
..
'

® ®

Turbo Pascal for the Mac

A Quick Path to Programming Power

Paul Goodman
Alan Zeldin

A Brady Book
New York, New York 10023

..s-

Copyright © 1988 by Paul Goodman and Alan Zeldin.
All rights reserved including the right of repro
duction in whole or in part in any form

BRADY

Simon & Schuster, Inc.
Gulf + Western Building
One Gulf + Western Plaza
New York, New York 10023

DISTRIBUTED BY PRENTICE HALL TRADE

Manufactured in the United States of America

10987654321

Library of Congress Cataloging-in-Publication Data

Goodman, Paul, 1958-
Turbo Pascal for the MAC: a quick path to programming power

Paul Goodman, Alan Zeldin.
p. cm.
"A Brady book."

Bibliography: p.
Includes index.
ISBN 0-13-933011-9

1. Macintosh (Computer)-Programming. 2. PASCAL (Computer program
language) 3. Turbo Pascal (Computer program) I. Zeldin, Alan, 1957- .
II. Title.
QA76.8.M3G664 1987
005.265-dc19

-

CONTENTS

Preface ix
Introduction xi

1. Turbo Pascal for the Macintosh 1
Why Turbo Pascal? 1
Macintosh Overview 2
Why This Book? 4
Starting Up 4
Running a Program 7
Editing a Program 10
Printing a Program 13
Printing the Active Window 13
The Macintosh Screen 14
Chapter Summary 15

2. Turbo Pascal Fundamentals 17
Introduction 17
A First Program 17
Syntax 18
More on Identifiers 20
Comments 21
Documenting a Program 21
Write and Writeln 23
Trial and Error-Semicolons 24
Data Types 26
Variables 28
Trial and Error-Improper Data 30
Run-Time Errors 30

iii

iv TuRBo PASCAL FOR THE MAC

Assignment Statements 31
Expressions 32
Operations 34
Mixing Data Types 35
Operator Precedence 36
Constants 37
More on Write and Writeln 38
Read and Readln 40
Review of Program Structure 41
The Dirty Dozen-The Most Likely Syntax Errors 42

3. Pascal Structures 49
Introduction 49
Decision Making-If-Then 49
The Boolean Data Type 55
Loops-More Like an Airplane Than a Brick 58
Programming Example- Calculating Bank Interest 64
Quick to the Draw 68
Chapter Summary 77

4. Functions and More on Data Types 79
Introduction 79
The Char Type 79
The ORD and CHR Functions 80
The SUCC and PRED Functions 83
Other Built-in Functions 83
More on Reals and Integers 84
The Arithmetic Functions 90
The Trigonometric Functions 92
The Logarithmic Functions 92
Console Functions 93
Toolbox Functions 94
User-Defined Data Types 96
The Case Statement 98
Comparing Enumerated Values 100
Subranges 100
User-Defined Functions 101
Drawing Ovals 103
Programming Example-Kepler's Delight 105

-

Chapter Summary 107

5. Procedures 109
Introduction 109
Sequence of Execution 110
Using Procedures 111
Programming Example-Mortgage Calculator 123

6. Arrays and Strings 129
Introduction 129
Arrays 129
Programming Example-The TicTacToe Program 143
Strings 148
The String Functions and Procedures 151

7. More on Structures 155
Introduction 155
The Repeat Loop 155
The Bubble Sort 158
Records 159
Time and Date Operations 169
Sets 170
Recursion 175

8. A Formal Look at Graphics 181
Introduction 181
Points 181
Drawing Lines 182
The Pen 190
The Cursor 194
Building a SketchPad 194
Displaying Text 196
Calculations with Rectangles 199
SketchPad Revisited 199
Fun Time with QuickDraw-The PaddleBall Program 203
Chapter Summary 210

CONTENTS V

vi TuRBO PASCAL FOR THE MAC

9. Files 211
Introduction 211
Files 211
Text Files 220
File Programming Techniques 224
A File Processing Application-The Checking and Savings

Program 227
Chapter Summary 249

10. Variant Records, Pointers, and Handles 251
Introduction 251
Variant Records 251
Pointers 256
The Memory Manager 263
Why Bother, Who Cares? 272

11. Events and Event Handling 273
Introduction 273
Events 274
The Toolbox Managers 274
Event Types 277
Pull-Down Menus 291
Swapping Menu Bars 300
Displaying the Apple Menu 303
The SystemTask Procedure 306
Miscellaneous Menu Routines 308

12. A Complete Macintosh Application-The TurboDraw
Program 313
Introduction 313
Drawing Programs 314
TurboDraw 314
Connecting the Nodes with Edges 323
Printing Pictures 325
Loading and Saving the Data Structures 330
FileNames 332

-

Appendix A. Turbo Pascal Reserved Words 349
Appendix B. Turbo Pascal Menu Summary 350
Appendix C. Compiler Error Messages 358
Appendix D. IOResult Codes 361

CONTENTS vii

Appendix E. Documenting a Program 363
Appendix F. Differences Between Turbo Pascal and

Macintosh Pascal 370
Appendix G. Turbo Pascal Syntax Diagrams 373
Appendix H. Units 388
Appendix I. Macintosh Character Set 391
Bibliography 392
Index 394

Other Brady Books by Paul Goodman and Alan Zeldin
The MacPascal Book, 1985

Other Brady Books by Paul Goodman
The Commodore 64 Guide to Data Files and Advanced Basic, 1984

TRADEMARK LIST

Macintosh is a trademark licensed to Apple Computer Inc.
Mac is a trademark of Apple Computer Inc.
LaserWriter is a trademark of Apple Computer Inc.
ImageWriter is a trademark of Apple Computer Inc.
Turbo Pascal is a trademark of Borland International
Macintosh Pascal is a trademark of Apple Computer Inc.
IBM PC is a trademark of International Business Machines Corpo
ration
MacWrite is a trademark of Apple Computer Inc.
MacPaint is a trademark of Apple Computer Inc.
MacDraw is a trademark of Apple Computer Inc.

Limits of Liability and Disclaimer of Warranty

The authors and publisher of this book have used their best efforts
in preparing this book and the programs contained in it. These efforts
include development, research, and testing of the theories and pro
grams to determine their effectiveness. The authors and publisher
make no warranty of any kind, expressed or implied, with regard to
these programs or the documentation contained in this book. The au
thors and publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of, the fur
nishing, performance, or use of these programs.

PREFACE

On a cold day in the winter of 1642, in the northwest corner of France,
a young man put the finishing touches on a strange device built from
gears, pegs, and dials.

On a snowy day in 1971, in Zurich, Switzerland, a university prof es
sor put the finishing touches on a paper for publication.

On a sunny day in 1976, in a garage in northern California, two
young men wearing jeans put the finishing touches on a computer no
one could have predicted would cause a revolution.

History has ways of connecting events that take place hundreds of
years and thousands of miles apart. None of these men could have
realized the importance of their work in the future, nor completely
understood their connection to the past.

On a hot day in 1986, in Lexington, Utah, a team of computer scien
tists at Borland International linked the works of Blaise Pascal, the
seventeenth-century mathematician, natural philosopher, and inven
tor of the first adding machine, to Nikolas Wirth, designer of the Pas
cal computer language, and to Steven Jobs and Steven Wozniak,
founders of Apple Computer, and completed an extraordinary com
puter language, Turbo Pascal for the Macintosh.

That is the legacy of this book. Turbo Pascal for the Mac is intended
for both the novice who wants to learn how to program and the expe
rienced Pascal programmer who wants to use Turbo Pascal. A high
light of the book is its discussion of how to use QuickDraw graphics to
produce animation and interesting graphics effects. Graphics are inte
grated into each chapter to demonstrate the topic and to provide some
entertainment. A separate graphics chapter includes a video game
program and ideas for others.

