce the total error in the

network. For more information about specific neural networks, check the reference

list (Appendix B).

Once the network has looped back to the output layer, it recalculates its error. It

eventually settles into a stable state and sends an output message identifying that

state. This output signal is the solution to the problem the network is trying to solve.

Neural networks are information processors that are based on mathematical

models of how we think the brain works. Although they are similar to expert systems

in that they solve (or classify) a new problem by matching its characteristics to an

existing problem, they differ in two important ways: Expert systems use rules to

generate output, while neural networks use examples; expert systems require
complete information, while neural networks can produce results from incomplete

information.

168

AN OBJECT-ORIENTED NEURAL NETWORK

Because neural network technology is new and still evolving, researchers

haven't yet agreed on an ideal model. In fact, research takes place all over the world,

much of it in isolation; different premises and goals and distinct approaches to

developing models continue to appear and evolve.

In general, though, these neural network models share many related character­

istics, making them suitable for development using object-oriented techniques. The

idea is to describe the features of a neural network abstractly and derive new

networks from the abstract type.

This chapter describes an abstract neural network to illustrate how complex

problems in the world can be visualized more clearly as object types, then shows how

you might use this neural network to derive other networks.

Neural networks are most often used for applications that involve some form of

learning through repetition.You can build large networks that learn to repeat patterns

based on large volumes of input. For example, you could create a neural network that

predicted stock prices based on certain key economic indicators. If you then fed the

network large volumes of data on past performance and historical stock prices, it

would adapt and organize itself so that it could be used to estimate future stock prices.

Objects and Networks
First, let's try to find the objects that will describe the characteristics of a neural

network. At this stage, you should think primarily about the boundaries of the object

type and the gross interactions between types. The details of the network, such as

how specific methods will be implemented, should be of less concern. Focus on

external factors, those that determine the connections and interactions between types

and the world outside the system.

Don't be overly concerned about methods at first; just concentrate on the object.

Look for aspects of the system that might be duplicated, and try to find the smallest

units first. If you're feeling imaginative, try to visualize how an object type will fit

into the bigger picture and how it might adapt to change.

169

THE TAO OF OBJECTS

The smallest unit in a neural network is a neuron, which has a state and the ability

to send messages to and receive messages from the neurons to which it's connected.

The state of a neuron is determined by messages from other neurons. Connections

have weights, and neurons change state by comparing the incoming message to a

value determined by an activation function. If the message exceeds a certain value,

the neuron is in an on, or 1, state. If not, the neuron is in an off, or 0, state.

A neuron's state is determined by its connections to adjoining neurons. Each

neuron receiving a message turns itself on or off depending on the message.

Typically, a message consists of a value determined by a function (for example,

"weight times state").

After all the neurons have received messages and changed states accordingly,

the network asks itself whether its current state is stable. It determines its status by

comparing it to a value determined by an error function. If its state is within some

error range, the network sends a message to the system stating that. If its state isn't

stable enough, the network adjusts it and sends messages back through the network,

changing the states of neurons until it settles into an acceptable state.

Each neural network model has its own methods, equations, connection schemes,

activation functions, and so on for determining its state and stability; however, all

networks share the characteristics just described.

Beginning with data, you might ask the following questions:

• How many patterns will be input to the network?

• How many neurons will be in each layer?

• How many layers will there be?

• How do we describe error, learning rates, and so on?

• How do we describe connection weights?

170

AN OBJECT-ORIENTED NEURAL NETWORK

In C++, the characteristics of any neural network type might look like this:

class BaseNet

public:

} ;

fl oat Eta.
Alpha.
Errorlevel.
Error;

int ErrorFreq.
nlnputNodes.
nHiddenNodes,
nOutputNodes.
nlterations.
nPatterns.
nRuns.
H •
I.
J.
p.
o.
R;

In Turbo Pascal:

BaseNet = object

Eta.
Alpha.
Errorlevel.
Error : real:
ErrorFreq,
nlnputNodes,
nHiddenNodes.
nOutputNodes.
nlterations.
nPatterns.
nRuns.
H.

I.
J.

II a basic neural network type
II Includes matrix methods.

II default learning rate
II default momentum factor
II acceptable error level
II latest sum squared error value
II error reporting frequency
II number of input nodes
II number of hidden nodes
II number of output nodes
II number of iterations
II number of patterns
II number of runs or input lines
II index hidden layer
II index input layer
II index output layer
II index pattern number
II index iteration number
II index run number

a basic neural network type
Includes matrix methods.)
default learning rate }
default momentum factor)
acceptable error level }
latest sum squared error value
error reporting frequency }
number of input nodes }
number of hidden nodes }
number of output nodes }
number of iterations }
number of patterns I
number of runs or input lines }
index hidden layer }
index input layer }
index output layer }

171

THE TAO OF OBJECTS

p,

a.
R integer:

end;

index pattern number }
index iteration number
index run number }

In addition to having those characteristics, a network needs to create itself and

initialize default values, load weights, and other information (probably from a file),

iterate itself (for training and problem classification), and delete itself when it's no

longer needed.

You need to specify where the information to the network comes from and where

the network will send its output message (its interactions with the outside world).

Once the network gets started, it will generate its own messages.

You must also specify how the network will calculate, store, and update error

information and other data. Neural networks usually use a matrix to store this

information.

Because a few characteristics will differ from one network to another and the

iteration loop will differ substantially, you should make this loop a virtual method.

Each network can then implement it as it sees fit.

The base type for any neural network, with the additions mentioned earlier,

might look like this in C++:

class BaseNet II a basic neural network type
II Includes matrix methods.

public:
fl oat Eta. II default learning rate

Alpha, II default momentum factor
Errorlevel. II acceptable error level
Error: II latest sum squared error value

int ErrorFreq, II error reporting frequency
ninputNodes, II number of input nodes
nHiddenNodes, II number of hidden nodes
nOutputNodes. II number of output nodes
niterations, II number of iterations
nPatterns. II number of patterns
nRuns. II number of runs or input lines

172

AN OBJECT-ORIENTED NEURAL NETWORK

H • II index hidden layer
I. II index input layer
J. II index output layer
p. II index pattern number
a. II index iteration number
R; II index run number

FILE *RunFile. II run file
*Pattern File. II source pattern input file
*WeightsinFile, II initial weight file
*WeightsOutFile, II final weight output file
*ResultsFile, II results output file
*ErrorFile; II error output file

char KeyboardRequest; II true when key pressed
char szResults[40J: II various file names
char szError[40J;
char szPattern[40J;
char szWeights[40J;
char szWeightsOut[40J;

II matrix
II typedefs and prototypes for dynamic storage of arrays

typedef float *FLOATPTR: II pointer to a real
typedef FLOATPTR VECTOR; II a vector: one column
typedef FLOATPTR *MATRIX: II a matrix: two columns

II network layers
II arrays for inputs.

MATRIX OutO;
MATRIX Outl;
MATRIX Delta!;
MATRIX Delwl;
MATRIX Wl;
MATRIX Out2;
MATRIX Delta2;
MATRIX Delw2;
MATRIX W2;

outputs. deltas. weights. and target outputs
II input layer

MATRIX TargetOutput;
VECTOR PatternlD;

II hidden layer
II delta at hidden layer
II change in weight from input to hidden
II weights input:hidden
II output layer
II delta at output layer
II weights hidden:output
II weights hidden:output
II target output
II identifier for each stored pattern

II memory allocation methods
void AllocateVector(VECTOR *Vector, int nCols);
void AllocateColumnsCFLOATPTR Matrix[]. int nRows. int nCols);

173

THE TAO OF OBJECTS

} ;

void AllocateMatrix(MATRIX *pmatrix, int nRows. int nCols):
void FreeMatrix(MATRIX Matrix, int nRows);
Ba seNet <): I I constructor
-BaseNet() (}; 11 destructor
virtual void Iterate(char Netname) {};II abstract iteration

II loop for any network

and like this in Turbo Pascal:

type
FLOATPTR Areal;
VECTOR FLOATPTR:
MATRIX FLOATPTR;
MATRIXPTR: AMATRIX:
VECTORPTR: AVECTOR;

BaseNet = object

174

Eta,
Alpha,
Errorlevel,
Error : rea 1 :
ErrorFreq,
nlnputNodes,
nHiddenNodes,
nOutputNodes,
nlterations,
nPatterns.
nRuns,
H,
I,

J.
p.
o.
R : integer:
RunFile,
PatternFile,
WeightslnFile,
WeightsOutFile,
Results Fi 1 e,
ErrorFile : File:

pointer to a real }
a vector: one column }
a matrix: two columns }
pointer to a matrix }
pointer to a vector }

a basic neural network type
Includes matrix methods. }
default learning rate }
default momentum factor }
acceptable error level }
latest sum squared error value
error reporting frequency }
number of input nodes }
number of hidden nodes }
number of output nodes J
number of iterations J
number of patterns }
number of runs or input lines }
index hidden layer }
index input layer }
index output layer }
index pattern number
index iteration number
index run number }
run file J
source pattern input file J
initial weight file }
final weight output file
results output file }
error output file }

AN OBJECT-ORIENTED NEURAL NETWORK

Key boa rd Request : char; { true when key pressed
szResults : string[40J; { various file names }
szError: string[40J:
szPattern : string[40J;
szWeights : string[40J;
szWeightsOut: string[40J;

matrix }
network 1 ayers
arrays for inputs,

OutO,
Outl,
Delta 1,
Delwl,
Wl,
Out2,
Delta2,
Delw2,
W2,

outputs, deltas, weights, target outputs }
{input layer}
{ hidden layer }
{ delta at hidden layer }
{ change in weights input:hidden
{ weights input:hidden }
{ output layer }
{ delta at output layer }
{ change in weights hidden:output
{ weights hidden:output }

MATRIX; {target output} TargetOutput
Pattern ID VECTOR; {identifier for each stored pattern}

memory allocation methods
procedure AllocateVectorCAVector: VECTORPTR; nCols integer):
procedure AllocateColumnsCAColumn : FLOATPTR; nRows integer;

nCols : integer);
procedure AllocateMatrix(Pmatrix : MATRIXPTR; nRows integer;

nCols : integer);
procedure FreeMatrix(AMatrix: MATRIX; nRows : integer);
constructor lnit; { constructor }
destructor Done; { destructor }
procedure I te rate (Netname : char) ; vi rtua 1 :

end;

{ abstract iteration loop for any }
{ network }

The BaseNet constructor initializes a network's default fields. In C++:

BaseNet::BaseNet()
Eta 0.15,
Alpha= 0.075;

II default learning rate
II default momentum factor

175

THE TAO OF OBJECTS

ErrorFreq = 100:
Errorlevel = 0.04:

II error reporting frequency
II acceptable error level

KeyboardRequest = 0: II true when key pressed
} ;

In Turbo Pascal:

constructor Base Net. Ini t
Eta := 0.15,
Alpha := 0.075:
ErrorFreq := 100;
Errorlevel := 0.04:
KeyboardRequest := O;

end:

Deriving New Networks

default learning rate }
default momentum factor
error reporting frequency
acceptable error level }
true when key pressed }

The characteristics just described are part of most neural networks. Thus, this
generic neural network could serve as the base type for a group of related neural
networks.

For example, you could derive a back-propagation neural network from this base
type by reconstructing the base network and implementing a new Iterate method. In
C++:

class BackProp : public BaseNet {
public:

} :

BackPropC) l}:
-BackProp() {}:
void Iterate(char Netname);

In Turbo Pascal:

II back-propagation
II network

II specific iteration loop
II for this network

l back-propagation network } BackProp = objectCBaseNet)
constructor !nit;
destructor Done; virtual :
procedure Iterate(Netname char>: virtual:

end:

176

l specific iteration loop }
{ for this network }

AN OBJECT-ORIENTED NEURAL NETWORK

Many other networks can use the characteristics of BaseNet. In general, deriving

a new network means adding a few data fields and implementing the Iteration

method. A self-organizing neural network might look like this in C++:

class SelfOrganizing : public BaseNet {
int Kohonen_units: II specific units for calculating
int Grossberg_units: II error in this network

public:
SelfOrganizing():
-SelfOrganizing():
void Iterate():

II Construct this neural network.
II Clean up this network.
II Implement specific iteration loop.

} :

and like this in Turbo Pascal:

SelfOrganizing = object(BaseNet)
int Kohonen_units:
int Grossberg_units:
constructor !nit;
destructor Done: virtual:
procedure Iterate: virtual:

end:

Data Lists and Events

units for calculating error

Construct neural network.
Clean up this network. J

Implement iteration loop.

In describing a generic neural network, we focused on the network's character­

istics, behaviors, and interactions with the outside world. Its characteristics consist

of the information it needs to know or remember, its behaviors are what it needs to
do, and its interactions with the outside world are its responses and stimuli. The

network's operation consists of the messages exchanged by neurons.

The base network in this example might not yet be a perfect type, but it's a good

start. If you see something that needs to be changed, you can change it. The base
network isn't too large (a good sign) or too complex (another good sign) and is

abstract enough to allow many kinds of networks to be derived from it. Listing 6-1,

for example, shows a complete back-propagation neural network derived from the

BaseNet neural network object.

177

THE TAO OF OBJECTS

For systems such as this one, a good starting point for discovering object types

is the data. Other systems might be primarily event-driven or even function-driven.

The beauty of object-oriented programming is that you can approach the discovery

of object types from any direction, at any level, depending on the needs of the project.

The types are more important than the approach.

Object-oriented programming encourages us to personalize and experiment

with programs. We write programs by discovering, implementing, and deriving new

types from existing ones. Maintaining and extending programs is an ongoing

process, and object-oriented programming makes it easier to do both.

The next chapter uses the techniques discussed so far to suggest a design

philosophy that will help you think in object types. Be forewarned, however, that an

object-oriented philosophy can only be expected to evolve and expand as the world

and our ideas about the world change.

Listing 6-1. Back-propagation neural network.

II C++ object-oriented base neural network and derived back­
// propagation neural network based on the equations in
II Rummel hart and McClelland's Parallel Distributed
II Processing and the shareware back-propagation neural
II network written in C by Eberhart and Dobbins and
II published in Micro Cornucopia (Jan./Feb. 1990).

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <conio.h>
#include <ctype.h>
#include <string.h>
#include <iostream.h>

#define ESC 27
#define ITEMS 8

II object types
class BaseNet {

178

II a basic neural network type
II Includes matrix methods.

AN OBJECT-ORIENTED NEURAL NETWORK

public:
fl oat Eta, II default learning rate

Alpha, II default momentum factor
Errorlevel, II acceptable error level
Error: II latest sum squared error value

char KeyboardRequest: II true when key pressed
int ErrorFreq, II error reporting frequency

ninputNodes, II number of input nodes
nHiddenNodes, II number of hidden nodes
nOutputNodes, II number of output nodes
niterations, II number of iterations
nPatterns, II number of patterns
nRuns, II number of runs or input 1 i nes
H' II index hidden layer
I, II index input layer
J, II index output layer
P, II index pattern number
Q, II index iteration number
R: II index run number

FILE *RunFile, II run file
*PatternFile, II source pattern input fi 1 e
*WeightsinFile, II initial weight file
*WeightsOutFile, II final weight output file
*ResultsFile, II results output file
*ErrorFile; II error output file

char szResults[40J: II various file names
char szError[40];
char szPattern[40J:
char szWeights[40J;
char szWeights0ut[40J;

II matrix
II typedefs and prototypes for dynamic storage of arrays

typedef float *FLOATPTR: II pointer to a real
typedef FLOATPTR VECTOR: II a vector: one column
typedef FLOATPTR *MATRIX: II a matrix: two columns

II network layers
II arrays for inputs,

MATRIX OutO;
MATRIX Outl;
MATRIX Deltal:

outputs, deltas, weights, and target outputs
II input layer
II hidden layer
II delta at hidden layer

179

THE TAO OF OBJECTS

MATRIX
MATRIX
MATRIX
MATRIX
MATRIX

MATRIX
MATRIX
VECTOR

Delwl;
Wl;
Out2;
Delta2;
Delw2;

W2;
TargetOutput;
Pattern IO;

II change in weights input:hidden
II weights input:hidden
II output layer
II delta at output layer
II change in weights
II hidden:output
II weights hidden:output
II target output
II identifier for each stored
II pattern

II memory allocation methods

} ;

void AllocateVector(VECTOR *Vector, int nCols);
void AllocateColumns(FLOATPTR Matrix[], int nRows, int nCols);
void AllocateMatrix(MATRIX *pmatrix, int nRows, int nCols);
void FreeMatrix(MATRIX Matrix, int nRows);

BaseNet(); II constructor
-BaseNet() {}; II destructor
virtual void Iterate(char Netname) {};II abstract iteration

II loop for any network

class BackProp : public BaseNet {
public:

II back-propagation
II network

} :

BackProp() {}:
-BackProp() {}:
void Iterate(char Netname); II iteration loop for this

II network

II BaseNet constructor initializes default fields.

BaseNet::BaseNet()
Eta = 0.15,
Alpha= 0.075:

} :

180

ErrorFreq = 100:
Errorlevel = 0.04;
KeyboardRequest = 0:

II default learning rate
II default momentum factor
II error reporting frequency
II acceptable error level
II true when key pressed

AN OBJECT-ORIENTED NEURAL NETWORK

II BaseNet methods

II implementation of array allocation routines
II Allocate space for a vector of float cells, a one-dimensional
II dynamic vector[colsJ.

void BaseNet::AllocateVectorCVECTOR *Vector, int nCols)
{

if ((*Vector= (VECTOR} calloc(nCols, sizeof(float}}) =;NULL)
{

cout << " Not enough memory!\n": II If not, abort.
exit(l};

II Allocate space for dynamic, two-dimensional matrix[rowsJ[colsJ.
void BaseNet::AllocateColumns(FLOATPTR Matrix[], int nRows.

int nCols)

int i:
for Ci = 0: i < nRows: i++)

AllocateVector(&Matrix[iJ. nCols):

void BaseNet: :AllocateMatrix(MATRIX *Pmatrix, int nRows,
int nCols)

} :

if ((*Pmatrix =(MATRIX) callocCnRows, sizeof(FLOATPTR))) ==
NULL)

cout << "Not enough memory!\n":
exit(l):

AllocateColumnsC*Pmatrix, nRows, nCols):

II Free the memory used by the matrix.
void BaseNet: :FreeMatrix(MATRIX Matrix, int nRows)

181

THE TAO OF OBJECTS

int i :
for (i = 0: i < n Rows; i ++)

free(Matrix[i]);
free(Matri x):

II specific implementation of iteration loop for a back­
// propagation network

void BackProp: :Iterate(char Netname)
for (R = O; R < nRuns; R++)
{

II Read and parse the run specification line to obtain
II information about this network.
fscanf(Runfile,

"%s %s %s %s %s
szResults.
szError,
szPattern,
szWeights,
szWeightsOut,
&nPatterns.
&niterations.

&ninputNodes,
&nHiddenNodes.
&nOutputNodes,
&Eta.
&Alpha);

%d %d %d %d %d %f %f",
II output results file
II error output file
II pattern input file
II initial weights file
II final weights output file
II number of patterns to learn
II number of iterations through
II the data
II number of input nodes
II number of hidden nodes
II number of output nodes
II learning rate
II momentum factor

II Allocate dynamic storage for nodes and patterns.

182

AllocateMatrixC&OutO, nPatterns, ninputNodes);
AllocateMatrix(&Outl, nPatterns, nHiddenNodes);
AllocateMatrix(&Out2, nPatterns, nOutputNodes):
AllocateMatrixC&Delta2, nPatterns. nOutputNodes);
A 11 oca teMat ri x (&Del w2. nOut putNodes. nH i ddenNodes + 1) :

AllocateMatrixC&W2, nOutputNodes. nHiddenNodes + l);
AllocateMatrixC&Deltal, nPatterns, nHiddenNodes):
AllocateMatrix(&Delwl, nHiddenNodes, ninputNodes + 1):
AllocateMatrixC&Wl, nHiddenNodes, ninputNodes + l);
AllocateMatrixC&TargetOutput.nPatterns, nOutputNodes):
AllocateVectorC&PatternID, nPatterns);

AN OBJECT-ORIENTED NEURAL NETWORK

II Read the initial weight matrices.
if ((WeightsinFile = fopenCszWeights,"r")) ==NULL)
{

cout << " Can't open file \n" << Netname << szWeights:
exit(l);

II Read input:hidden weights.
for CH= 0: H < nHiddenNodes: H++)

for (I= O; I <= ninputNodes; I++)
{

fscanf(WeightsinFile. "%f", &Wl[HJ[IJ);
Delwl[HJ[IJ = 0.0;

II Read hidden:out weights.
for CJ= O: J < nOutputNodes: J++)

for CH= 0: H <= nHiddenNodes; H++)
{

fscanf(WeightsinFile, "%f", &W2[JJ[HJ);
Delw2[JJ[HJ = 0.0;

fclose(WeightsinFile);

II Read in all patterns to be learned.
if ((PatternFile = fopen(szPattern, "r")) ==NULL)
{

cout << "Can't open file \n" << Netname << szPattern;
exit(!);

for (P = O; P < nPatterns; P++)
{

for CI = 0; < ninputNodes: I++)
if Cfscanf(PatternFile,"%f", &OutO[PJ[IJ)!= 1)

goto AllPatternsRead;

II Read in target outputs for input patterns.
for CJ = 0; J < nOutputNodes: J++)

fscanfCPatternFile, "%f", &TargetOutput(PJ[JJ);

183

THE TAO OF OBJECTS

II Read in identifier for each pattern.
fscanfCPatternFile, "%f ", &PatternID[PJ):
}

AllPatternsRead:
fcloseCPatternFile):

if CP < nPatterns)
{

cout << " Can't open file \n" << Netname << P << nPatterns:
nPatterns = P:

II Open error output file.
if ((ErrorFile = fopen(szError. "w")) ==NULL)
{

cout << " Can't open file \n" << Netname << szError:
exit(l):

fprintf(stderr, nlterations > 1? "Training ... \n"
"Testing\n"):

II iteration loop

184

for CO= 0: 0 < nlterations: O++)
{

for CP = 0: P < nPatterns: P++)
{

II hidden layer
II Sum input to hidden layer over all input-weight
II combinations.

for (H = 0: H < nHiddenNodes: H++)
{

float Sum= Wl[HJ[nlnputNodesJ: II Begin with bias.
for CI = O: I < ninputNodes: I++)

Sum += Wl[H][IJ * OutO[P][I]:
II Compute output using sigmoid function.
Outl[PJ[H] = 1.0 I (l.O + exp(-Sum)):

AN OBJECT-ORIENTED NEURAL NETWORK

II output layer
for (J = 0: J < nOutputNodes: J++)
{

float Sum= W2[JJ[nHiddenNodesJ;
for CH= 0; H < nHiddenNodes; H++)

Sum+= W2[J][H] * Outl[P][H];
II Compute output using sigmoid function.
Out2[PJ[J] = 1.0 I Cl.O + expC-Sum));

II delta output
II Calculate deltas for each output unit for each pattern.

for CJ= 0; J < nOutputNodes; J++)
Delta2[PJ[J] = CTargetOutput[PJ[JJ - Out2[P][J]) *

Out2[P][J] * Cl.O - Out2[PJ[J]);

II delta hidden
for CH= O; H < nHiddenNodes; H++)
{

float Sum= 0.0;
for CJ= 0: J < nOutputNodes; J++)

Sum+= Delta2[PJ[J] * W2[J][H];
II Compute output using sigmoid function.
Deltal[P][H] =Sum* Outl[P][H] * (1.0 - Outl[PJ[H]);

}

II Adapt weights hidden:output
for CJ= 0; J < nOutputNodes; J++)
{

fl oat Dw;
float Sum= 0.0:

II delta weight

II sum of deltas for each output node for one epoch
for CP = O; P < nPatterns; P++)

Sum += Delta2[P][JJ:

II Calculate new bias weight for each output unit.
Ow= Eta* Sum+ Alpha* Oelw2[J][nHiddenNodes];
W2[JJ[nHiddenNodes] += Dw:
Oelw2[J][nHiddenNodesJ =Ow; II delta for bias

185

THE TAO OF OBJECTS

186

II Calculate new weights.
for CH= O: H < nHiddenNodes: H++)
{

float Sum= 0.0:
for (P = O; P < nPatterns: P++)

Sum += Oelta2[PJ[JJ * Outl[PJ[HJ;
Ow = Eta* Sum + Alpha* Delw2[JJ[HJ:
W2[JJ[HJ += Ow;
Delw2[JJ[HJ = Ow:

II Adapt weights input:hidden.
for CH= 0: H < nHiddenNodes; H++)
{

float Ow; II delta weight
float Sum= 0.0:
for (P = O; P < nPatterns; P++)

Sum += Oeltal[PJ[HJ;

II Calculate new bias weight for each hidden unit.
Ow= Eta* Sum+ Alpha* Oelwl[HJ[nlnputNodesJ;
Wl[H][nlnputNodes] += Dw;
Delwl[HJ[nlnputNodesJ =Ow:

II Calculate new weights.
for CI= 0; I < nlnputNodes: I++)
{

float Sum= 0.0:
for (P = O; P < nPatterns: P++)

Sum+= Oeltal[PJ[H] * OutO[PJ[IJ:
Ow= Eta* Sum+ Alpha* Oelwl[HJ[IJ:
Wl[H][IJ += Ow:
Delwl[H][I] = Dw:

AN OBJECT-ORIENTED NEURAL NETWORK

II Watch for keyboard requests.
if (kbhit())
{

int c = getch();
• E,) if ((c = toupper(c))

KeyboardRequest++;
else if (c == ESC)

break; II End if ESC request.

II Sum squared error.
if (KeyboardRequest 11 (Q % ErrorFreq == 0))
{

for (P = 0, Error = 0.0; P < nPatterns: P++)
{

for CJ = O: J < nOutputNodes; J++)
{

float Temp= TargetOutput[PJ[J] - Out2[P][J];
Error += Temp * Temp:

II Average error over all patterns.
Error I= nPatterns * nOutputNodes:

II Print iteration number and error value.
fprintf(stderr,"Iteration %5dl%-Sd Error %f\r",

O. nlterations, Error):
KeyboardRequest = O:

if CO % ErrorFreq == 0)
fprintfCErrorFile, "%d %f\n", Q, Error);

II Terminate when error satisfactory.
if (Error < Errorlevel)

break:

II End iterate loop.

I I to file

187

THE TAO OF OBJECTS

188

II Display error, iterations, etc.
for (P = 0, Error= 0.0: P < nPatterns: P++)
{

for CJ= 0: J < nOutputNodes: J++)
{

float Temp= TargetOutput[PJ[JJ - Out2[PJ[JJ:
Error += Temp * Temp:

II Average error over all patterns.
Error I= nPatterns *nOutputNodes;

II Print final iteration number and error value.
fprintf(stderr, "Iteration %5dl%-5d Error %f\n", Q,

niterations, Error); I* to screen *I
fcloseCErrorFile):

II Print final weights.
if CCWeightsOutFile = fopenCszWeightsOut,"w")) ==NULL)
{

cout << " Can't write file\n" << Netname << szWeightsOut:
exitCU;

for CH = O; H < nHiddenNodes; H++)
for CI = 0; I <= ninputNodes; I++)

fprintfCWeightsOutFile. "%g%c". Wl[HJ[IJ.
1% ITEMS= IT EMS -1 ? ' \ n ' : ' ') ;

for CJ= O; J < nOutputNodes: J++)
for CH= 0; H <= nHiddenNodes; H++)

fprintfCWeightsOutFile, "%g%c", W2[JJ[HJ,
J%ITEMS==ITEMS-1? '\n':' ');

fcloseCWeightsOutFile);

AN OBJECT-ORIENTED NEURAL NETWORK

II Print final activation values.
if CCResultsFile = fopenCszResults,"w")) ==NULL)
{

cout << " Can't write file \n" << Netname << szResults:
ResultsFile = stderr:

II Print final output vector.
for CP = 0: P < nPatterns; P++)
{

cout << ResultsFile << P:
for CJ = O; J < nOutputNodes: J++)

cout << ResultsFile << Out2[PJ[JJ;
cout << ResultsFile << "\n" << PatternID[PJ:

fcloseCResultsFile);

II Free memory used for matrix.
FreeMatrix(OutO, nPatterns);
FreeMatrixCOutl, nPatterns);
FreeMatrixCDeltal. nPatterns);
FreeMatrix(Delwl, nHiddenNodes);
FreeMatrix(Wl, nHiddenNodes);
FreeMatrixCOut2, nPatterns);
FreeMatrixCDelta2. nPatterns);
FreeMatrix(Delw2, nOutputNodes);
FreeMatrixCW2, nOutputNodes);
FreeMatrixCTargetOutput. nPatterns):
free(Pattern ID):

fcloseCRunFile): II Close run file.