As a full implementation of Pascal, Turbo Pascal allows a program
mer to express problems in a natural form that is similar to how people

ix

X TURBO PASCAL FOR THE MAC

think. As Macintosh software, Turbo Pascal takes full advantage of the
unique features of the Macintosh, making it easy to learn, to use, and
to debug the occasional programming mistakes that inevitably occur.
This book contains all that you will need to become a proficient Pascal
programmer.

--

INTRODUCTION

Start your engines. The Macintosh, with its plethora of sophsiticated
concepts and its rich repertoire of routines built into ROM, presents a
truly exhilarating programming environment to use and explore. Un
fortunately, the would-be explorer has had trouble finding a suitable
programming language to work with. Certainly most programmers
have outgrown BASIC, and the C language implementations for the
Macintosh have been complex, tedious to use, and expensive. Many
feel that the ultimate Macintosh programming language now exists for
the Macintosh: Turbo Pascal from Borland International. Turbo Pascal
for the Mac was written to help those who wish to learn how to harness
the full power of the Macintosh with Turbo Pascal. The reader of this
book may have no programming experience and limited exposure to
the Macintosh, or the reader may already have some mastery of the
Pascal language and want to learn how to use the Mac's more ad
vanced features. The approach of this book is broad enough for both.

The book's goals can be summarized as follows:

• To teach Pascal programming from the simplest concepts to the
most complex;

• To introduce the reader to the Macintosh User Interface Tool
box and QuickDraw and explain the procedures and functions
they contain;

• To teach data file programming;

• To teach sophisticated Pascal programming topics such as
pointers, handles, and recursion;

xi

xii l'uRBO PASCAL FOR THE MAC

• To show the reader how to develop "real" Macintosh applica
tions with Turbo Pascal that implements pull-down menus,
event handling, file handling, and sophisticated graphics.

Turbo Pascal represents a significant advance in programming lan
guage systems. As a programming language, Turbo Pascal is a full
implementation of the ANSI Pascal standard. Add to this full IEEE
numeric standards for accuracy, and you have a Pascal system suitable
for either scientific or business applications.

As a programming environment, Turbo Pascal combines a powerful
and fast compiler with easy generation of double-clickable applica
tions and desk accessories.

As a way to explore the Macintosh, Turbo Pascal provides a safe,
easy environment to work with. Full access is provided to the Macin
tosh's User Interface Toolbox and QuickDraw graphics package, al
lowing programs that conform to the standards of the Macintosh User
Interface. Turbo Pascal provides a programming safety net by softly
landing a programmer back into the editor when serious programming
errors occur.

Turbo Pascal for the Mac is written to fill the needs of new and expe
rienced programmers by introducing the reader to all these areas of
Turbo Pascal. No knowledge of Pascal or previous exposure to the
Macintosh is assumed . Chapter by chapter, the reader will advance in
Pascal programming skills and knowledge and will learn all concepts
hand in hand with how to take advantage of the unique features of the
Macintosh. It is expected that after reading this book, the new pro
grammer will be able to design and develop true Macintosh applica
tions.

Chapter 1 introduces the reader to Turbo Pascal and the Macintosh
as a programming environment including QuickDraw and the User
Interface Toolbox. The reader learns to enter, compile, and run a sim
ple Turbo Pascal program that utilizes QuickDraw graphics.

Chapter 2 presents the fundamentals of Turbo Pascal, covering data
types, input and output, variables, assignment statements, and expres
sions. In this chapter the fundamentals of programming errors are dis
cussed, and Turbo Pascal's "dirty dozen," the twelve most common
syntax errors, are included.

Chapter 3, entitled "Pascal Structures," presents the basic building
blocks of a Pascal program. Covered is decision making with the If
then-else statement and looping with the For loop and the While loop.

INTRODUCTION xiii

This chapter takes the first serious look at the QuickDraw graphics
package, covering the use of the mouse and the rectangle data type.
Example programs show animation and the use of the mouse in inter·
active graphics programs.

Chapter 4 will introduce the reader to functions, both those built
into Turbo Pascal and those defined by the programmer. Simple Tool
box routines are introduced along with programming examples. The
chapter also expands the concept of data types, covering the extended
real and integer types that are part of the Standard Apple Numerical
Environment and the enumerated data types.

Chapter 5 is devoted to procedures, the mechanism for dividing
large programs into smaller, more manageable sections. The use of
procedures will allow for the development of more sophisticated pro
grams throughout the remainder of the book.

In Chapter 6 attention is focused on two of Pascal's more sophisti
cated data structures, arrays and strings. They provide the program
mer with the tools necessary to handle and process large amounts of
text and numerical data. Other related topics in this chapter include
sorting and checking input validity.

Chapter 7 continues the book's examination of more sophisticated
programming and data structures with coverage of the Repeat loop,
records, and sets. These structures are explained in relation to how
they can be used in developing programs. This Chapter also takes a
unique look at recursion, a programming technique where procedures
and functions invoke themselves. Recursion is one of the most power
ful programming techniques available in Pascal, but unfortunately it
is also one of the most confusing to learn. Unique examples are pre
sented that use QuickDraw routines to graphically indicate the opera
tion of recursive procedures. These examples help make this difficult
concept easy to understand and enjoyable to learn.

Chapter 8 presents a formal look at QuickDraw graphics. Many of
the graphics concepts explained earlier in the book are reviewed and
reinforced with a deeper level of understanding. Two graphics applica
tions, a free-hand sketching program and a video game, are developed
as examples of QuickDraw programming.

Chapter 9 covers files and file programming techniques. Files are
the key to writing useful programs, yet information on their use and
operation is scarce. This chapter teaches the techniques needed to
store and retrieve data from both sequential and random files on the
Macintosh. Besides data files, the important text files are covered with

:xiv TuRBo PASCAL FOR THE MAC

special emphasis placed on the use of devices such as the printer and
modem. A major file application is developed and presented in its
entirety.

Chapter 10 completes the book's discussion of Pascal language struc
tures by presenting three topics used extensively in Toolbox program
ming and throughout the remainder of the book. Variant records are
an extension on the concepts of records. Pointers and handles, along
with dynamic memory allocation, are the way flexibility can be added
to programs. They allow memory space to be created and destroyed
during program execution as needed, a feature necessary to do com
plex things such as windows. Macintosh memory management tech
niques and the Mac's Memory Manager is explained in relation to
these concepts.

Chapter 11 moves from Pascal programming into Macintosh pro
gramming and covers events and event programming, the key to devel
oping true Macintosh applications. Events allow a program to respond
directly to user action such as keyboard and mouse input. The Toolbox
routines that manage the event queue and report on events to pro
grams are presented along with helpful programming examples. The
chapter continues by covering the Toolbox's Menu Manager, and pro
gramming examples which utilize pull-down menus are presented, de
veloped, and explained. Supporting desk accessories from a program
is also explained in detail.

Finally, Chapter 12 presents a complete Macintosh application com
bining the Toolbox, QuickDraw, events, and file handling. The pro
gram called TurboDraw is an object-oriented programming graphics
program suitable for use in flow charting and graphing. The reader is
taken through the entire process of planning and programming a Mac
intosh application. Emphasis is placed upon selecting the proper data
structure for an application and the use of the Toolbox and QuickDraw
to follow the Mac's User Interface guidelines.

Pedagogically speaking, Turbo Pascal for the Mac is the type of book
that teaches with the aid of small programming examples that demon
strate the concepts without confusion. These are later combined into
larger examples. Normally, routines are introduced, explained, and
then used in a program. Much care has been taken to make sure that
the little questions do not go unanswered. An example of this might be
when the fact that a value is passed as a variable parameter could be
overlooked. The authors firmly believe that it is better to take the

INTRODUCTION XV

time to point out these possible oversights than to let the reader de·
velop a program with hard-to-detect bugs.

SPECIAL FEATURES OF THE BOOK

Complete Pascal Coverage. The book includes the topics neglected by
many Pascal texts; sets, variant records, pointers, and SANE (the Ap
ple Standard Numeric Environment) are all covered.