II main program: creates and runs a back-propagation network

void main(int argc, char *argv[J) {

BackProp Bp; II instance of a back-prop
II network

char *Netname = *argv: II Netname is read from
II argument list.

189

THE TAO OF OBJECTS

} ;

190

II Read arguments from DOS command line.
for(; argc > 1; argc-)
{

char *arg = *++argv;
if (*arg != '-')

break;
switch (*++arg)
{

case 'e':
case 'd':
default:

sscanf(++arg,
sscanf(++arg,
break;

if (argc < 2)
{

"%d", &Bp.ErrorFreq);
"%f", &Bp.Errorlevel);

fprintf(stderr, "Usage: %s {-en -df} runfilename\n",
Netname);

break:
break;

fprintf(stderr, " -en=> report error every n iterations\n"):
fprintf(stderr, " -df =>done if sum squared error< f\n");
exit(l);

II Open run file for reading.
if ((Bp.RunFile = fopen(*argv, "r")) ==NULL)
{

cout << "Can't open file \n" << Netname << *argv;
exit(l);

II Read first line from run file that contains number of runs
II and other information for the network. Run file in this
II example looks like this:
II training.out training.err training.pat weight.wts } These
II training.wts 100 100 9 4 2 0.15 0.075 two lines are
II } on one line
II } in file.
II Pattern, weight, and other input files consist of numbers
II separated by spaces.
fscanf(Bp.RunFile, "%d", &Bp.nRuns): II Scan for number of

II runs.
Bp.Iterate(*Netname); II Iterate a back-prop network.

CHAPTER 7

Designing with Objects

When you have names and forms, know that they're provisional.

The Tao, like a well, is used but never used up.

-Lao-tzu

Any program when running is obsolete. If a program is useful, it will

have to be changed. Any program will expand to fill all memory.

-Utz'sLaw

The Tao of objects is a process for designing programs that evolve in step with

the world they model. Programs composed of objects are more powerful and flexible

because of their built-in capacity for change. In this chapter, we '11 reshape the object­

oriented techniques we've discussed so far into a design philosophy.

Structured design suggests that you stop, think, and work out all the details

before you start coding. Since most programmers use some form of structured

design, you may expect an object-oriented design philosophy to be another compli­

cated methodology requiring a long learning curve, excessive self-discipline,

numerous diagrams and rules, and reams of documentation. It doesn't necessarily
involve any of those, but it does require a fresh perspective.

Let's back up a little and briefly review structured design to see the kinds of

problems software engineers must consider.

191

THE TAO OF OBJECTS

An Alternative to Chaos
Programmers often use guidelines to determine the best way to design a

program. A methodology is a set of guidelines applied sequentially to generate a

design from a set of specifications. Methodologies are popular because they give a

step-by-step process for getting from the problem to the solution.

Structured programming was the first alternative to the lack of structure that led

to chaos in large programming projects. This style emphasizes the structuring of

programs into a pyramid shape like that found in the traditional business organiza­

tional chart. The bottom of the pyramid represents the blue-collar workers, the

managers are at the top, and the middle contains the go-betweens who receive

general commands from the managers and interpret them into specific commands for

the workers.

A structured methodology generates a well-documented system in a model

that's relatively easy to understand. It takes a system specification (a description of

what the system should do) and generates a structured design. The methodology

we '11 examine here was pioneered by Y ourdon, Constantine, and DeMarco and has

been extended by Ward and Mellor to include real-time and data-driven systems.

You begin by describing the system (using the system specification, which was

generated from the system analysis) with a series of data-flow diagrams. A DFD is

a collection of bubbles and arrows. Each bubble represents a process or transfor­

mation that accepts data (incoming arrows) and produces a new type of data

(outgoing arrows). Figure 7-1 shows a single bubble.

An entire system or a subset of a system can be represented by a single bubble.

The process of arranging a system into a hierarchy of DFDs is called leveling (since

the system is partitioned into levels of complexity). The DFD modeling process leads

to a complete set of diagrams representing the system at various levels of complexity.

Bubbles let you view the system from different perspectives, from overview (a

single diagram with one bubble and little detail) to fine detail (many diagrams, each

with multiple bubbles).

192

DESIGNING WITH OBJECTS

Process Output

Bubble

Figure 7-1. Each bubble in a DFD represents a process or transformation.

Once you've generated and checked the detailed DFDs, you generate a hierar­

chical structure chart from them (Figure 7-2). You can think of it as the business

organization chart for the program.

The chart shows data moving in and out of boxes, which represent the transfor­

mations. It also shows which modules call which other modules. Combined with
information about the data structures and transformations, the chart lets you code the

program's components one at a time and independently of other components. Each

box represents a function, and the data moving in and out of the box represents

function arguments and return values.

193

THE TAO OF OBJECTS

Executive

Input Process Output

Figure 7-2. Hierarchical structure chart generated from DFDs.

What's Wrong With This Picture?
Structured techniques generate a much more maintainable design than anything

produced with earlier techniques. So what's wrong with them? Easy- complexity,

exhaustive design, and excessive documentation. But what can we do to improve

them?

The high cost of software maintenance prompted the development of structured

techniques, which are actually a way to generate good documentation for a system.

Good documentation, of course, allows follow-up programmers to grasp what's

going on, fix problems quickly, and expand the system. It also lowers maintenance

costs, up to a point. The system's design may be clear but as restrictive as if the

programmers had simply started coding.

How can we take a popular structured technique and apply it to object-oriented

design? For example, a DFD assumes that data just flows around the system and
passes through bubbles, where it's processed. DFDs stem from the perspective that

all memory is a public resource. In this model, data elements are passive, raw

materials that are acted upon by little processing plants (functional modules) .

194

DESIGNING WITH OBJECTS

In an object-oriented design, messages move around the system, but "flow" isn't

a particularly useful way of thinking about their movement. Objects keep their data

to themselves and perform operations on their own data, eliminating the potential for

the wrong functions acting on the right data and vice versa.

If you think of objects as little programs, the only useful place for DFDs is inside

the object itself, and that's not very satisfying or helpful. DFDs are inappropriate for

object-oriented design (ditto for structure charts) for one simple reason - they don't

provide the kind of information you need. You should approach any object-oriented

methodology that purports to use them with a healthy dose of skepticism.

(Beware of methodologies that use the input-processing-output scheme to

develop the system model, as in "The input to the transmogrification phase is the

annotated, fully redacted Framis Phase Model. The output is a Smith Perfection

Chart showing all the completely specified objects and their interrelationships."

This sort of thinking is part of the evolution from structured to object-oriented

design. Expect to find it in early methodologies. When the first steam engine was

installed on a boat, the designers attempted to take the rotary power from the steam

engine and make it pull a set of oars, pick them up out of the water, move them

forward, put them in the water, and so on. They dido 't realize that a leap into a new

methodology was necessary.)

In addition, the requirement (imposed by procedural languages) that all prob­

lems be massaged until they resemble computers leads to static designs and further

problems. In other words, we try to make the problem conform to the computer and

not vice versa. Although the implementation might be well-documented, a design

change usually requires that we return to the beginning of the series of transforma­

tions that generated the design. Only at the beginning does the representation of the

system map directly to the problem in the world.

In other words, the design isn't an accurate representation of the real-world

system we 're attempting to model. Instead, it represents the solution we build in the

computer. Thus, it doesn't change easily when the real-world situation changes or

our understanding of the problem changes.

195

THE TAO OF OBJECTS

Since a program inevitably changes, and since programmers (and managers)

don't want to spend the time required to redocument those changes, the program's

maintainers begin to encroach upon the original boundaries of the design. Eventu­

ally, these boundaries become fuzzy and the clarity of the design is lost-all because

the design process requires too many transformations and too much documentation

to support easy changes. In the words of guru Larry Fogg, "Too much magic causes

software rot."

In most traditional organizations, change is an enemy or, at best, a mysterious

entity to be avoided. Consider the plight of many traditional businesses faced with

changing markets. In the past, changes could be slowly integrated into the company

after months or years of consideration. Now, things are happening too quickly for

every change to be propagated all the way to the top of the organization, learned by

the CEO and the board of directors before it's implemented, and propagated back

down.

Management consultants are proposing that individual workers be given the

power and responsibility to make the adaptations that affect their work. Those who

are directly affected by something should be able to experiment with it. They see the

changes first, can see how a system should evolve, and are the first to notice the

effects of any adaptations. They're in the best position to experiment. In theory, they

make the best decisions.

Programmers, too, must be in a position to experiment for both creative and

practical reasons. Object-oriented design encourages such experimentation.

If you're using structured design techniques now, you should continue to use

them with object-oriented programming. Just remember that older structured design

techniques don't support inheritance or formal reuse, whereas these notions are of

primary concern when designing object-oriented systems. You must apply a bit of

careful judgment and ad hoc techniques to solve these problems.

196

DESIGNING WITH OBJECTS

Real-time structured design methods (like Ward-Mellor) and entity-relationship

diagrams are good starting points for object-oriented design. Object-oriented pro­

gramming builds on structured programming; if you 're using good structured

techniques, you should build on what works but design with a bit more flexibility to

accommodate reuse.

Programming for Change
Consider how you interact with the world. You begin by collecting the best

information you can and creating a model of the world based on that information.

(This happens, of course, at brainwave speed.) Then you behave based on that model.

The model is inevitably flawed, and every moment of your life you gain new

experience and have new thoughts that modify your model of the world. You

conceive multiple models to represent various aspects of the world. Many of these

models are regularly updated (by new technology, new programming techniques,

how you perceive a compiler's operation, the ways you communicate), while others

may continue to workjust fine for your purposes and don't need to be updated (the

nocturnal activities of the African dung beetle, the latest improvements to BASIC).

You constantly modify your models to adapt to new external and internal information.

As you use a model of the world, you almost always gain new information from

it and change the model accordingly. In fact, if a model stops changing, chances are

you aren't using it. In a sense, the model is a state indicator of the learning process.

Suppose you move to a new area and need to go to the grocery store. You get a

map and study it until you discover a way to get there. On the way, you observe your

surroundings and remember them, making a model in your head. The model

encompasses only a portion of the area you live in, but if it gets you to the grocery

store it's extremely functional. As you go new places, you expand your model of the

area until you can get to many places without consulting a map.

Let's look at the same example using structured techniques, which require all the

research up front. You would have to memorize the entire map before you went

anywhere. What if the map changes or the streets don't correspond to the map? There

197

THE TAO OF OBJECTS

isn't much allowance for change unless you redraw portions of the map and

memorize it again. We don't know anyone who works this way, but programmers are

expected to.

Suppose you wanted to take up photography. Books on photography are

plentiful, and you could read indefinitely about how to take pictures, but at some

point you'd need to get out and take some pictures yourself to relate to the text you 're

reading.

The model we create when we build a computer program is similar to the one we

create when we represent something from the outside world within ourselves. The

computer expression of the model is more concrete, is in a different medium, and

takes longer to change, but it still expresses our current understanding of an external

system. In the same way that we change our models of the world to adapt to new

internal or external information, we want to change our computer models of the

world to adapt to exactly the same kind of information. Why not behave as if design

were a learning process?

198

Here are some object-oriented design guidelines:

1. You can't know everything about a system before you design it. Don't even

try. Some things can only be learned when the system is running for the first

time (or when it's been running for a week or a year).

2. Your goal should be to get something working as soon as possible and to use

the model to gain further information about the problem.

Your first model may be only vaguely like the external system (remember

how you thought cars worked when you were in kindergarten?), but the ideas

can be refined and modified as you learn. Object-oriented programming

supports change, so use that to your advantage. It also prevents "overkill

programming" - spending too much time creating a program to solve

problems that will never arise.

DESIGNING WITH OBJECTS

Use creeping featurism, but add the features as they're requested to allow

immediate feedback. Object-oriented programming tends to isolate the

effects of one part of a system from another, so changing one part of a model

usually doesn't affect other parts.

3. Plan on changing the design as you go. This doesn't mean "do something

and throw it away," as previous techniques have suggested, but rather "start

someplace reasonable and grow as you learn." The goal is not to create a

static design, so assume from the start that the design will change.

4. It's OK to make mistakes, but try to make them as early in the process as you

can.

The best way to find out if you've made a mistake is to try out your design.

Your mistake is probably isolated, so you won't throw the entire design

away; instead, you '11 just modify a section to reflect your new learning.

One of the old bugaboos of structured programming and design is management's

desire to measure programmer productivity. Object-oriented programming and

design increase productivity by providing libraries of objects that can be reused and

by allowing the production of more generic, easier-to-maintain code.

Unfortunately, it's very hard to measure the effect object-oriented programming

has on programmer productivity. Most of the standard metrics are based on

measuring lines of code written. With object-oriented programming, we want to

measure lines of code not written; that is, the amount of code reused across other

applications. We don't have tools that do this today, but perhaps future browsers and

inspectors will keep track of when we reuse code. For programmer productivity to

really increase, reuse must be rewarded.