Emphasis on Program Development. Starting with the first chapter,
program development is stressed by encouraging top-down program·
ming design and by pseudocoding many of programs.

Total Coverage of Files. The use of files occupies a complete chapter
rather than the five or six pages usually devoted to this important
topic. The reader is presented with the information and programming
techniques necessary to develop programming systems to solve sub
stantial data storage applications.

In-Depth Look at Graphics. A majority of the QuickDraw routines are
presented. A difficult topic to grasp, QuickDraw concepts are intro·
duced in the first chapter and built upon from chapter to chapter. A
separate chapter is devoted to a formal description of QuickDraw and
includes two interactive graphics programs, SketchPad, a free-hand
drawing program and PaddleBall, a challenging video game.

Event Handling. Events are the key concept in all true Macintosh
applications. The book presents events and event handling and
presents the programming structures needed to develop Macintosh ap
plications.

The Toolbox. Along with events, this book presents the Macintosh
User Interface Toolbox and those routines that deal with the mouse,
events, pull-down menus, printing graphics, and the clock.

Double-Clickable Applications. Very few Macintosh programming lan
guages can produce double-clickable applications. Turbo does it eas
ily, and it is fully covered by this book.

Complete Programming Systems Presented. The book progresses from
simple programs to complete, true Macintosh applications utilizing
event handling, pull-down menus, and files. The book's final chapter
develops from scratch a sophisticated, object-oriented drawing pro
gram

xvi TuRBo PASCAL FOR THE MAC

Appendices. Turbo Pascal for the Mac contains appendices that com
plement the book with easy-to-reference information on menu com
mands, documenting a program, differences with Macintosh Pascal,
syntax diagrams, QuickDraw procedures, SANE procedures, error
messages, bibliography, and the Macintosh character set.

It is expected that after reading Turbo Pascal for the Mac, the reader
will be able to race through the challenges of programming the Macin
tosh and take the checkered flag. Always buckle your seat belt!

1
Turbo Pascal for the

Macintosh

WHY TURBO PASCAL?

Turbo Pascal for the Macintosh is one of the most unique program
ming environments developed to date. It combines the programming
elegance of Pascal, the power of the Macintosh, and the speed of a
finely tuned race car along with the Macintosh's familiar User Inter
face and text editing. This combination provides a Pascal system that
is easy to use but also has remarkable power and flexibility.

Turbo Pascal presents the programmer with a unified environment
to work with. Its own Macintosh-style editor allows up to eight pro
grams to be developed, compiled (translated to machine language,)
and executed side by side. If an error occurs, Turbo is right there,
returning you to the editor and directing you to the source of the error.
Turbo even handles with elegance those nasty System Errors by al
lowing you to restart the program without having to turn off the com
puter and without any loss of data. This ability to edit, compile,
execute, and debug in one context saves considerable time over other
languages where a programmer must work in several different con
texts in a short period of time. With other development systems, the
program is written with a text editor or word processor and saved as an
ASCII file. This file is passed to a Pascal compiler, which checks it for
syntax and if no mistakes exist translates it into machine language.
After compilation the machine language program is not yet ready for
execution and is saved in a second file passed to a program known as a

1

2 TuRBo PASCAL FOR THE MAc

link/loader, which takes the machine language program and prepares
it for execution by linking it together with subroutines and run-time
libraries. The output of the loader is placed either directly in memory
or into a file for later execution. Turbo avoids all this without sacrific
ing the power of a compiler. In fact, Turbo Pascal for the Macintosh
may be the fastest compiler ever developed, parsing over 12,000 lines
a minute.

For the novice programmer, Turbo provides a supportive environ
ment excellent for learning. Turbo allows programs to be written for
getting about the Macintosh environment by providing its own window
for all output. The major advantage is that much of the overhead in
volved in writing programs for the Macintosh is eliminated. This is
significant because even the seemingly simple task of creating a new
window and displaying it is complex enough to befuddle a sophisti
cated programmer, requiring extensive knowledge of the Macintosh's
Window Manager, QuickDraw, and Event ManSlger.

For the experienced programmer, Turbo allows the development of
double-clickable applications and provides complete access to all of
the Macintosh's User Interface Toolbox. The compiler even supports
development of specialized Macintosh programs such as desk accesso
ries and device drivers.

MACINTOSH OVERVIEW

The designers of the Macintosh wished to provide programmers with
more than just a box containing basic computer components, as is done
by most other computer manufacturers. They wanted to include in a
computer all that would be needed for programmers to write programs
based on a group of elemental building blocks. Their goal was to estab
lish a consistent look and feel for all programs that would run on this
computer. For instance, the way a user saves a file would be exactly
the same in all application programs. This decreases the time needed
to learn a program and makes it easier to remember how to use a
program. This was accomplished on the Macintosh by including in
read-only memory (ROM) a large set of program routines that can be
freely used by the programmer. These routines, most of which were
originally written for the Macintosh's revolutionary predecessor the

TuRBo PASCAL FOR THE MACINTOSH 3

Lisa, can be broken down into two parts, the operating system and the
User Interface Toolbox.

The operating system lies on the lowest level of the ROM software.
It performs basic tasks such as the handling of files and memory. Un
like other computers, the user of the Macintosh has very little interac
tion with the operating system, dealing with it through a program
called the Finder, which provides an easy-to-use graphical interface to
perform actions such as copying a file or changing a filename. A pro
gram written with Turbo Pascal will also have very little contact with
the operating system relying on Pascal to indirectly use it to do things
such as open and close files.

The next level up is the User Interface Toolbox, the set of routines
that provides a way of constructing programs that conform to the stan
dards established by Apple Computer. These standards are undoubt
edly familiar to you already and include the use of pull-down menus,
windows, text editing, controls, and dialog boxes. The Toolbox is di- ·
vided into a set of managers, each one performing one of the standard
functions. There is a Window Manager, a Menu Manager, and so on.
The complete documentation for the Toolbox is found in a publication
written by Apple Computer known as Inside Macintosh. This book has
existed in a number of incarnations since the introduction of the com
puter, including a three-binder edition, a phonebooklike edition, and a
version from a major book publisher. While invaluable to the Macin
tosh programmer, Inside Macintosh is not the last word in clarity or
simplicity. It has been accurately described as 25 chapters, each one
assuming that you have already read the other 24. For more informa
tion on obtaining a copy of Inside Macintosh, contact Apple Computer
or your local bookstore.

An important part of the Toolbox is the QuickDraw graphics pack
age. QuickDraw is responsible for the drawing of all graphics on the
screen, including text. Built into QuickDraw is the ability to draw a
variety of graphical shapes and objects, to manipulate these objects,
and to draw text in a variety of shapes, sizes, and typefaces. Quick
Draw itself is called upon by many of the Toolbox routines to do graph
ical operations. Writing a program using QuickDraw is covered
intensively throughout this book.

Turbo Pascal provides direct access to all of QuickDraw and the
Toolbox. By direct access, it is meant these routines can be used in a
program as though they were a part of standard Pascal. By the time

' ..

4 TuRBo PASCAL FOR THE MAc

the reader completes this book he will be fully familiar with the use of
both QuickDraw and the Toolbox.

WHY THIS BOOK?

This book is intended for all programmers from the complete novice
to those who are experienced programmers and want to know more.
The overall theme of this book is to integrate the concepts of Turbo
Pascal programming with the aspects of the Macintosh environment.
For example, most Pascal concepts are backed up by examples that
rely upon special features of the Macintosh not found on the IBM PC
such as QuickDraw graphics or other Toolbox features.

Turbo Pascal for the Macintosh teaches Pascal programming in the
Macintosh context from start to finish, meaning that by the last chap
ter you will be developing programs that meet the standards of the
Macintosh User Interface. No knowledge of computer programming,
Pascal or otherwise, is required or assumed. The book provides in
depth coverage of all Pascal concepts but merges this with the special
and intriguing features of the Mac. In fact, within the next few pages
you will be writing and running your first Pascal program using Quick
Draw graphics.