Object-Oriented System Design
It would be convenient - but, unfortunately, unrealistic - to expect program­

mers and users to have complete knowledge of the system. First, we can seldom

delude ourselves into believing we know the system at any given time; second, the

system we' re designing and the techniques (the compilers, languages, and hardware)

we 're using are evolving. Most of us approximate and speculate at every tum.

199

THE TAO OF OBJECTS

On the less technical, more personal side, two convenient approximations are

often made in software design projects: The designer completely understands the

problem before beginning, and the user reads the manual and thus knows the program

completely before using it.

Demanding perfection from users simply isn't practical. Many system designers

acknowledge that users probably don't read the manual and may at first understand

only a fraction of what the program is supposed to do. These enlightened designers

make the system work for the user by anticipating that users will be diverse and

evolving. The system must allow users to learn (modify their internal models) and

to adapt the system when their problems change (adapt to external changes).

Object-oriented design offers a solution: You can design objects anytime,

whenever the need moves you. Every system is assumed to be in flux; every program

is assumed to be dynamic. You can create, modify, and delete new objects at run time

without disrupting the system.

Say you're designing an editor. You began (sensibly enough) by creating a

file_ editor type. This type can open a file, read it into a buffer, move a cursor around

in the buffer, find text, insert and delete text, and so on. As the type definition

develops, so does the need to test it. You decide that the simplest way to do that is

to make it aware of the screen. In other words, the type will show you on the screen

what it's doing off screen.

To be aware, the file_ editor screen must have some knowledge of how text can

be displayed. It needs to know where the display starts and ends and where the cursor

should sit on the screen; in short, how to map the buffer to the screen. You add these

features and everything works. Now you begin testing the file_ editor's features, one

by one.

Two things happen. First, by using the system in a screen editor, you begin to see

possibilities you hadn't before imagined. Since the text display can vary and be

controlled, you realize that multiple pieces of text can exist on the screen at one time.

Second, you now want to use the file_ editor to display everything- multiple files,

200

DESIGNING WITH OBJECTS

sections of text for prompting, help screens, even the line at the bottom of the editor

that prompts for input for text searches and other activities. Thus, the file_ editor type

is undergoing a reuse test.

Does the type adapt itself easily to these new situations? After answering "no,"

you begin modifying the type to make it more general and soon run afoul of the

complexity test.

With all the files, views, and cursors, one change can create many new problems.

The file_ editor type is failing the overambitious-object test: It tries to do too much

and as a result can't be reused. A mature type, especially one that has evolved through

several redesigns, often becomes too complex for further evolution. Take confusing

complexity as a sign that an object has a design problem. It may not, but it's worth

a look.

In this case, you discover a better design when reusing the file_ editor. You should

have created a text_buffer type that knows about big chunks of text, how to move

around in the text, how to insert and delete, and so on. This type can be used for files,

constant strings, standard input, and one-line user prompts with equal ease. You then

derive from type text_ buff er a file_ buff er that knows how to read and write files

(write() is a virtual function in text_buffer). Finally, a text_viewer type contains a

text_buffer, either a plain one or afile_buffer (since virtual functions are used, it

doesn't need to know the specifics).

A text_ viewer knows all about views of the text - starting and ending points of

the piece being displayed, the display cursor, and so on. It resolves the changes in a

text_ buffer with the way it appears onscreen. (It also isolates the changes necessary

when going to a new platform or changing from text-mode to graphics-mode

displays.)

The need to design, experiment, and create occurs every time you (the designer)

interact with the system. It isn't isolated in any of the activities (object discovery,

object assembly, system construction, system maintenance, and object reuse)

because you 're always learning new things about the internal and external factors

and about design itself.

201

THE TAO OF OBJECTS

Only in the simplest cases will you understand the entire problem and get the

design correct the first time. It's a koan: To design it you have to build it, but to build

it you have to design it. In the end, the system grows, so it's important to germinate

as soon as possible. Start building, and you '11 start designing.

The Five Stages of Object Design
Let's look at a way to tackle object-oriented programming. I've used this

approach successfully and have observed that programmers' attention is held during

the design process because they can immediately apply the design or imagine how

it will work in code. The design approach, like object-oriented programming itself,

thrives on being as close as possible to the end result.

This technique assumes that type design is driven by system design (you can't

develop good types in a vacuum), that a type doesn't spring fully formed and perfect

from the hand of its creator, and that a type is only mature after it has been modified

a few times to meet the creator's changing external needs and internal understanding.

Throughout this discussion, remember that the only goal is to define the objects.

If you see a better approach to your problem, try it! What counts is coming up with

a good set of objects. The test of your design will be how well it models the situation

in the real world, not whether you followed the proper steps in producing it.

You may think it takes years of experience to design types properly and to know

to put a particular function member or data in a type. To dispel this myth and prevent

you from wasting too much time on early design decisions, let's look at this five-step

technique for describing the creation and maturation of types.

202

1. Object discovery

This is where you try to determine which object types will solve the

problems your system presents. At this point, you 're more concerned with

the boundaries and gross interactions between objects than with the details.

We'll take a closer look at this step shortly.

DESIGNING WITH OBJECTS

2. Object assembly

As you start building the objects, you' 11 discover you need data and function

members to make the internals of the object work properly. You may also

discover you need other objects, either as members of the type or to work in

concert with some object in the system. A good way to uncover further type

requirements during object assembly is to develop test programs for each

type you create.

3. System construction

As you bring objects together in the final program, the system may require

either new functionality in existing objects or entirely new objects.

4. System extension

In object-oriented programming, the dreaded system maintenance becomes

just another step in the process. And it's not unpleasant - it's exciting

because making a well-designed system more powerful is so easy. This is

where you'll discover how well your system is designed. If it isn't as easy

to extend as you'd like, expect to find weak points in your design. Once you

find them, you can fix them.

Note that activities focus on object types, not systems. Maintenance means

maintaining object types, the discrete subparts of your system. If your object

types are "clean," building and modifying the system is simple.

5. Object reuse

When you build a new program using old object types, your new needs will

stress the types' design. If the design doesn't easily fit into a new situation,

here's where it will show up, and you '11 see the parts that need to be changed.

At each stage, you get new information to guide you in type design. While it

would be difficult and time-consuming to anticipate this information in a preemptive

design, the information comes to you naturally as you pass through these stages.

Although this philosophy of object-oriented design differs from past methodologies,

implementing it is easy. In fact, many programmers tend to work this way regardless

of the methodology they're supposed to be following.

203

THE TAO OF OBJECTS

More on Object Discovery
The first of the five stages merits a closer look. What criteria do you use to

discover objects? Here are some guidelines:

204

• Look for external factors, those necessary for interactions between objects

and the world outside the system. You may discover some data members and

methods at this point, but you'll primarily be discovering the objects

themselves.

Look for boundaries in the real world. For example, the boundary between

memory and disk is often reflected as a boundary in your system.

• Look for things that are duplicated in a system. In a keyboard, for instance,

button is an obvious object. A car has four wheels and four doors; an air

traffic control system deals with planes. If you add new types of planes to

the air traffic control system, for example, it should still know how to handle

them.

• Hunt for the least common denominator in a system (the smallest unit). If
you 're manipulating text, that could be a character, a word, a line, or a group

of text with the same attributes, depending on how you intend to use the text.

• Think of new situations where you might use the type. Does it work? Does

it adapt easily? Imagine, for example, a very large version of your system or

your system in a new situation with new requirements or constraints.

• Separate the actions and characteristics that change from those that stay the

same.

List the data your system needs to know about. Look for data that seems to

belong together. Collect these data elements into an object.

• Look for data you want to hide or protect from careless modification. Such

things usually belong inside an object.

• Look for common interfaces between objects and put them in an abstract

base type.

DESIGNING WITH OBJECTS

• Imagine the types you'd need to put the project together right now. Write

main() as if you had those types to find out the kind of functionality they

need.

• Look for initialization and cleanup activities. These should be performed

inside constructors and destructors.

An Example
Consider a sophisticated management system that attempts to solve the problems

inherent in setting up a video store. Most such stores are an exercise in frustration:

You know the kinds of movies you want, but you usually don't know the titles you

want.

By reading the box containing the video, you see what the movie distributor

wants you to see ("This movie is Star Wars, Lawrence of Arabia, and Gone With the
Wind all rolled into one. Every single reviewer loved it!"). You also get a three­

paragraph description of the movie, written by someone who may or may not have

actually viewed it and who was in any case bound to say positive things. You won't

find really valuable information. For instance, if all the movie reviewers gave it a

thumbs-down, no reviewers will be quoted on the box. It won't tell you whether all

your neighbors hated it or the amount of humor, sex, or violence in the movie. These

are things you can only find out by renting the movie.

Now imagine a video store that doesn't have shelves filled with movie cartons.

Instead, you step up to a computer (or to a person operating a computer) and say:

"Today I'm in the mood for a movie with a science-fiction theme that's set in the near

future, that my favorite reviewers liked, and that has moderate levels of nudity and

low levels of profanity and violence."

The machine then brings up the titles of movies you haven't seen before and that

aren't currently checked out and puts them in order according to your personal

profile. You can get more information about each title, such as the actors and

directors, reviews, biographies of the people involved in making the movie, and even

a graphical picture of the box (if you insist). If the movie was never released in

205

THE TAO OF OBJECTS

theaters and thus was not reviewed, you can get other criteria, such as the results of

a poll of people who have viewed the movie (including information about gender and

age group). In short, you get the kind of information you really need to select a movie.

When you choose a movie, the clerk gets it from the back and uses a bar-code

reader to enter the number into the computer, which generates a receipt and does all

the necessary bookkeeping.

Part of this video-store management system is obviously an elaborate database

system (which needs to be updated easily at regular intervals and from various

sources, including the customers themselves). Part of it is the user interface, part is

the bar-code interface, and part is the bookkeeping system.

The Object-Oriented Design System
Before discovering objects, you need to make lists of:

• Data (information the system needs to know or remember)

• Events (situations the system needs to respond to)

• Functionality (what the system needs to do)

• Obvious objects (anything that leaps out at you). For example, you may

know from the beginning that you want to use a windowing interface.

Don't try to make these lists perfect or complete - the act of putting together

the model (not creating a list) will ensure that the system is complete. The lists only

act as ticklers to help you find the objects in your system. By looking at the lists,

you 'II see patterns that suggest objects. When you discover enough objects to

describe the system without the lists, you'll throw the lists away.

For some systems, the data list will give you the most information and will be

the easiest to compile. Other systems will be primarily event-driven (usually referred

to as real-time systems); for others you may think more easily in terms of what you

want it to do, so the functionality list will be the easiest.

206

DESIGNING WITH OBJECTS

Remember that it's OK to make mistakes or omissions - an object-oriented

system makes it easy to modify the program when you discover inconsistencies with

the real world. Because objects keep their data and functions to themselves, changes

in the system tend to be localized rather than propagated throughout the system as

in procedural languages.

When you compile the data list, feel free to group data items that are likely to

form an object. For example, a person object will probably contain a name, address,

age, sex, membership number, and list of movies the person has seen, so it makes

sense to combine those items.

Events aren't always as obvious as data. A mouse, for instance, is actually an

event generator. Every time you push a button or the mouse crosses some boundary,

that's an event. We usually handle events by creating a representation of a state and

changing that state based on the current state and the current event. We often refer

to this as a state machine. The rest of the system makes decisions based on the current

state.

For example, we can implement a context-sensitive help system with a state

machine. Every time the user changes context (by making a selection from a menu,

for example), the help state machine changes state. When the user asks for help, the

type of help given depends on the state (the context). Looking at a collection of events

will often help you discover an object.

(It's interesting to think of the current moment as an external factor while it's

happening but as an internal factor as soon as it's past. It changes the state of the

individual. We can think of the individual as a state machine that changes based on

input from external factors.)

Keep in mind that this is an iterative process, an approach intended only to give

you a framework and get you started. The framework may change as you sketch out

the system, but in the end it's unimportant - the goal is to determine what your

objects should be. As you fill in the details of your sketch, you' 11 discover new ob­

jects and new relationships between objects.

207

THE TAO OF OBJECTS

Let's begin by compiling the four lists for our video-store management system:

Data
Customer

Name

Address

Customer ID

List of movies previously checked out

Preference list

Profile

?
Movie

Name

Quantity

Price Structure

Evaluation List

Rental Transaction

Date

Customer

Movie list (What if not all of the movies are returned?)

Business report

Date range

Data list

Data format

Calculations

Events
Customer asks for range of movies.

Customer asks for further data on movie.

208

Reviews

Local opinion

Box description/pictures

DESIGNING WITH OBJECTS

Personnel: actors, directors, and so on

Theater runs and receipts

Customer checks out movie(s).

Customer asks for computer-generated movie selection based on

customer profile.

Customer asks for best-seller based on overall popularity.

Customer returns movies (possibly not all), possibly checks out

more.

Customer gives opinion of movie.

New movies arrive.

New movie data arrives.

Old movies are discarded/replaced.

Manager requests report.

Functionality
Create new customer profile.

Create new movie profile.

Create movie request profile; combine with customer profile.

Search for appropriate movies.

Create management report.

Check out movie.

Check in movie.

Update profiles.

Obvious Objects
Windows

Database

Error handler

Time and date string

After putting these lists together, you need to begin discovering objects. By this

time, you may already have seen some objects (in the data list, for instance, where

a group of data - customer, movie, rental transaction, and business report -

obviously belongs together).

209

THE TAO OF OBJECTS

Functionality may require more work. You may want to put it in a block chart

as shown in Figure 7-3.

Create New
Customer Profile

Check Out
Movie

Create New
Movie Profile

Check In
Movie

Create Movie
Request Profile

Create
Management Report

Figure 7-3. Block diagram.

Now take an individual section and begin analyzing it for objects. Think about

what you want that section to produce. (Will the thing produced be an object? Will

the producer be an object?) What do you want to be portable, or at least retargetable

(user interface, other hardware, operating system interface)? Wrap these in an object.

Does the block diagram suggest any boundaries that reveal new objects? In a

networking system, for example, the network itself is a boundary; you may need to

create "transaction objects" to send across the network.

As you discover objects, consider what those objects need to know. Should they

maintain this information themselves or get it from another object? Make a note of

that object, even if it belongs in another section.

210

DESIGNING WITH OBJECTS

Notice in the functionality list the recurrence of the word profile. This may

suggest an abstract concept called profile that you represent in an abstract base type.

All profiles may then be derived from that type. This is just an early observation,

however, and in the end may not be appropriate.

The Complexity Test
Make sure your objects don't become too complex. Just because you need a

particular object, that object shouldn't necessarily be part of a single type rather than

a type hierarchy or composition. Don't fall victim to "premature specification."

In an earlier example concerning the file-editing type, the type's complexity was

revealed during code reuse. The type was very difficult to apply to a new situation

because it was specific to a certain problem. The solution was to factor it into smaller,

more discrete parts.

If you have a background in structured techniques, you may recognize the

complexity test as equivalent to testing for low coupling and high cohesion. This is

a little harder to judge with objects, since coupling and cohesion have been tests for

functions. An object that does what you want always looks great; the test of goodness

comes when you try to reuse it.

The complexity test is also important during object assembly, when you'll

discover whether your objects are too complex. As you add and test functions, things

may get out of hand. Adding new functions will be difficult because the type is

managing so much by itself. This is an indication that the type needs to be factored

into smaller sections and assembled through inheritance or composition.

Factoring results in several types, each of which is easier to implement because

it's easier to think about. In addition, the objects will probably be easier to reuse.

OOPand GUI
One of the areas where object-oriented programming pays off most is in

graphical user interfaces, such as Microsoft Windows, OS/2 Presentation Manager,

211

THE TAO OF OBJECTS

and the Macintosh. This is partly due to the inherent complexity of programming for

GUI systems.

This might seem paradoxical, considering how easy these systems are for

application users. If you look under the hood of a GUI application, however, you '11

find that everything that's easy for the user requires very hard work on the part of the

programmer. Windows has an Applications Programming Interface of more than

500 functions that must be called to do things like create a window, select the font,

invalidate areas of the screen, track the mouse, and so on. OS/2 Presentation Man­

ager is several times this complex.

Object-oriented programming languages help hide the complexity of GUI

programming by providing objects that encapsulate access to the API. After all, you

probably want a window in your application that's just like the standard window

type, but a little different. With an object-oriented language, you don't need to learn

and make dozens of function calls to create a window. Instead, you just need to know

about the predefined object types and then use inheritance to add new behaviors.

Another, more subtle reason for the link between GUI systems and object­

oriented programming is that most graphical systems are message-based. For

example, Windows and OS/2 treat user events (such as clicking the mouse or

pressing a key) as messages sent to the application. In the OOP world, you can send

these messages directly to the corresponding window object and handle it just like

any other method in the system. This means less code is required to process user

events in an object-oriented language.

Libraries and Frameworks
Part of the strength of object-oriented programming lies in the creation of

libraries of reusable objects. We've already seen the beginnings of this with libraries

such as Turbo Power's Object Professional library for Turbo Pascal, Zinc's Interface

Library for C++, and others. These provide generic types for user-interface compo­

nents such as windows, dialogs, and, in some cases, data management with linked

lists and tables. I recommend these libraries both as a way to increase your
productivity and as examples of good object-oriented programming techniques.

212

DESIGNING WITH OBJECTS

If you extend the notion of abstraction one step beyond such visual elements as

windows and dialogs, you can conceive of generic applications themselves. A library

that allows you to extend a generic application is known as an application frame­

work.You can think of an application framework as a do-nothing application that can

be extended to do almost anything. Although programming with an application

framework may seem unfamiliar at first, it builds on many of the concepts presented

here to give you an even higher level of productivity.

Skeptic's Corner
You may be saying to yourself: "This makes a lot of sense. It's pretty much the

way I write programs anyway. But what about large projects? Will this technique still

apply?"

Remember that object-oriented programming supports systems that change

throughout their lifetime. The model focuses on the process rather than the goal.

Your objective, then, should not be to build a system but to "grow" a system. The

most elaborate garden must be planted; the objects in the garden grow at their own

rates. At each stage of development, the garden has an effect. It may not be mature,

but it's functional.

It's also real- something people can look at, work with, and improve. You can

see how things work now and imagine a direction to move in the context of the current

system. If some plants aren't effective in the garden, you pull them out and plant

something else. Eventually, with time and continuous design, the garden matures

into a phase in which change consists of only minor adjustments.

You could design a garden as a finished system and use fully mature plants that

look exactly the way you want them. This approach is very expensive initially and

very expensive to change. The fact that you have good plans (good documentation)

helps you understand the vision of the original designer, but it doesn't take into

consideration that the requirements of the world may change or that you may

understand something the original designer dido 't. You'll still have to develop new

213

THE TAO OF OBJECTS

plans for a major change and tear out some expensive plants. Even minor changes

(those that don't involve design changes) are expensive because a system like this

isn't designed to be modified; it's designed with the assumption that it's finished.

Object-oriented programming lets you start with a small garden and eventually

increase the acreage, start with a large garden of immature plants (some of which may

be changed as the garden matures), or start with older, existing plants and add young,

new ones. Not only can you build programs more quickly, the programs can be

adapted to the new knowledge and new situations that have been the nemesis of old­

style programming techniques.

The Art of Software Design
All this makes object-oriented design sound a lot like art, which isn't a bad

analogy. Creating software, like art, requires interpretation on the part of the artists;

calling it "engineering" may be one of the more creative misapplications of that

word. Getting a group of artists to work together is a difficult process; they focus on

the product, not the company. There's no physical structure (like a manufacturing

plant) in a software group to hold it together once the project is complete.

Can object-oriented programming techniques change this? Probably. One

person can manage much larger, more complex bodies of code. Reuse of libraries of

existing code is supported. The compiler controls the integration of a project, so you

don't rely on tests that may or may not be created and administered. Objects are little

programs, so each person can have the satisfaction of creating a complete work, even

if it is later integrated into a larger one. All this helps teams create and work together

and improves accountability, localization of bugs and changes, learning in a large

project, and flexibility.

Structured techniques came about because existing languages couldn't support

large projects - things broke down when the projects got too big, and a great deal

of planning was necessary to prevent this breakdown. Using an object-oriented

language that supports large projects, you can plan a lot less, code sooner, and test

the real thing (or something close to it) instead of trying to imagine whether or not
it's what you want.

214

DESIGNING WITH OBJECTS

During object assembly, consider the initialization and cleanup of each object.

Should these activities be part of object discovery and CASE support? Almost

certainly.

You're "growing" your objects from the time you start thinking about them.

Writing them is the rapid phase of growth, but growth nonetheless: You start with

the type framework, then add and test functions and function bodies. During system

construction and extension, you may add more to the type.

Object design occurs in all five stages: object discovery, object assembly, system

construction, system extension (not maintenance), and object reuse; that is, through­

out the lifetime of a system. We've only pretended we could force design to occur

in the first phases of a project, and not later, thinking this would make it less

expensive to maintain. Good documentation helps, but things still change and new

designs are still required. A rigid design, no matter how well it's documented,

eventually loses its internal structure in the face of these changes.

And that's it for this introductory study of object-oriented techniques. I hope you

can see that the sophisticated techniques in object-oriented programming languages

help programmers create more productive, creative, flexible programs designed to

evolve with the real-world problems they model. Object-oriented programming is

both a method and a philosophy, one that can dramatically narrow the gap between

the real world and the world of the computer.

From here on, try to construct your programs out of objects, and check out the

reference list (Appendix B) if you want to delve further into this fascinating

methodology.

215

Afterword

Never make predictions, especially about the future.

-Samuel Goldwyn

Samuel Goldwyn may not be an Eastern philosopher, but his words ring true.

Despite his advice, I'm going to look ahead at the future of object-oriented

programming. But first, you may be wondering how this afterword came about.

About two and a half years ago, I spoke with Gary about doing an article on

object-oriented programming for the now-legendary Micro Cornucopia. Strangely

enough, I also met Bruce Eckel through the pages of that magazine. His article on

C++ appeared a few pages after mine, so it's fitting that the three of us meet again

in print in Gary's book on the philosophy and practice of object-oriented program­

ming.

I recently had the pleasure of working with Bruce on Borland's OOP World

Tour, where we taught object-oriented programming in C++ and Turbo Pascal

around the world. At our final destination, Tokyo, the two of us took a train out to

the old capital, Kamakura, and explored the variety of temples there. As we walked

through the exquisite gardens, amidst the statues and trees, Bruce told me about

Gary's book on the Tao of objects. It sounded like a fascinating way to learn about

object-oriented programming. After all, programming is part art, part science, and

certainly part philosophy. One of the areas we talked about was the future of object­

oriented programming.

The philosophical side of object-oriented programming may well endure be­

yond structured programming and design as well as other programming approaches.

But as you continue down the path of object-oriented programming seeking your

217

THE TAO OF OBJECTS

own enlightenment, it's sometimes reassuring to know that the art and science are
maturing. For this reason, I was asked to look further down the path to see what's in
store for object-oriented programmers. Along the way I'll discuss the evolution of
hardware and software, the impact on OOP, tools beyond OOP, and some of the
myths of object-oriented programming.

The Evolution of Hardware and Software
One of the obvious trends that affects object-oriented programming is the

changing hardware. As I look across my desk to the "computer museum" in the
comer of my office, I can see the progress hardware has made in the past decade.
We've gone from 64K Z80 CP/M machines like the Osborne I that ran Ron Cain's
Small-C and Turbo Pascal 1.0 (and had room to spare!) to my new four-megabyte
386SX that runs Turbo C++ and Turbo Pascal 6.0. And I'm not at all surprised by
the fact that the Osborne cost more than the 386. Certainly we '11 see the same level
of improvements in hardware in the next decade. My 386, barely a month old, is
already considered old hat by the hardware aficionados touting the latest 486s. Let
them laugh; I'll catch up with the 586 or perhaps even the 686.

So what impact does this have on our software? Utz's law, as Gary stated in
Chapter 7, tells us that "any program will expand to fill all memory." My current crop
of C++ and Turbo Pascal tools doesn't exhaust all my RAM, but by the time I load
a few TSRs and Windows 3.0 the ceiling is definitely in sight.

Utz must have been thinking about graphical environments when he coined his
law. Much of the hardware horsepower we have achieved in the last 10 years has gone
toward making powerful, easy-to-use environments like Windows. These envi­
ronments make computing what it should be: easy, powerful, and fun.

But as any programmer knows, the easier you make things for the user, the harder
they are for the developer. Programming for today's graphical environments is
exceedingly difficult using traditional tools. So if Windows is the future, how do
programmers get there? The answer is, of course, by using object-oriented pro­
gramming.

218

AFTERWORD

If you look at the development tools used in graphical environments, you '11 see

that an overwhelming majority are object-oriented. Certainly DOS programmers

benefit from OOP, but in graphical environments it has become a necessity.

In some sense, the rapidly expanding hardware field has forced us down the path

of object-oriented programming. And although there's a learning curve to adopting

OOP, it's one that's worth overcoming.

The more you use OOP, the more excited you'll become. As one programmer

put it, "When I program in OOP, I'm limited only by my imagination." Many

programmers find that walls of complexity prevent them from building certain kinds

of applications. With OOP, these barriers come tumbling down, slowly at first, then

in an avalanche as you learn to create self-contained objects that tackle small

problems for you. Your job is to piece these objects together into larger programs that

take us into new application areas. After all, we've got to do something with the extra

cycles on the 686.

OOP Horizons
Object-oriented technology will continue to improve over the next decade.

Already the current crop of OOP tools from Borland, Zortech, The Whitewater

Group, and others are in their second or later versions with major enhancements over

earlier ones. Efforts toward standardization with groups such as ANSI and the Object

Management Group, combined with the competitiveness of the marketplace, will

ensure continued improvement in the languages. This means faster compilation,

better run-time performance, and better tools for browsing, inspecting, and debug­

ging.

I also expect that we '11 continue to have a wide spectrum of OOP languages. The

hybrid languages will coexist with pure OOP languages for years to come. And, as

has happened in the past, newer languages will build on the OOP concepts that exist

today to create the next generation of programming languages.

219

THE TAO OF OBJECTS

However, more important than improvements in the compilers or languages

themselves are the enhancements to object libraries. Libraries and frameworks are

the major leverage point in object-oriented programming because you don't have to

reinvent the wheel every time you program. Instead, you can inherit automatically

from libraries included with your compiler or from third-party sources.

Most of the libraries out there today are foundation libraries. That is, they supply

generic components such as windows, dialogs, and data-management objects. While

these are important building blocks, I believe that in the next decade we '11 see the

emergence of an object-oriented components industry.

This industry will be a combination of today's hardware components market,

where generic, off-the-shelf components compete primarily in price and perfor­

mance, and the commercial library market, where packages compete based on

compatibility and functionality. Ideally, generic software objects will be mass­

produced so that linked-list managers, windowing systems, file managers, and so on

will be so widely available that no one will everneed to write these things again. Only

then can a higher-level components industry emerge to supply specialized objects

for vertical market applications.

Like the application-specific integrated circuit market, these components will be

more expensive, but they '11 provide a competitive advantage to buyers. At that point,

the software market will belong not to the "wizards" who write every piece of

software from scratch but to those who can work at higher levels, solving appli­

cation problems by combining existing components.

Organizations will create libraries of objects that embody the operations of their

business. One can imagine an investment bank creating objects to evaluate the

investment potential of startup firms. These objects might have behaviors based on

the knowledge acquired from specialized neural networks or heuristics based on the

work of experts. Or an insurance company might develop a library of objects for

transaction processing and risk assessment. No doubt some organizations will

closely guard the libraries of objects they develop, considering them to be trade

220

AFTERWORD

secrets as important as the formula for Coca-Cola. Other companies, in an attempt
to recoup the large software development costs, will sell or license the libraries on
the open market.

The ever-increasing cost of software development has made the library market
a necessary part of our industry's economic survival. Object-oriented programming
may well be the catalyst that allows us to move beyond our cottage-industry approach
to an industrial revolution of software development.