STARTING UP

The best way to learn Turbo Pascal programming is to jump right in
by entering and running a program. Let's start by a quick summary of
how to start up the Turbo Pascal environment. The concepts involved
are simple, and you will quickly learn how to handle Turbo Pascal like
an expert. This chapter will serve as a handy reference later on.

Turn on your computer, then insert your Turbo Pascal program disk
into the disk drive slot and start up the Turbo icon. The window that
appears is where you will enter the Turbo Pascal program. It will be
titled Untitled. Up to eight of these programming windows may be
open at once, each containing a different program. The Turbo editor
has features to help you easily manage the eight windows simultane
ously.

TURBO PASCAL FOR THE MACINTOSH 5

Turbo Pascal
3 items 377K in disk 1 4K available

• 'w'hat You got ... Turbo

Figure 1-1. The Turbo Icon

If you are at all familiar with text editing on the Mac, you will have
no problem entering and editing a Turbo program because it follows
the standard text editing conventions. However, if you are not that
familiar with the Mac, have no fear and read on. Locate the pointer on
the screen. When you move it into the window, it changes shape. Place
the pointer in the upper left-hand corner of the window and click the
mouse button. A blinking vertical line called the cursor will appear at
that spot. The cursor indicates the current insertion point for new text
being typed. Anything typed will be inserted starting at that spot in
the window. Any text to the right of that spot will be moved over. Now
that the cursor is waiting for text to be entered, let's enter a program.
Type the following exactly:

program FirstTime;
uses

MemTypes, QuickDraw;
var

Oval :rect;
I :Integer;

begin
for I:1 to 10 do

begin
SetRect(Oval, 10,10, S·I, S·I);
FrameOval(Oval)

end
end.

6 TURBO PASCAL FOR THE MAC

,.. .&.
• File Edit Search Format Font Compile Transfer

Untitled

Figure 1-2. An Editing Window.

H you make a mistake as you type, the Backspace key will erase one
character to the left. When you are done the window shown in Figure
1-3 should appear.

,..

TURBO PASCAL FOR THE MACINTOSH 7

File Edit Search Format Font

program FirstTimej
uses

MemTypes> QuickDraw;
var

Ova I : Re ct j
I : Integer j

begin
for I : = 1 to 10 do
begin

Untitled

Set Re ct (Ova I) 10) 1 0) 5* I) 5* I) ;
FrameOval(Oval)

end
end

Compile Tran sf er

Figure 1-3. Program in the Window.

RUNNING A PROGRAM

Once you are satisfied that you typed the program correctly, we are
ready to run it. There are several ways to run a program from Turbo.
The first and fastest is to compile the program to memory. Compiling
causes the Turbo to translate your program from Pascal into machine
language. The To Memory option will cause the machine language pro
gram to be stored in a section of memory from where it can be exe
cuted. While the program is compiling, the checked flag will wave on
the screen. If you mistyped any of this program, an alert box such as
this will appear:

8 Tmmo PASCAL FOR THE MAC

II ;Jt Error I: ';' enpected.
II

Figure 1-4. A Bug Box

In computer lingo, one would say that the program has a "bug." The
bug box indicates that a syntax error exists in the program. Hitting the
Enter key or the mouse button will clear it, but the real task is to
locate the source of the error and correct. Errors detected by the com·
piler are known as "syntax errors" since they are triggered by im
proper program syntax. Syntax is the set of rules that define the
proper construction of a language (more on this later). In a short pro
gram such as this, a syntax error is easy to find. Turbo helps out by
attempting to point out the line that caused the trouble. We will not
try here to explain how to correct all syntax errors. Much of the rest of
the book is devoted to writing Pascal programs correctly. If you have
an error, correct that line to make it conform to the program above
and recompile. In the next chapter you will find a section label "The
Dirty Dozen," which discusses the twelve most common syntax errors
and has suggestions for solving them.

Once any error is corrected, recompile the program. After a success
ful compile you will notice that once the flag stops waving nothing else
happens. This is because we have told Turbo to compile the program
but haven't yet given the command to run it. The compiled code will
sit in memory but will be erased when the program is edited.

We are now ready to run the program. Choose "Run" from the Com
pile menu. The program window will quickly disappear, and a new
window will be opened where the output of the program will be dis
played as is shown below.

This window is automatically provided by Turbo for both text and
graphics output of a program. Once the program has completed, Turbo
will quickly replace the program window. There is a technique for
"freezing" the program's display on the screen, and we will soon see
what that is. What is important is that you entered the program cor
rectly and that the program worked as expected. If the program did
not work as expected, check the program carefully and make sure that
it is exactly the same as the example.

TURBO PASCAL FOR THE MACINTOSH 9

Drawing

Figure 1-S. Tangential Circles

The compiling and running of the program could have been per
formed in just one step by just choosing the Run option. If no compiled
code is in memory, Turbo will compile the program in the active win
dow to memory and then run it. All this is done at blinding speed.
Borland International, the manufacturer of Turbo Pascal, claims that
Turbo for the Mac can compile 12,000 lines per minute, and there
seems to be no reason to dispute this claim. If you have ever worked
with other programming language systems, you will quickly learn to
appreciate this type of speed. If this is your first programming lan
guage experience, consider yourself lucky. You have avoided having
to go out for coffee as the program compiles.

As mentioned, there is another way of compiling a program. The To
Disk option in the Compile menu will save the compiled program to a
file on the disk. The compiled program will appear with a generic icon
with the name given the program in the first line of the program such
as this:

10 TURBO PASCAL FOR THE MAC

,.. s File Edit Uiew Special

14 items

~
Fig1-7

Turbo Pascal
RRMdisk

B ~ B
FullPaint Fig1-4 Clipboard File Fig1-5

Resume

Figure. 1-6. Program Compiled to Disk

6
Fig1-6

This program is ready to be executed by double clicking on the icon.
A window will come up, display the circles, and then disappear as the
Finder comes back. No interaction with Turbo will occur; the program
is now a true double-clickable application. This represents the sim
plest way to create a double-clickable application in the entire Macin
tosh universe. With other programming languages a programmer must
be extremely knowledgeable about Toolbox to create such a stand
alone application, but Turbo sets it up automatically.

EDITING A PROGRAM

If a mistake is made while entering a program, or a change in the pro
gram needs to be made, the following editing techniques are available.

.,

TuRBo PASCAL FOR THE MACINTOSH 11

To Insert Text

1. Move the pointer to the desired spot in the program and click
the mouse button to place the insertion point.

2. Enter the text.

To Delete Text

There are two different techniques for deleting text. For a small
amount of text:

1. Move the pointer to the right of the characters you want to
delete and click the mouse button to place the insertion point.

2. Use the Backspace key to delete the characters.

For a large amount of text:

1. Select the text to be deleted by placing the pointer at the start
of the text to be deleted and holding down the mouse button.

ITEXT BEING SELECTED
Figure 1-7. Selecting Text

2. Now drag the pointer across the text. Notice that, while drag
ging, the area selected is displayed inverted (white characters
on a black background). At the end of the portion to be de
leted, release the button. The text to be deleted should now be
in reverse video.

3. Delete the selected area by pressing the Backspace key.

TE:::T EiE I NC3 ·::.ELECTE[1 I
Figure 1-8. Highlighting Text

12 TuRBo PASCAL FOR THE MAc

To Replace Text

1. Select the text to be replaced by using the dragging technique
described above.

2. Start typing the new text. The old text is replaced automati
cally.

To Move Text

1. Select the text to be moved.

2. Choose "Cut" from the Edit menu.

3. Place the insertion point where you want the text to go and
click.

4. Choose "Paste" from the Edit menu.

To Copy Text

1. Select the text to be copied.

2. Choose "Copy" from the Edit menu.

3. Place the insertion point where you want the text to go and
click.

4. Choose "Paste" from the Edit menu.

TURBO PASCAL FOR THE MAcmTOSH 13

Shortcut

Double clicking the mouse button on a word automatically selects
the word.