Beyond Programming
Today, the most accepted way of developing software, even if you 're using an

object-oriented language, is primitive: You write code in a text editor, compile it, and
test it. Yet we have created amazingly innovative, visual ways for our users to design
machines, draw graphs, generate reports, assemble documents, and lay out newslet­
ters. I suspect that once we've developed a sufficiently large base of object libraries,
we'll need to develop higher-level tools for software development.

Already some systems, like Asymetrix's Toolbook and the NeXTStep environ­
ment on the NeXT machine, show how we can build applications visually. These
systems are limited in the range of things that can be done without programming, but
they fit well with the philosophy of object-oriented programming. The goal, after all,
is to reduce the software development effort.

Similarly, many programmers in the mainframe world use CASE diagramming
tools to analyze and validate their designs before writing a single line of code. Some
of the integrated CASE systems enable automatic code generation, though mainte­
nance of this code is usually difficult.

For many types of software development, a visual approach with the right object­
oriented methodology could help eliminate even more of the traditional program­
ming bottleneck. When we have objects as sophisticated as the applications them­
selves, we shouldn't have to write reams of code to combine them into complete
systems.

221

THE TAO OF OBJECTS

I'm not saying that programming will disappear; on the contrary, evidence

supports the belief that programming is a growing market. The growth of program­

mable products (spreadsheets, databases, even word processors) and the booming

market for low-end programming tools attest to this. And someone will need to

program these higher-level development systems as well as create libraries of objects

for visual programming.

Challenges
We will face many challenges before reaching the stage of having huge object

libraries and visual tools. One of these is widespread dissemination of OOP, which

requires that the skills of legions of programmers be updated. The development of

easy-to-use OOP languages should make this much easier. However, I often wonder

how we will ever hope to integrate object-oriented programming concepts into older

languages like BASIC, COBOL, and RPG. For individual programmers, having

OOP skills will be an advantage for several years. Beyond that, it will become a

requirement.

One of the toughest challenges lies in creating standards for object-oriented

libraries. Today, most object-oriented languages support a mechanism for persis­

tence that enables us to store and retrieve objects to and from disk. This lets us convert

object data between languages, but we must take it a step further: We must be able

to use object libraries from different languages in a given programming project with

full access to all functionality.

Today, it's impossible to access objects written in C++ from Turbo Pascal or vice

versa. In fact, you can't access objects directly between any two object-oriented

languages without some kind of conversion and loss of functionality. This barrier

must be overcome before interoperability between development systems can be
achieved. There's no one perfect programming language, object-oriented or otherwise,

and we need to be able to select the best language for the job independent of the class

libraries. Otherwise, we'll either waste our efforts converting libraries between

languages or lock ourselves into single-language solutions for all applications and

cripple our productivity.

222

AFTERWORD

The Object Management Group is working to achieve common standards

between languages. However, at some stage, object management support must be

present in the operating system, where it belongs, so that all languages can use a

common service.

Myths of OOP
If you've discussed object-oriented programming with other programmers,

you've no doubt heard some of the myths. Where they are accepted, they hinder our

progress in advancing object-oriented programming.

One myth says that object-oriented programming is a single language. But

remember that OOP is a philosophy, an approach that can be done in many different

languages. Don't confuse the limitations of any particular language or compiler with

those of OOP itself.

Another myth is that object-oriented programming is inefficient. This is some­

thing I've heard programmers use to dismiss OOP without any investigation. Object­

oriented programming with hybrid languages like C++ and Turbo Pascal proves that

nothing is inherently inefficient in OOP; even the performance of older languages

like Smalltalk has improved dramatically in recent years.

You may hear traditional DOS and mainframe programmers claim that OOP is

only for graphics applications. However, OOP concepts are general-purpose and

apply to all programs, graphical or not.

Yet another myth says that object-oriented programming is incompatible with

existing languages and libraries. Of course, one of the advantages of using a hybrid

language like C++ or Turbo Pascal is that you have complete and easy access to all

your existing libraries. Even the pure object-oriented languages like Actor let you

access external libraries written in C.

The final myth of object-oriented programming is that it's just old wine in a new

bottle. Perhaps, once you get past terms like method, message, polymorphism, and

inheritance, nothing is going on that can't be done in a traditional structured

223

THE TAO OF OBJECTS

programming language. It is unfortunate that there are so many new terms, but make
no mistake - the terms are different. A message is not the same as a function call,
and inheritance is not the same as copying and pasting code.

Certainly one can mimic object-oriented programming in procedural languages
(after all, that's how the earliest C++ compilers worked - by translating object­
oriented code into standard C code), but the difference is one of practicality. Object­
oriented programming languages provide built-in mechanisms that support encap­
sulation, inheritance, and polymorphism so that you can spend your time solving
application problems rather than fighting with language compilers.

Going Down the Road
As you know, learning object-oriented programming is not a trivial task. Its

concepts are easy-deceptively so. Applying the concepts is more difficult. To learn
OOP, you must immerse yourself in objects, at least during the initial stages.
Examine good OOP applications that come with your tools or are available on BBSs.
And take to heart the examples Gary has presented in these pages. Build on the ideas
presented here to create object-oriented games, simulations, expert systems, and
business applications.

The most important piece of advice anyone can give you is to learn OOP by
experimenting - first with other programmers' code or design and then with your
own. If you keep your objects simple, you '11 be amazed at how you can solve
problems of exponentially increasing complexity with only a linear increase in
effort. The key is to create objects that solve small pieces of the problem and reuse
them. Then you can write your own future of object-oriented programming.

224

Zack Urlocker
December 1990

APPENDIX A

Glossary

abstract type

access specifier

Actor

ancestor

base type

behavior

binding (early)

A specific kind of base type designed to be used strictly as a

basis for other types. It has no instances and thus can only be

used to derive new types. It specifies an interlace for all types

derived from it. You use an abstract type to group common

code. For example, if you have several collection types, they

may all inherit from a single abstract type. Also known as a

formal class in some languages.

A keyword that controls access to data members and methods

within user-defined types. C++ has three: private ,protected, and

public. Friend can give access to external functions. Turbo

Pascal has one, private. (See the individual definitions for private,

protected, public, and friend.)

An object-oriented language for Microsoft Windows.

The type from which a descendant type inherits characteristics

and behaviors. Also known as a base type.

Defines a common interface to a group of descendant types. It

generalizes the intended uses for a hierarchy of types. In other

words, it describes the range of messages an object of a type can

handle.

Another name for a method declared within a type.

Resolving a method call at compile time.

225

THE TAO OF OBJECTS

binding (late)

browser

built-in type

chaos

characteristic

class

composition

constructor

226

Resolving a method call at run time. When we resolve a method

call, we insert the code to determine the address (or another

reference) of the method definition at the point where the

method is called.

A software tool for inspecting object hierarchies.

A type (such as double or char) included in a language. The

compiler already knows how to handle it and doesn't have to

learn about it each time it encounters an instance of one.

Stochastic (or random) behavior occurring in a deterministic

system.

Another name for data declared within a type.

A user-defined type in C++.

Including user-defined object types as parts of other object

types, as opposed to derivation (inheritance).

A special kind of method that initializes a type. In C++, a

constructor has the same name as its class:

class Flower
public:

Flower();
I;

II constructor

In C++, the compiler calls a constructor by default whenever

you define an instance of a class. The constructor will be called

at the point of definition or during dynamic allocation when you

use the new operator. A user-defined type (class) can have more

than one constructor, but none of them can be virtual.

In Turbo Pascal, a constructor can have any legal name not

already in use, though the identifier /nit is often used:

data hiding

data members

declaration

Flower= object
constructor Init;

end;
{ constructor }

GLOSSARY

In Turbo Pascal, you must explicitly define and call (send a

message to) a constructor. A user-defined type can have any

number of constructors, but they can't be virtual because the

virtual-method mechanism depends on the constructor to set up

the link to the Virtual Method Table.

Removing some data from public view. Also known as data

abstraction.

Characteristics of a type.

A declaration introduces one or more names (object, function,

set of functions, type, method, template, value, or label) into a

program without specifying the body (the implementation) of

methods. A declaration tells the compiler that data or functions

exist but not where or how they're used.

For example, the following are declarations in C++:

extern int x;
struct s;
class a;

These are definitions:

int a;
extern canst c = O;
struct s { int x; int y) ;
int behavior(int x) { return x +a; l

The following are Turbo Pascal declarations:

227

THE TAO OF OBJECTS

definition

delete

derivation

228

PointPtr = APoint:
Location =object

Fields;
Methods;

end;

An example of a Turbo Pascal definition is:

A : integer;

When we declare a variable, we tell the compiler that space

exists somewhere for the variable but not how it's implemented.

We can declare a variable more than once, but we can only

define it once.

A function definition looks like a declaration except that it has

a body. A body is a collection of statements enclosed in braces

({ }). Braces indicate the beginning and end of a block of code.

In C++:

int behavior(int sex, int age)
I /* Code here */ I

When we define a variable, we create space for it:

int X;

In Turbo Pascal:

procedure behavior;
begin

{ code
end;

AC++ operator that destroys a dynamic instance of an object

type. It calls the destructor, then releases the memory allocated

for the instance.

Another name for inheritance.

descendant

destructor

dispose

GLOSSARY

A type that inherits the characteristics and behaviors of another

type. Also known as a derived type.

A special type of method that performs cleanup for a user­

defined object type. In C++, a destructor has the same name as

the class in which it's declared, preceded by a tilde:

class Insect
public:

Insect():
-Insect();

} ;

II constructor
II destructor

In Turbo Pascal, a destructor can have any legal name not

already in use:

Insect = object
constructor Create;
destructor Remove:

end;

constructor }
destructor }

In Turbo Pascal, destructors can be static or virtual, and a type

can have more than one destructor. A destructor can be inherited

just like other methods.

In C++, all destructors in an inheritance hierarchy are called,

not inherited. Thus, each object type that's dynamic must have

its own destructor. Memory for static and automatic objects

(instances of classes) is allocated and deallocated automatically

by the compiler. Memory allocated for dynamic objects using
the new operator, however, must be deallocated using the delete

operator.

Turbo Pascal procedure for deallocating objects allocated on

the heap:

229

THE TAO OF OBJECTS

Dispose(CirclePointer);

Alternatively (and preferably), you can call the destructor

inside the Dispose call using the following extended syntax to

clean up an object:

PtrMyObject = AMyObject;
MyObject = object

constructor Init;
destructor Done;

end;
var

P : PtrMyObject;
Dispose(P, Done); Call the destructor to

clean up properly. }

dynamic binding Another name for late binding. See binding (late).

dynamic variable

allocation

Eiffel

encapsulation

event

expert system

230

A variable allocated on the heap and manipulated with pointers.

Creating and destroying variables at run time instead of compile

time. See binding (late).

A completely object-oriented language available on UNIX.

Combining data (characteristics) with the methods (behaviors)

for manipulating it; organizing code into user-defined types.

An occurrence that affects a program from the outside world.

Examples are keystrokes, mouse-button clicks, a character

from a serial port, and occurrences triggered by the system

(DOS, BIOS), such as a timer tick.

Through a knowledge base of expert information, maps the

input characteristics and behaviors of a system, problem, pattern,

or object to a specific output system, problem, pattern, or

object. Input characteristics can represent colors, sizes,

processes, events, symptoms, and so on. Output represents a

solution, advice, pattern match, decision, and so on.

friend

GLOSSARY

In C ++, a function or method given permission to access a type

(class) member. A friend can be a function or a class:

class Somelnfo
int X;
public:

} ;

friend void AFriend_function(X*, int);
II a friend function

friend class AFriendClass; // a friend class

hierarchy A group of types derived from a base type.

hybrid language Incorporates features of both imperative and object-oriented

languages.

implementation Describes how a user-defined type works; the interface describes

how a type works. You can compile, but not link, code with just

the interface description. Therefore, you can create different

implementations later and link them in without recompiling the

rest of the project. By separating the interface from the

implementation, we isolate bugs and make experimentation

easier.

inheritance

initialization

inspector

instance

interface

Organizing user-defined types into hierarchies.

Setting a variable or instance of a type to a specific value.

A tool for examining the data and methods of an object.

A variable of a type. Also known as an object.

In C++, the class declaration; in Turbo Pascal, the object

definition. The interface says "here's what a type looks like, and

here are its behaviors," but it doesn't specify how the type

behaves; that's left to the implementation. The interface de­

scribes what a type does, while the implementation describes

how the type works.

231

THE TAO OF OBJECTS

member functions In C++, another name for methods. Throughout this book we

use methods as the generic term for the behaviors declared

within a type.

message

method

The name of a method passed to an instance of an object type.
When you send a message to an instance of an object, you call
one of its methods. To send a message to an instance of an

object, you specify the object and the method you want to

invoke. For example, if AType is an instance of an object and

/nit is a method, the following sends an /nit message to the

object. In C++:

AType. I nit():

In Turbo Pascal:

AType. I nit:

In C++, a function declared within a class and used to access the

data within the class. Also called a member fu.nction. In Turbo

Pascal, a procedure or function declared within an object and

used to access the data within the object.

model A mathematical representation of some aspect of the world.

neural network A neural network maps input to output in a similar manner to an

expert system (see expert system), with one exception: It uses

examples instead of rules to produce its output. Expert systems

require complete information; neural networks can produce

results from incomplete information. A neural network is
therefore considerably more powerful than an expert system. It
can solve problems where if/then rules are either unknown or
difficult to compile, classify new problems using fuzzy logic,
and predict (infer) new results from previous trends or patterns.

232

new

object

Objective-C

override

pointer

GLOSSARY

An operator (in C++) or procedure (in Turbo Pascal) for

allocating space for a type on the heap and initializing the object

in one operation. In C++, new is invoked with a constructor call:

Circle *ACircle =new Circle(30,30,30);

In Turbo Pascal, new is invoked with two parameters, a pointer

name and a constructor call:

new(ArcPointer,Init(35,24,35));

In C++, an instance of a class (an object type). In Turbo Pascal,

an instance of an object type; a record (data and methods) that

can inherit.

An object-oriented language that combines C and Smalltalk.

Reimplement, redefine. Used to describe the reimplementation

of methods by object types.

Contains the address of a variable. In C++, designated by"*":

int *intPointer;

In Turbo Pascal, the pointer is designated by """:

IntPointer : AJnteger;

polymorphic type A type that's not known until run time.

polymorphism

private

Single interface, many implementations. Specifically, calling a

virtual method for a variable whose precise type isn't known at

compile time. The behavior is established at run time via late

binding.

In C++, any members following private can only be accessed

by methods declared within the same class. In Turbo Pascal,

any members following private can only be accessed by func­

tions within the same unit.

233

THE TAO OF OBJECTS

protected

public

scope

Smalltalk

static instance

static method

In C++, any members following protected can only be accessed

by member functions within the same class or by member

functions of classes derived from this class.

In C++, means "anyone can use it." Any members (methods or

data) following public can be accessed without restriction. In

Turbo Pascal, all methods are considered public unless private

is used.

The lifetime and accessibility of a variable. Defines which parts

of a program can access specific variables. For example, a

variable declared within a function is local by default and can

only be accessed by code within the function.

One of the earliest object-oriented languages. Developed by

Xerox Palo Alto Research Center in the 1970s.

An instance of an object type named in the var declaration (in

Turbo Pascal) and allocated in the data segment and on the

stack. In C++, static instances have global lifetimes and are

initialized before main() and cleaned up after main().

A method resolved by the compiler at compile time. See early

binding.

strange attractor In phase space, an attractor is a point or limit cycle in a dynamic

system that draws or attracts a system. In other words, as the

system changes state, it can reach equilibrium (settle down) to

a point or a cycle. A strange attractor is one that's broken up or

fragmented in phase space. It represents a system whose order,

when plotted in a time series, isn't obvious but shows itself in

a shape (an order) in phase space.

234

strong vs. weak
type checking

structured
programming

type

GLOSSARY

A strong type-checking system accepts only those expressions

that it can guarantee to be correct. A weak type-checking

system will allow potentially unsafe expressions to pass through

the compiler.

Combines two ideas: structured program flow (in other words,

the flow of control of a program is determined by the syntax of

the program code) and invariants (assertions that hold every

time control reaches them).

The type of a variable tells us the range of values (or states) it

can assume and the operators we can apply to it. Type is

everything we can know about a class of objects that a variable

or instance can represent.

type extensibility The ability to add functionality to code. You derive new types

(through inheritance) and add or modify behaviors and

characteristics to suit your needs.

unit In Turbo Pascal, a collection of constants, data types, variables,

procedures, and functions that are compiled separately. If data

members in a type are declared after the keyword private, any

function, method, or procedure within a unit can access them

but nothing outside the unit can.

user-defined type A single structure containing the characteristics and behaviors

for the type. In C++, we call a user-defined type a class; in Turbo

Pascal, we call it an object. The compiler treats it like a built­

in type. Throughout this book, we use user-defined type and

object type interchangeably.

235

THE TAO OF OBJECTS

virtual method

Virtual Method

A method resolved by the compiler at run time. See late binding.

In C++, you declare a virtual method by preceding the method

name with the keyword virtual:

virtual void Show();

In Turbo Pascal, you declare a virtual method by adding the

keyword virtual after the method:

procedure Show; virtual:

Table In Turbo Pascal, each type (object) has a VMT that contains

information about the type, including its size and a pointer to the

code implementing each of its virtual methods. When an in­

stance of a type sends a message to a constructor, the constructor

establishes a link to the VMT automatically.

with

236

Each type has one VMT; each instance of a type links to the type

VMT. (Caution: Don't send a message to a virtual method

before calling its constructor!) Turbo Pascal allows you to use

the {$R +} switch to check for the proper construction of an

instance of a type sending a message to an object type. If the

instance hasn't been properly initialized (via a constructor), a

range-check error occurs.

TheC++equivalentofthe VMTiscalleda VTABLE. The pointer

that points to the VT ABLE is called the VPTR.

Turbo Pascal keyword. You can access a type's data members

byusingadot(forexample,AType.Member)orawithstatement:

with AType do
begin

X:= 2:
Y:= 3;
Z:= 4;

end:

APPENDIX B

References and
Resources

If you want more information about C++, Turbo Pascal, modeling, chaos theory,

or neural networks, the following books are worth looking into. They 're only a

sampling of the many works available on these subjects, but they reflect what I have

on my shelves. Most of them have in some way contributed to my understanding of

these tough topics.

In addition, a number of computer-related journals publish excellent articles on

object-oriented programming (usually C++ and Turbo Pascal) in most issues: AI
Expert,CGazette,ComputerLanguage,C++Report,Dr.Dobb'sJournal,Journal
ofObject-OrientedProgramming,MidnightEngineering,Programmer'sJournal,
and PC Techniques. I recommend all of these for up-to-date information on tech­

niques and the latest happenings in object-oriented programming.

Abraham, Ralph, and Christopher Shaw. Dynamics: The Geometry of Behavior

(four volumes). Santa Cruz, Calif.: Aerial Press, 1984-1989.

A great introduction to and study of dynamics using pictures. If you really want to

get a feel for chaos theory, look into this one. Starts with periodic behavior and works

toward the harder stuff: chaotic and bifurcation behavior. Great personalized

drawings.

Casti, John L. Alternate Realities: Mathematical Models of Nature and Man.
New York, N.Y.: John Wiley & Sons, 1989.

A thorough mathematical discussion of modeling. Chapters on formal representation,

cellular automata, catastrophe theory, chaos, and the relationship of modeling to the

way we view the world.

237

THE TAO OF OBJECTS

Eberhart, Russel, and Roy Dobbins. Neural Network PC Tools: A Pracncal
Guide. San Diego, Calif.: Academic Press, 1990.

A good, practical starting point for learning how to code a back-propagation neural

network. Russ and Roy show you how to implement a neural network in C (code

included) and present several excellent neural network case studies. Also discusses

neural network implementation on a transputer-based hardware system.

Eckel, Bruce. Using C++. Berkeley, Calif.: Osborne/McGraw-Hill, 1989.

Not surprisingly, my favorite book on C++ programming; 600 pages of code,

descriptions, and ideas about C++. It precedes the Turbo C++ compiler, so examples

are developed around Zortech' s C++ compiler but are easily adaptable to Turbo C++.

Goes into some advanced topics I haven't covered: operator overloading, multiple

inheritance, references, debugging, passing objects in and out of functions, and so

on. A good book to explore and study if you want to get to the heart of C++.

Ellis, Margaret, and Bjarne Stroustrup. The Annotated C++ Reference Manual.
AT&T, 1990.

This is currently the last word on C++ terminology and language description. If you

want to know exactly how Bjame defines C++, get a copy. Not for the faint-hearted,

though, and certainly not light reading- as the title says, it's really a reference.

Gleick, James. Chaos: Making a New Science. New York, N.Y.: Viking Press,
1987.

The already classic introduction to chaos theory. Very easy, fun reading. Focuses as

much on the people who rediscovered chaos as on the theory itself. Anyone interested

in chaos should start here.

Hofstadter, Douglas, and Daniel Dennett. The Mind's I. New York, N.Y.:
Bantam Books, 1981.

Like all of Hofstadter's books, this one really gets you thinking. A collection of

stories and essays about self-reflection, self-consciousness, recursion, machines

with souls, scientific speculation, and other mind-stretching ideas.

238

REFERENCES AND RESOURCES

Meyer, Bertrand. Object-oriented Software Construed.on. Englewood Cliffs, N.J.:

Prentice-Hall, 1988.

A good discussion of the issues and principles of software design using object­

oriented techniques. Outlines the path leading to object orientation and generally

aims to convince the reader to program with objects. The second half of the book

(unfortunately forC++ and Turbo Pascal programmers) focuses entirely on Meyer's

language, Eiffel, making it less useful than it could have been. Worth a look, though.

Mitchell, Stephen. Tao Te Ching. New York, N.Y.: Harper & Row, 1988.

This is the translation of Lao-tzu' s wise book that I used to write this book. Highly

recommended. "The master observes the world, but trusts his inner vision. He allows

things to come and go. His heart is open as the sky."

Object Professional User's Manual. Scotts Valley, Calif.: Turbo Power Software,

1990.

These three volumes of object-oriented, Turbo Pascal-style discussion accompany

the fine Turbo Power object library for Turbo Pascal 5.5 and later. Complete source

code for the library is included, so this package makes an excellent in-depth resource

for ideas about object-oriented programming. Turbo Pascal programmers, in particular,

should check out this library.

O'Brien, Tim. Turbo Pascal, The Complete Reference. Berkeley, Calif.: Borland­

Osborne/McGraw-Hill, 1989.

This Turbo Pascal reference includes a good introductory chapter on object-oriented

programming, Turbo Pascal-style.

Rumelhart, David, and James McClelland. Parallel Distributed Processing.
Cambridge, Mass.: MIT Press, 1987.

The classic introduction and reference to the ideas and mathematics of neural

networks.

239

THE TAO OF OBJECTS

Sethi, Ravi.Programming Languages: Concepts and Constructs. Reading, Mass.:

Addison-Wesley, 1989.

An excellent study of the development, design, and content of modem programming

languages. Contains several fine chapters on object-oriented programming and good

discussions of Modula-2, C++, and Smalltalk. Chapters on encapsulation, inheri­

tance, functional programming, and logic programming and several tough, advanced

chapters on interpreters and lambda calculus. Highly recommended if you're

studying the development of programming languages.

Stewart, Ian.Does God Play Dice? The Mathemati.cs o/Chaos. New York, N.Y.:

Basil Blackwell, 1989.

An in-depth study of the mathematics of chaos, turbulence, and strange attractors.

Combines history, mathematics, and philosophy. Good discussions of logistic

mapping, Lorenz and Henon attractors, and fractals.

Vasey, Phil, et al. Prolog++ Programming Reference Manual. London, England:

Logic Programming Associates Ltd., 1990.

One of those rare creatures: a programming manual that really shines. Besides

showing you how to program in Prolog++, the object-oriented version of Prolog, it

compares object-oriented languages and discusses the key features of OOP. Available

from Quintus Computer Systems in Mountain View, Calif.

Y ourdon, E.N ., and L.L. Constantine. Structured Design. Englewood Cliffs, N .J .:
Prentice-Hall, 1979.

A classic work on structured methodology by the gurus of the field.

Zinc Interface Library Programmer's Guide. Pleasant Grove, Utah: Zinc

Software Inc., 1990.

An excellent OOP-style discussion (and implementation) of event-driven software,
part of a two-volume manual that accompanies the Zinc Interface Library for C++.

Zinc has implemented a good event-driven interface that you can use to derive more

elaborate interfaces.

240

REFERENCES AND RESOURCES

I also recommend the following software package:

NeuroSym Neurocomputing Library. Houston, Texas: NeuroSym Corp., 1990.

The most complete C library of neural networks I know of. Includes a dozen neural

networks (back-propagating; self-organizing, etc.) that you can call from your C

code. An object-oriented version is in the works.

241

APPENDIX C

A Concise Comparison of
C ++, Turbo Pascal, and
Smalltalk

C++
C++ was developed by Bjarne Stroustrup at AT&T Bell Laboratories. It's a

strongly typed hybrid object-oriented language that gives you the option of using

user-defined types (classes) as well as functions and ordinary data structures. It

includes the three key features of object-oriented programming - encapsulation,
inheritance, and polymorphism-and allows multiple inheritance (a descendant can

have more than one immediate ancestor) and operator overloading (any operator can

have new functionality within any user-defined type). It also specifies a pure abstract

method.

In addition, C++ lets you implement methods in-line, thus avoiding the overhead

of a function call. In-line methods replace parameterized macros, as follows:

class Withlnline
int a:

public:
void AMethod() { a= O; }

} ;
II in-line

C++ constructors and destructors share the type name:

class AnyClass
public:

} ;

AnyClass();
-AnyClass();

II constructor
II destructor

243

THE TAO OF OBJECTS

Constructors and destructors can be called automatically (by default) by the

compiler. (See the glossary for more information.)

In C++, any method declared as virtual remains virtual through all derived
classes.

Turbo Pascal
Turbo Pascal is another strongly typed hybrid object-oriented language incorpo­

rating both object-oriented techniques and traditional structured techniques. You

have the option of using user-defined types (objects) in a hybrid language, but you
can still use functions and ordinary data structures.

Although Turbo Pascal implements the key features of object-oriented pro­

gramming, it doesn't have all the features of C++. In particular, it only allows single

inheritance (a descendant type can have only one immediate ancestor) and has a

different approach for limiting access to its members from outside an object type.

Turbo Pascal only allows data encapsulation to be enforced using the keyword
private, limiting access to objects, functions, and procedures declared within the
same unit.

Constructors and destructors can be any unused legal name and must be

explicitly called:

AnyObject = object
constructor Init:
destructor Cl eanUp:

end:

constructor }
destructor }

In Turbo Pascal, any method declared as virtual must be declared virtual in all
subsequent derived objects:

BaseObject = object
constructor Setup:
procedure AMethod: virtual;
destructor Finish;

end;

244

C++, TURBO PASCAL, AND SMALLTALK

Derived = object (BaseObject)
constructor Setup;
procedure AMethod; virtual;
destructor Finish;

end;

In Turbo Pascal, as in C++, memory management is left to the user.

Smalltalk
Smalltalk, the granddaddy of object-oriented languages and descendant of

Simula-67, was developed at Xerox's Palo Alto Research Center. Because this

language effectively treats everything in its system as an object, it's sometimes

called a pure object-oriented language.

The Smalltalk environment usually features editing, windowing, menuing,

mouse handling, and browsing. It exhibits the key features of object-oriented

languages, and every object in the Smalltalk system inherits from the root object.

Like other object-oriented languages, Smalltalk distinguishes between objects

and classes. An object is an instance of a class. All instance variables of a Smalltalk

class are by default private to that object; thus, it strongly enforces data encapsula­
tion. It also includes a built-in memory management system, sometimes known as

garbage collection.