These editing procedures are exactly the same as those used in Mac
Write and in many other places in the Macintosh such as the Notepad.

PRINTING A PROGRAM

A copy of your Turbo Pascal program (the text itself, not the output)
can be printed on the printer connected to your Macintosh. Select
"Print" from the File menu. A dialog box will then appear on the
screen.

lmageWriter

Quality:

Page Range:

Copies:

Paper Feed:

QBest

@ Rll

EJ
®Automatic

v2.5

®Faster O Draft

O From: D To: D
0 Hand Feed

Figure 1-9. The lmageWriter Dialog Box

What you see may vary slightly depending upon the version of the
print driver you are using and whether you have an ImageWriter or
are lucky enough to have a LaserWriter. The boxes for the number of
copies and the range of pages to print can be filled in by placing the
cursor in the box and clicking. The Tab key will move the cursor from
box to box without the use of the mouse.

PRINTING THE ACTIVE WINDOW

The active window is the frontmost window on the screen. The con
tents of the active window can be printed by simultaneously holding
down the Shift, Command, and four keys simultaneously. You can
make any window the active window by clicking the pointer anywhere
inside of it.

14 TuRBo PASCAL FOR THE MAc

THE MACINTOSH SCREEN

Turbo Pascal is capable of displaying high-quality graphics and ani
mation. Before we can write graphics programs we must first take a
look at the Macintosh's graphics coordinate system. The Macintosh's
screen can be thought of as a grid of 512 vertical lines by 342 horizon
tal lines not much different from graph paper. The vertical lines (X
coordinates) are numbered from 0 to 511, and the horizontal lines (Y
coordinates) are numbered 0 to 341. The location where a horizontal
line and a vertical line intersect is called a point and noted as (X, Y).
The upper left corner of the screen, the origin, is where vertical line 0
and horizontal line 0 intersect, point (0,0). The lower right-hand corner
of the screen is where vertical line 511 intersects horizontal line 341,
point (511, 341). Below and to the right of each point on the screen is a
dot that can be displayed on the screen as either white or black. These
dots are called picture elements, or pixels for short. For each of the
175,104 (342 by 512) points on the screen there is a corresponding
pixel.

The coordinate system actually extends beyond what is visible on
the screen. For instance, the coordinate (-10, -10) is above and to the
left of the origin. These points exist to help in calculating complex
geographic constructs that may extend beyond the visible portion of
the screen.

The Macintosh's ROM contains a very complete and powerful graph
ics package called QuickDraw. Turbo Pascal allows access to Quick
Draw by simply using QuickDraw commands in a program as if they
were Pascal statements. The program that you typed and ran used two
different QuickDraw commands to define the size of an oval and then
to draw it in the window:

SetRect(Ova1,1a,1a, 5.1, 5·1);
FrameOval(Oval)

The first of the commands, SetRect, defines a rectangle, one of
QuickDraw's graphic types. The size of this rectangle will vary as the
program executions. The second command, FrameOval, actually draws
an oval on the screen whose size is the same as the rectangle defined.

point (0,0)

Y Axis

1'uRBO PASCAL FOR THE MACINTOSH 15

X Axis

512

.__________
poi nt (1 0 0, 1 0 0)

poi nt (5 1 1 , 3 4 1)
Figure 1-10. The Mac Coordinate System

342

CHAPTER SUMMARY

In this chapter we have seen how to enter, compile, and run a pro
gram with Turbo Pascal. We even quickly looked at a small program
using QuickDraw graphics. All the commands and programming tech
niques used will be explained in much greater detail in future chap
ters.

2
Turbo Pascal Fundamentals

INTRODUCTION

In Chapter 1 we saw how to work with the Turbo Pascal environment
and how to enter and run a short Turbo program. In this chapter, we
will start to explore the basic elements of the Pascal programming
language. You will be introduced to the concepts of different types of
data, storing data in the computer, and the input and output of data.

A FIRST PROGRAM

The best way to go about learning Pascal is to dive right in, so here is
the simplest program possible in Pascal.

program Good_For_Nothing:
{This is our first program
begin
end.

H you enter and run it, you will see that it does absolutely nothing.
However, it is useful to explore the required elements of a Pascal
program. All programs must begin with a program declaration consist
ing of the word "program" followed by one or more spaces and then a
program name. This program's name is Good_For_Nothing, and it is
followed by a semicolon(;). Together they form what is known as the
program declaration. The semicolon is used in Pascal to separate con-

17

18 TuRBo PASCAL FOR THE MAc

secutive statements or declarations and must be present. A name in
Pascal is called an identifier. In Turbo Pascal, identifiers can be made
up of combinations of letters, numbers, and underscores. While an
identifier can be of any length, it must start with a letter, and only the
first 63 characters are significant (any two identifiers with the same
first 63 characters are considered the same). We doubt this will create
much of a problem for you. In practice, an identifier will contain from
one to about fifteen characters (who wants to type very long names?).
It is good practice to use identifiers that have a meaning that corre
sponds to the functions they perform or the objects they represent.

The word "program" cannot be used as an identifier because it has a
special meaning in the language. Words like "program" are called re
served words and are used by the compiler to be able to understand
the structure of the program. The 48 reserved words in the Turbo
Pascal language are listed in Appendix A.

After the program declaration a program may contain other optional
declaration sections. These are absent in Good_for_Nothing because
it is so simple they are not needed. Other possible declarations will be
discussed later. Following the declaration section in our program are
the reserved words "begin" and "end." These mark the start and the
finish of the program's instructions, those statements that perform
some action. This program contains no instructions whatsoever. The
reserved word "end" is followed by a period indicating the end of the
program.

SYNTAX

All languages need a set of rules that define the language. We can communi
cate with other people who speak the same language we do because they use
the same rules for constructing sentences. Syntax is the set of rules for con
structing valid statements in a language. In natural languages such as English,
we call these rules grammar. Programming languages also have rules of syn
tax, but they are much more restrictive and simpler than those of natural
languages. Pascal's syntax is so simple and well defined it can be expressed in
a series of diagrams. For instance, here is the syntax diagram for a digit:

Turulo PASCAL FUNDAMENTALS 19

DIGIT

Figure 2-1. Syntax Diagram: Digit

To construct a syntactically correct digit, follow the diagram from the start
ing point on the left to the end point on the right. Many paths are possible.
Any path that starts on the left and ends on the right describes a digit that is
syntactically correct. Notice that in this diagram any single digit from 0 to 9 is
a valid digit. A slightly more complex syntax diagram is that of an unsigned
integer (a whole number).

UNSIGNED INTEGER

~ digit ~

(J ~

Figure 2-2. Syntax Diagram: Unsigned Integer

Once again, any path that goes from the start to the end defines a syntac
tictally correct unsigned integer. To confirm that a number such as 327 is a
valid unsigned integer, we would follow the diagram traversing the middle
section three times and then exit. You may think of the box labeled "digit" as
an abbreviation for Figure 2-2 above.

The syntax diagram for a signed integer is built with the rules for an un
signed integer:

SIGNED INTEGER

unsigned
integer

Figure 2-3. Syntax Diagram : Signed Integer

20 Turu!o PASCAL FOR THE MAC

In a syntax diagram, the elliptical symbols are atomic,-that is, they cannot
be subdivided into smaller diagrams. Rectangular symbols are those that can
be subdivided. For example, in the signed integer diagram, the unsigned inte
ger symbol was defined previously.