Several other languages also have object-oriented features: Actor (OOP for

Windows), Objective-C (a portable, Smalltalk-like syntax added to C), and Eiffel (a

software-engineering language described in Bertrand Meyer's Object-oriented

Software Construction).

245

Index

A
Actor 20, 26
Algol 31
ANSI C 10, 19
ANSI C++ 11, 19
artificial intelligence 140

and OOP 142, 153
attractors 90

Henon 98

B

in state space 87
mathematic 91
strange 81,92,98
wild 98

behaviors and characteristics 21, 25, 26,
30,33,44, 73

and abstract types 123
in expert systems 149

Betz, David 142
binding

c

dynamic/late 6, 7, 36, 37, 66
early/static 6, 36, 37, 66

C++ vs. Turbo Pascal 10, 11, 40
Cain, Ron 218
chaos 81, 90
class 21

access 40, 41
declaring 22
defining 22
implementing 45
vs. struct 148

CLOS 142
composition 26, 58, 95
constructors 11, 37, 38, 45-49, 118
Cox, Brad 70

D
Data structures 19

record in Turbo Pascal 21, 22, 23, 79,
138
struct in C++ 21, 22, 23, 79, 138

delete in C++ 118, 137
design (OOP) 12, 13, 18, 53, 54, 79, 191-
215

and polymorphism 116
forchange 152-153
guidelines 198, 199
object 202, 203
structured 191-197

destructors 38, 45-48, 118
dispose in Turbo Pascal 118, 137
dynamic

E

debugging 125
memory allocation 38
objects 48, 125
processes 17, 18, 49
style 38
variables 138

Eiffel 20, 26
encapsulation 21, 23, 24, 51, 70
expert systems 140-141

vs. neural networks 168

247

THE TAO OF OBJECTS

F
Flavors 142
Forth 8
Fogg, Larry 196
fractal nature 93
friend 41

G
GUI and OOP 211, 218

H
hierarchy 63, 64, 80

and extension 85
and programs 127

hybrid languages 3,8,9, 10,20,31,36

I
imperative languages 74
inheritance 5, 7, 24, 26, 27, 28, 29, 30,
31,32,34,36,51,58, 73, 76

and attractors 93
multiple 26, 27, 28, 31

in-line 83
instances (of types) 19, 26, 43, 45, 50, 61,
66, 141

K

and linked lists 119
and memory allocation 117
of polymorphic types 137
= variable 44

Koenig, Andrew 14

L
language extensibility 8
linked lists 119-124, 140
LISP 73, 142
Loops 142

M
members in C++ 19
memory allocation/deallocation 117-119

248

messages 4, 6, 20, 25, 32, 34, 35, 39, 42,
49-51, 78

and polymorphism 111, 116, 122, 125
correct performance of 70, 118
general 112
to constructors 118

methods 19, 25, 32, 35, 63
virtual 7,36,37,48,85, 124, 149

modeling 17, 61, 80
and computers 165
and neural networks 168
and OOP 89
as black art 86
composed 95
state 94
= state generator 97

Modula-2 39

N
neural networks 165-190

and messages 166-168
and objects 169
as a dynamic system 166
deriving 176
vs. expert systems 168

new 116, 117, 137

0
Object Management Group 219, 223
objecttypes 19,21,23,24,27,28,30,32,
42,51,64

declaring 22
defining 22, 68
discovering 95, 178, 202, 204-210
dynamic evolution of 69
extending the language 70
finding 165, 169
implementing 45
initializing 37
rules for creating 62

Objective-C 26, 70
objects 4, 21, 24, 26, 32, 38, 70

as programs 39
assembling 203
finding 143, 202, 204-210
in a dynamic world 49
thinking in 54-60
vs. units/modules 53

operator overloading in C++ 60
overhead/inefficiency 7, 36

p
PL/I 31
pointers 23, 38

tracing 125-126
VMT in Turbo Pascal 6, 11, 48, 118
VPTR in C++ 6, 11, 118

polymorphic types 137
polymorphism 30, 32, 33, 34, 35, 51, 75,
111, 113
Presentation Manager and OOP 211
private 40, 41, 48
procedural languages/programming 3, 5,
7,8, 12, 14,20,42,49,50, 70, 195
Prolog++ 73, 74, 142
protected 40, 41
protocol/interface 34, 62, 68, 80, 116
public 22,23,40,41
purelanguages 20

R
reusable code/objects 7, 8, 30, 67, 68, 70

extending systems 100, 203
extensible libraries 80, 212, 220

s
scope 24
Simula 4, 31
simulate 4, 17, 53, 58, 81
Smalltalk 8, 9, 15, 20, 26, 31, 223
Stroustrup, B jarne 11
structured languages/programming 18,
20,31,99,214,217

INDEX

T
Tao 3, 12, 13, 17,20,28,37,38,49,53,
73, 111, 137, 155, 191, 217
Turbo Pascal vs. C++ 10, 11, 40
types 3, 4, 13, 42-45

v

abstract 33, 34, 42, 58, 63, 66, 67, 68,
69,82, 123
base 4,5,24,29,30,31,32,34,37,
63,66,67,76, 78

as check 120
built-in 8, 9, 25, 39, 42, 43, 45, 60
checking 6, 11
concrete 67, 68
derived 4,5,7,24,25,29,30,32,34,
35,37,61,67, 78
finding 165
general 73,74
generic 34,35
hierarchy 5
not individuals 61
object 19, 21, 23, 24, 27, 28, 30, 32,
37,40,42,45,51,64,68
polymorphic 137
predefined 70
specific 73
subtypes 5,61, 74,82
user-defined 3, 9, 12, 19, 23, 25, 38,
40,44,45,53, 117

virtual 7, 36, 37, 48, 66, 68, 69, 85
behaviors 112
methods 124, 149

VMT in Turbo Pascal 118
VTABLE in C++ 118

w
Windows and OOP 211, 218

x
XLisp 142

249

i'vl&T BUUKS

NetWare
User's
Guide
IOWA8D LflalHO

A Library of
Technical References
from M&T Books

NetWare User's Guide
by Edward Liebing

Endorsed by Novell, this book infonns NetWare users of the
services and utilities available, and how to effectively put them
to use. Contained is a complete task-oriented reference that
introduces users to NetWare and guides them through the basics
of NetWare menu-driven utilities and command line utilities.
Each utility is illustrated, thus providing a visual frame of
reference. You will find general infonnation about the utilities,
then specific procedures to perfonn the task in mind. Utilities
discussed include NetWare v2.l through v2.15. For advanced
users, a workstation troubleshooting section is included,
describing the errors that occur. Two appendixes, describing
briefly the services available in each NetWare menu or com­
mand line utility are also included.

Book only

Blueprint of a LAN
by Craig Chaiken

Item #071-0 $24.95

Blueprint of a LAN provides a hands-on introduction to micro­
computer networks. For programmers, numerous valuable
programming techniques are detailed. Network administrators
will learn how to build and install LAN communication cables,
configure and troubleshoot network hardware and software, and
provide continuing support to users. Included are a very
inexpensive zero-slot, star topology network, remote printer and
fi le sharing, remote command execution, electronic mail,
parallel processing support, high-level language support, and
more. Also contained is the complete Intel 8086 assembly
language source code that will help you build an inexpensive to
install, local area network. An optional disk containing all
source code is available.

Book & Disk (MS-DOS)

Book only

Item #066-4

Item #052-4

$39.95

$29.95

I\ 1& T BOOKS

lAN
IAMUSO IK

. \Jott4 . l . \lillt'r

LAN Troubleshooting Handbook
by Mark A. Miller

This book is specifically for users and administrators who need
to identify problems and maintain a LAN that is already installed .
Topics include LAN standards, the OSI model, network docu-
mentation, LAN test equipment, cable system testing, and more.
Addressed are specific issues associated with troubleshooting
the four most popular LAN architectures: ARCNET, Token
Ring, Ethernet, and StarLAN. Each are closely examined to

'11 pinpoint the problems unique to its design and the hardware.
,__ _______ _. Handy checklists to assist in solving each architecture's unique

BUILDING

LOCAL
AREA
NETWORKS
wtttt N oveft'•
NetW-

network difficulties are also included.

Book & Disk (MS-DOS)

Book only

Item #056-7

Item #054-0

$39.95

$29.95

Building Local Area Networks with Novell's NetWare
by Patrick H. Corrigan and Aisling Guy

From the basic components to complete network installation,
here is the practical guide that PC system integrators will need to
build and implement PC LANs in this rapidly growing market.
The specifics of building and maintaining PC LANs, including
hardware configurations, software development, cabling,
selection criteria, installation, and on-going management are
described in a clear "how-to" manner with numerous illustrations
and sample LAN management forms. Building Local Area
Networks gives particular emphasis to Novell ' s NetWare,
Version 2.1 . Additional topics covered include the OS/2 LAN
manager, Tops, Banyan VINES, internetworking, host computer
gateways, and multisystem networks that link PCs, Apples, and
mainframes.

Book & Disk (MS-DOS)

Book only

Item#025-7

Item #010-9

$39.95

$29.95

n. _. .~­'1•- 1·-M••"-1.A' -c:r;.:uv. __ _

'l'V-U.tM-'ft*loll

NetWare Supervisor's Guide
by John T. Mccann, Adam T. Ruef, and Steven l. Guengerich

Written for network administrators, consultants, installers, and
power users of all versions of NetWare, including NetWare 386.
Where other books provide information on using NetWare at a
workstation level, this definitive reference focuses on how to
administer NetWare. Contained are numerous examples which
include understanding and using NetWare's undocumented
commands and utilities, implementing system fault tolerant
LANs, refining installation parameters to improve network
performance, and more.

Book only

LAN Protocol Handbook
by Mark A. Miller, P.E.

Item #111·3 $24.95

Requisite reading for all network administrators and software
developers needing in-depth knowledge of the internal protocols
of the most popular network software. It illustrates the tech­
niques of protocol analysis-the step-by-step process of unrav­
eling LAN software failures. Detailed are how Ethernet, LEEE
802.3, IEEE 802.5, and ARCNET networks transmit frames of
information between workstations. From that foundation, it
presents LAN performnce measurements, protocol analysis
methods, and protocol analyzer products. Individual chapters
thoroughly discuss Novell 's NetWare, 3Com's 3+ and 3+0pen,
IBM Token-Ring related protocols, and more!

Book only Item 099-0 $34.95

NetWare Administrator's Guide
by Russell Frye

This comprehensive guide is for all NetWare administrators
responsible for the daily management of a NetWare network.
Through in-depth discussions and detailed explanations,
administrators will learn how to increase their network's
performance and simplify file server management. All utilities
available from the console are thoroughly examined. Readers
will learn how to link a NetWare network to other networks, set
up and manage remote access services, keep track of cabling
layouts, monitor network operations, manage shared resources,
and much more.

Book only Item #125-3

LAN Primer
An Introduction to Local Area Networ1<s
by Greg Nunemacher

$34.95

A complete introduction to local area networks (LANs), this
book is a must for anyone who needs to know basic LAN
principles. It includes a complete overview of LANs, clearly
defining what a LAN is, the functions of a LAN, and how LANs
fit into the field of telecommunications. The author discusses the
specifics of building a LAN, including the required hardware
and software, an overview of the types of products available,
deciding what products to purchase, and assembling the pieces
into a working LAN system. LAN Basics also includes case
studies that illustrate how LAN principles work. Particular focus
is given to ethemet and Token-Ring. Approx. 240 pp.

Book only Item #127-X $24.95

rd&T nOOKS

To Order:

Charge my:
0 Visa
D MasterCard
D AmExpress

D Check enclosed,
payable to
M&T Books.

7110

ORDER FORM

Return this form with your payment to M&T Books, 115 West
18th Street, New York, NY 10011 or call toll-free
1-800-628-9658.

ITEM# DESCRIPTION DISK PRICE

Subtotal

NY residents add sales tax _O/o

Add $4.50 per item for shipping and handling

TOTAL

CARDNO.

SIGNATURE EXP.DATE

NAME

ADDRESS

CITY

STATE ZIP

M&T GUARANTEE: If your arc not satisfied with your order for any reason, return it to us within 25
days of receipt for a full refund. Note: Refunds on disks apply only when mumed with book within
guarantee period. Disks ~ in transit or defective will be promptly n:placed, but cannot be
exchanged for a disk from a different title.

The Tao of Objects

The Tao of Objects is a clearly written,

user-friendly guide to object-oriented

programming (OOP), the new programming

and dynamic style, plus helpful diagrams and

interesting code examples that illustrate the

concepts in real-life applications.

technique that has taken the

computer industry by storm.

OOP is not only a new way

to write programs, but also a

new way to think about how

programs interact with the

world. It is both a method

and a philosophy.

I'S!' 111
In addition, The Tao of

Objects includes an appendix

of interesting developments

The Tao of Objects
provides programmers new to

OOP with a complete look at

this fascinating technology.

Practical, no-nonsense

explanations detail the key

Topics include: 111

ofOOP

I • A detailed look at the I
es.sential concepts and

techniques of OOP

• An appendix of new I

l
• Practical code

examples in C ++ and

ill fabo Pascal

in OOP and a handy

reference of tools to help you

pursue OOP. All code

examples are written in C++
TM

and Turbo Pascal.

Gary Entsminger is a

veteran writer, programmer,

and consultant. He was an

associate editor for Micro

Cornucopia and a columnist

for Borland1s Turbo Technix
concepts underlying OOP, showing you how

to use them to simplify the design,

maintenance, and evolution of your computer

software. You1ll find complete descriptions of

encapsulation, inheritance, polymorphism,

magazme. His articles have appeared in

various technical magazines, including

Why this book is for you- See page 1.

M&T a

o~
M&T Books

115 West 18th Street

New York, NY 10011

Dr. Dobb's Journal, Computer Language,
Midnight Engineering, and Al Week. Gary is
also the OOP columnist for Al Expert.

52695

I
ISBN 1-55851-155-5
>$26-95