MORE ON IDENTIFIERS

Not all words can be used as identifiers. A numeric digit or an under
score cannot be the first character of an identifier. Spaces, punctua
tion characters, and other special characters cannot be used in
identifiers either. A special character is any character that is not a
letter, space, or underscore. The following are all valid identifiers:

Big Bucks Total Rate3 One4all

These, however, are not valid Pascal identifiers:

22go Big:Bang Counter$

Lowercase and uppercase characters are equivalent in an identifier;
therefore, the following two identifiers are treated as one and the
same by Turbo Pascal:

GrossPay grosspay

The underscore character is sometimes used as a separator between
words to make identifiers easier to read. The following identifiers are
considered to be different by Turbo Pascal:

Gross_Pay Gross Pay

Here is the syntax diagram of an identifier:

TURBO PASCAL FUNDAMENTALS 21

IDENTIFIER

letter

Figure 2-4. Syntax Diagram : Identifier

From now on we will not bore you by including syntax diagrams for
each Pascal feature. A complete listing of the syntax diagrams for
Turbo Pascal can be found in Appendix G.

COMMENTS

In a Pascal program, information that is enclosed between curly
braces { and } are comments. Comments are used to document the
workings of a program and are meant for people, rather than com
puters, to read. The Turbo Pascal compiler completely ignores all com
ments. It cannot be emphasized too strongly that comments are
required for writing clear, maintainable programs that can be under
stood when examined later. For historical reasons, a parentheses as
terisk pair, '(-' and'.)' can be substituted for the curly brace pair, ' {'
and'}'. This is because many input devices used with early computers
in the 1970s could not read the brackets. The start and end of a com
ment must be matching delimiters: ' (' and ' } ' or '(•' and '•)', but not
' { ' and '.)' or '(-' and ' } '.

DOCUMENTING A PROGRAM

When you write a program, it is important that you include an explanation
of how the program works. This may not seem important or necessary when
the program is written, but you will be grateful sometime in the future when

22 TURBO PASCAL FOR THE MAC

"Thou Shalt
Comment"

Figure 2-5. The Programmer's Commandment

you look back at your work. The Eleventh Commandment should read, "Thou
shalt document thy programs."

There are two aspects to properly documenting a program. The first is to
make your program self-explanatory by using meaningful identifier names.
Below are instructions that perform the same task.

X := Y + Z:
SalePrice := Price + Tax:

The only thing that can be ascertained from the first statement is that two
variables are being added together and the result assigned to a third. How
ever, from the second statement the reader can tell you why that statement is
being executed.

The second aspect of documentation is the use of comments. These should be
used when the identifier names alone cannot indicate the purpose of a state
ment or a group of statements. Comments should describe what the program is
doing, not how it is doing it. Here is an example of a well commented program
section; its function is self-evident:

ConversionRate := 21374: (# of lire in a dollar}
(Calculate import cost}
Dollars := Lire • ConversionRate:
Duty := Dollars • TaxRate:
Cost := Dollars + Duty:

Comments should not just redescribe what can be ascertained from the in
structions themselves. This is the way not to write comments:

multiply lire by conversion rate to get dollars
Dollars := Lire • ConversionRate:
I multiply dollars by tax rate to get duty I

Duty := Dollars • TaxRate;
I add dollars to duty to get cost l
Cost := Dollars + Duty;

l'uRBO PASCAL FUNDAMENTALS 23

Appendix E contains an entire program meticulously documented to serve
as a guide.

WRITE AND WRITELN

Now let us look at a program that actually does something. For a
computer to be useful it must be able to output information for people
to see. The Macintosh can generate two different types of output:
graphics and text. These can be freely intermixed in a Turbo program.
Since text output is simpler, we will tackle it first. The two most com
mon statements in Pascal that output text are the Write and Writeln
(pronounced "write line") statements.

To demonstrate the Write statement, enter and run the following
program:

program MyName;
begin

Write('! am a Macintosh computer•);
Readln

end.

H you made no errors, the Mac's screen will clear and a new window
will appear. This is the console window used by Turbo Pascal as the
place that output is displayed. At this point you may not appreciate
the beautiful simplicity of the console window, but suffice it to say
that most programming languages on the Macintosh force the pro
grammer to learn how to use the most complex features of the Toolbox
to run even the simplest program. The following will be displayed:

'I am a Macintosh Computer•

This program now contains two instructions, more accurately re
ferred to as statements, sandwiched in between the "begin" and
"end." The Writeln statement was responsible for producing the out
put. The last statement in the program (Readln) forces the computer

/

24 Tmum PASCAL FOR THE MAc

to wait for you to hit the Return key before returning to the Turbo
environment. If the Readln had not been in the program the message
would have flashed on the screen and the program would have re
turned to the Turbo Pascal environment almost instantly.

TRIAL AND ERROR-SEMICOLONS

Try removing the semicolon after the Writeln statement. Running the pro
gram should now produce this error:

Error 1: '·' eHpected.

Figure 2-6. Missing Semicolon Error

The "; expected" message will probably be the one you most encounter in
Pascal programming. When it occurs, look in the vicinity of the insertion point
for a statement that requires a semicolon but is missing one.

Let's try a second program:

program MyNameAgain;
begin Write('! ');

Write('am ');
Write('a ');
Write('Macintosh ');
Write('Computer ');
Readln

end.

Program MyNameAgain does the same exact thing as MyName.
Why? The Write statement acts just like Writeln except that no car
riage return is performed after the information is displayed. Thus, all
the information is displayed on the same line in the console window.

II

Turu!o PASCAL FUNDAMENTALS 25

MyNameRgain
I am a Macintosh computer

. ·.:" . : ·:": ·::; .. :. · . .': " : ·:_:·.; . .. ::"",•' .. :. : . : .:· . .

Figure 2-7. Displayed by MyNameAgain

Use the Change feature of the Turbo editor to change all the Write
statements in the program to Writeln. Now try running it.

program MyNameAgain;
begin Writeln(1 I 1);

Writeln(1 am 1);

Writeln(1 a 1);

Writeln(1 Macintosh 1);

Writeln(1 Computer ');
Readln

end.

It now displays:

26 TURBO PASCAL FOR THE MAC

I
am
a
Macintosh
Computer

The program now places each word on a separate line. The differ
ence between Write and Writeln should now be clear. After a Writeln
statement is executed, the text insertion point returns to the begin
ning of the next line, and whatever is displayed next will be on a new
line. However, whatever is displayed after a Write statement appears
on the same line.

More than one item can be used in a Write or Writeln statement as
long as each item is separated by a comma, such as

Writeln('I ', •am ', •a ', •Macintosh ',•computer ');

All items contained within each Writeln statement will be displayed
on the same line. Write and Writeln can be mixed in the same pro
gram. Now that we have a way to display information, let us examine
the kinds of information Pascal can handle.

DATA TYPES

In our everyday lives we deal with many types of information:
sounds, pictures, words, numbers, and so forth. Information used by a
computer is called data. Computers process many different kinds of
information, or data, including numbers, characters, strings of charac
ters, pictures, sounds, and so on. Several different types of data can be
represented in Pascal.

Integers

1

The most basic data type is integer, which includes positive and
negative whole numbers (numbers that don't have fractional parts).
Examples of integers are

23 -252 a 13"18 -12

TuRBo PASCAL FUNDAMENTALS 27

Notice that integers contain no decimal points. Commas are not used
or allowed in integers. The largest integer that can be used by the
Pascal language is called Maxint. This number is dependent on the
machine being used. On the Macintosh system Maxlnt is 32767. The
smallest number that can be represented is -Maxlnt-1 or -32768.

Reals

At one time computers could only process integer data, but today we
can also represent numbers that have both a whole part and a frac
tional part. Turbo Pascal lets us represent these numbers with the real
data type. Real numbers have a much larger range of values than
integers and are thus useful for representing very large or very small
quantities.

Examples of real numbers are:

3.11.f -87.0 21f2.31f 1.321.fe+b -7.lf3e-2

The first three numbers listed are in the notation with which you are
most familiar, that is, numbers with digits to the left and right of the
decimal point. The last two numbers are in a form known as "scientific
notation." The "e" stands for exponent and is always preceded by a
sign. A number in scientific notation is interpreted by multiplying the
number on the left of the "e" by ten raised to the number following
the "e." Thus, 1.324e+6 is equivalent to 1.324 x 106 or 1324000.0 and
-7.43e-2 is equivalent to -7.43 x 10-2 or 0.0743. Other examples are

-12.34e+2
34.5b7e+1
-932.13e-4

equivalent to
equivalent to
equivalent to

-1234.0
345.67
-0.0932113

In Pascal, real numbers can be always be expressed in either stan
dard or in scientific notation. When expressing a real number there
must always be at least one digit before the decimal point. For exam
ple, 0.5 is a valid representation of one-half, whereas .5 is not.

28 Turulo PASCAL FOR THE MAC

Characters and Strings

Computers need to process information other than numbers in order
to communicate effectively with people. Pascal has two data types that
handle text information, the character and the string data types.

Characters are upper- and lower-case letters, numbers, and punctua
tion symbols. Character data is enclosed in single quotes. Examples of
characters are the following:

lal IDI '!' 1;1 131 1%1 I I

Since quotes are used to delineate a character, to represent a quote
we must use two consecutive quotes between quotes for a total of four,
such as

I I I I

Strings are sequences of characters and are useful because they let
us combine individual characters into words or sentences. This allows
manipulation of more meaningful units than individual characters. As
with characters, strings are written between single quotation marks:

'This is a sample string'
•testing 123 testing!!!'

VARIABLES

In order for a program to use data, it must be stored in the com
puter's memory. The computer's memory can be thought of as being
divided into many different compartments, each holding a single piece
of information of a specific data type. These compartments are called
variables.

Pascal uses identifiers to name each variable. The value of a vari
able can change during the execution of a program, (hence the name)
and is used as sort of a working storage of information during the
execution of a program. To be used, a variable must be declared in a
variable declaration section, as demonstrated in the next program.

Turulo PASCAL FUNDAMENTALS 29

Figure 2-8. Compartments in Memory

program ShowVars;
var

Number : Integer;
Ch : Char;

begin
Readln(Number, Ch);
Write(Number,' ',Ch);
Readln

end.

In this program two variables were declared: Number, which will
hold an integer, and Ch, which will hold a character. Variables are
declared after the program declaration but before the "begin" of the
program. The variable declaration section is indicated by the reserved
word "var" and consists of the variable's identifier and its type, sepa
rated by a colon (:).

var
identifier1
identifier2

DataType1;
DataType2;

Many separate declarations can exist with a semicolon separating each
individual variable declaration. If there are several variables of the
same data type, they may be declared together by separating them
with a comma. For example:

var
x1, x2 : Real;
count, sum : Integer;

30 TuRBo PASCAL FOR THE MAc

When you run the program, it will wait until you enter at the key
board an integer, a space, and a character followed by a return. The
integer value entered will be placed in the variable Number, and the
character will be placed in the variable Ch. Whatever is entered is
echoed to the screen by the Write statement. Whenever a variable is
listed in a Writeln statement, the contents of that variable are dis
played. The details of Readln will be explained later in this chapter.

TRIAL AND ERROR-IMPROPER DATA

Run the program again and enter data of a type other than that expected.
What happened? When you hit the Return key, the System Error dialog box
appeared. What you have encountered is your first run-time error.

RUN-TIME ERRORS

Unlike syntax errors that can be detected by the compiler during compila
tion, a run time error occurs during the execution of the program. There are
several possible situations that can cause a run-time error. The one we just
encountered is the entering of illegal input. Unlike other programs, Turbo
protects from System Errors by allowing a graceful exit through the Resume
option in the dialog box. This will deliver you back into the editor with the
source of the error highlighted. (If you compiled to disk, you will go directly
back to the Finder.) One of the chief goals of a programmer is to prevent
program "crashes" caused from illegal input. Several techniques have been
developed to protect against this; they are covered in later chapters.

Other sources of run-time errf>rs include

• Dividing by zero

• Using variables that are out of their range (more on this later)

• Improper use of Toolbox functions.

TURBO PASCAL FUNDAMENTALS 31

• Error 99: Input/Output Check Failed

Figure 2-9. 1/0 Error

ASSIGNMENT STATEMENTS

In the program that you were just playing with, variables were given
values via the keyboard during program execution. Data can be placed
in a variable in the program itself with an assignment statement such
as

lumber := 23;
Ch : = 'A';

The function of an assignment statement is to place the value on the
right-hand side of the assignment operator (: =) into the variable on
the left-hand side. The variable retains the assigned value until it is
altered by some other statement in the program. Notice that in the
assignment operator there is no space between the colon and the equal
sign. An assignment statement is not an algebraic equation, and it is
not solved as one. This is the reason the assignment operator looks
different from an equal sign. The assignment operator is interpreted
to mean "gets the value." Hence, Number :=23 can be read as the
variable Number gets the value 23. It may be helpful to think of the
integer value 23 as being placed into the memory compartment that is
labeled Number. Likewise Ch:= 'A' can be thought of as the character
"A" being put in the compartment labeled Ch.

The value assigned to a variable must be of the same data type as
that variable (an integer value must be assigned to an integer vari
able, a real value to a real variable, and so on). Given the following
variable declarations:

32 TuRBo PASCAL FOR THE MAc

Ch Number
Figure 2-10. The Assignment Operator

var
I : Integer;
R1, R2 : Real;
Ch : Char;

the following assignment statements are all legal:

I := 17;
R1 := 2.C3;
R2 := 15.a;
Ch := 'B' ;

while, the following assignment statements are all illegal:

I := -17.17;
R1 := 15;
Ch := 22;
Ch := '22';

-17.17 is not an integer
15 is not a real value
Ch is a character variable
'22' is a character string,

character
not a

Improper assignments will be revealed as syntax errors by the com
piler. This is one of the unique features of Pascal. Many other lan
guages permit this type of statement to be performed without any kind
of checking.

EXPRESSIONS

The value of an arithmetic expression can also be assigned to a vari
able. For example:

TuRBo PASCAL FuNl>AMENTALS 33

Rewlumber := 5 + 3;

In this assignment statement, the variable "NewNumber" is given
the value of the expression on the right-hand side of the assignment
operator (:=}. This statement can be read as "the variable
NewNumber gets the value obtained by adding together 5 and 3." That
value is, of course, 8.

NewNumber : = VS + 3 •

~6 equals

Figure 2-11. NewNumber := 5 + 3;

An expression can contain variables as well as constants.

NewRumber := OldNumber + 17;

This statement adds 17 to the value of the variable OldNumber and
assigns that value to the variable NewNumber. There is no change in
the value of OldNumber since it appears on the right side of the as
signment operator; only a variable on the left side of the assignment
operator will be changed in an assignment statement. The value of one
variable can be assigned to a second variable in the same way.

Rewlumber := OldNumber;

Here the value of OldNumber is assigned to NewNumber. They will
now both have the same value. It is quite common to have assignment
statements with the same variable on both sides of the operator. This
may seem strange at first, but on closer examination its use will be
come apparent.

lumber := lumber + 3;

This statement simply adds 3 to the value of Number. It is inter
preted just like any other assignment statement. The expression on
the right side is evaluated and assigned to the variable on the left side.
That is, add 3 to the value of Number and place the resulting value
back into Number. Another way of describing this statement is that

34 TURBO PASCAL FOR THE MAC

the "new" value of Number is the "old" value of Number plus three.
For example, if Number contained seven before the statement was
executed, it would contain ten after it was executed.

OPERATIONS

Addition is not the only operation that can be performed in an ex
pression. Several other arithmetic operators are available in Pascal:

+ real or integer addition
real or integer subtraction

·* real or integer multiplication
I real division
div integer division
mod modulo division (remainder of integer division)

The*•+, and - operators work as expected on both integer and real
numbers, but different divisions exist for real and integer values. The
div operator is used to divide one integer by another. When two inte
gers are divided using div, the remainder is discarded. Some examples
are shown in Table 2-1.

Table 2-1. Integers Divided Using DIV

Expression
8 div 2
8 div 3
8 div 9

Value
-4-

2
0

The mod operator is used to find the remainder of an integer divi
sion. For instance, 10 mod 3 is 1, because 10 divided by 3 leaves a
remainder of 1. (Table 2-2)

Table 2-2. The Mod Operator

Expression
8 mod 8
8mod 2
8 mod 9
8 mod 3

Value
-0-

0
8
2

TURBO PASCAL FUNDAMENTALS 35

Both 8 div 0 and 8 mod 0 are illegal since you cannot divide by 0.
Either would generate an error.

Real division (the I operator) divides two real values giving a real
result: 5.0/2.0 yields 2.5 and 10.0/1.0 yields 10.0

MIXING DATA TYPES

With any of the operations, real values can be mixed with integer
values. When this is done the integer value is automatically converted
to a real prior to the operation. For instance, in the addition of 4 + 3.7
an integer and real are both used. The integer 4 will first be converted
to the real 4.0 and then added to 3.7. The result is 7.7. The result of an
expression can only be assigned to variables of the same data type.
Breaking this rule will cause an error during compilation. Given these
variable declarations:

var
I, J : Integer:
I : Real:

the following statements are all legal:

I := J + 3: Integer result assigned to an integer
I := I + 2.0: Integer result assigned to an integer
I := 5 I 2: Integer result assigned to an integer
I := J: Integer result assigned to an integer

while the following statements are all illegal:

J := Y: Can't assign a real value to an
integer variable

J := 3.0 div 2: Div needs two integer operands
J := J I I: Real division produces a real result

Table 2-3 summarizes the data type of the result of different opera
tions.

36 TuRBo PASCAL FOR THE MAC

Table 2-3. Data Types

Type of Operand
Real Real Integer Integer

Operator Real Integer Real Integer
+ Real Real Real Integer

Real Real Real Integer
Real Real Real Integer

I Real Real Real Real
DIV error error error Integer
MOD error error error Integer

OPERATOR PRECEDENCE

How is the value of an expression calculated when more than one
operator is used? For instance, in the following expression the order of
operations is significant.

7 + 2 • 4

If the addition is done first, the result is 36. If the multiplication is
done first, the result is 15. However, Pascal has rules of operator pre
cedence that are used to decide what is done first. Operators with a
high precedence get evaluated before operators with a low prece
dence. Multiplication, real division, div, and mod have a higher prece
dence than addition and subtraction.

Operator Precedence Table

High Precedence., I, mod, div
Low Precedence +, -

When operators of the same precedence are found in an expression,
they are evaluated from left to right.

The natural precedence of the operators can be overcome by the use
of parentheses. For instance:

(7 + 2) • 4

TURBO PASCAL FUNDAMENTALS 37

Some more examples:

Table 2-4. The Use of Parenthese

CONSTANTS

Expression
3+2•3

(3 + 2) • 5
14 mod 3 + 1
1+2·3+4

(1 + 2) • 3 + 4
1 + 2 • (3 + 4)

Value
-9-

25
3
11
13
15

Constants, as the name implies, are values that never change. Pascal
can also have named constants that are represented by identifiers.
Examine the following program:

program Constant;
con st

TwentyThree = 23;
Ayyy = 'A';

var
Number : Integer;
Ch : Char;

begin
Number := TwentyThree;
Ch := Ayyy;
Write(Number,' ',Ch);
Readln

end.

This program would display

23 Ayyy

Constants are declared after the program declaration but before the
variable declaration section. The reserved word "const" is used to in-

38 'fuRBO PASCAL FOR THE MAC

dicate the constant declaration section, which consists of the con
stant's identifier and the value of the constant separated by an equals
sign (=). The assignment operator is not u~ed. A semicolon separates
each of the constant declaration statements.

Once a constant is defined it cannot be changed later in the pro
gram; in fact, trying to assign a new value to a constant will produce
an error when you compile your program. Try it and see. Constants are
used rather than the values themselves to make a program more read
able. Additionally, the use of constants can prevent errors since any
erroneous attempt to alter its value will result in a program error
when you attempt to compile the program. It is far better to detect an
error in this fashion than to hunt for the source of an improper calcula
tion or rely on the result of that calculation.

MORE ON WRITE AND WRITELN

Write and Writeln allow an optional parameter called the field
width, which is used to provide control over how data is displayed. The
field width parameter is specified by following any item in a Write or
Writeln statement with a colon(:) and a positive integer. The integer
determines how many spaces are allocated for displaying the item.
The easiest case to look at is that of displaying strings. The field width
parameter indicates how many spaces are used to display the string. If
the string does not take up all the spaces allocated, it is right-justified
within the field as demonstrated in Figures 2-12 and 2-13.

Write('Cantaloupe• 15)

15

Figure 2-12. Right-Justified

TURBO PASCAL FUNDAMENTALS 39

Write(1 Cantaloupe:20)

20

Figure 2-13. More Spaces

If the number of characters in the string exceeds the field width
parameter, the excess characters on the right side are truncated. Fig
ure 2-14 demonstrates this:

Write(1 Cantaloupe•:5)

Figure 2-14. Truncation

In order to display real numbers in standard notation, two field
width parameters are used. The first represents the total field width,
not including the decimal point, and the second is for the number of
digits to be included after the decimal point. It is important to remem
ber that reals are right-justified in the number of spaces indicated by
the first parameters. Consider the following assignment statement:

R := 2.55;

the following Writeln statement:

Writeln(R:4:2)

displays the following:

2.55

40 TuRBo p ASCAL FOR THE MAc

ff the total field width given is too small for a real number or an
integer, the entire value will be printed anyway. The following se
quence of statements:

I := 10;
R := 10.04;
Writeln(I :1);
Writeln(R : 3 2);

will display:

10
10.04

In displaying a real, the value will be rounded off to the number of
decimal places specified by the second field width parameter, round
ing off the number if necessary.

The effect of omitting a field width parameter differs with each data
type. A string will be printed in precisely the number of characters
required. Integers will occupy a minimum of eight spaces, but more
are used if needed. An integer will never be truncated. Reals will be
displayed in scientific notation.

READ AND READLN

So far in all the programs we have seen, variables were given values
via assignment statements. However, in Pascal there is a way to pro
vide a variable with a value during execution with the Read and
Readln statements.

As we have already seen, the Readln statement stops and waits for
information to be entered from the keyboard. When a Readln state
ment is executed, the information that is entered on the keyboard is
placed into the variable specified in the statement and echoed to the
console window. The user signals that he has finished the entry by
pressing the Return key. Below is an example of using Readln in a
simple program:

program CircleArea;
con st

Pi = 3.14159;
var

Area, Radius : Real;
begin

TURBO PASCAL FUNDAMENTALS 41

Write('What is the radius of the circle?:');
Readln(Radius);
Area := Pi • Radius • Radius;
Write('The area of a circle with radius ',Radius,• is

' , Area) :
Readln

end.

The Read statement works in the same fashion as the Readln except
that the input does not have to be terminated by hitting the Return
key. Instead, the data entry is terminated when a space or comma is
entered.

Read and Readln can work with all ·of the data types already dis
cussed. More than one variable can be used by separating them with
commas. For example:

program !oreThanOne;
var

Moe, Shep, Curly : Integer;
begin
Readln(!oe,Shep,Curly);
Writeln(!oe,Shep,Curly);
Readln

end.

The user must type some nonnumeric character between the three
integers to indicate where one integer ends and the next begins. Be
cause we are using a Readln statement, a carriage return must follow
the last value entered.

REVIEW OF PROGRAM STRUCTURE

The four sections of a program we have examined so far are

1. the program declaration;

42 TuRBo PASCAL FOR THE MAc

2. the constant declarations;

3. the variable declarations;

4. the program body (everything between "begin" and "end").

Remember that the variable and constant declaration sections are op
tional and not required by a syntactically correct program, although
every program that is nontrivial will have both these sections.

THE DIRTY DOZEN-THE MOST LIKELY
SYNTAX ERRORS

While 99 possible syntax errors can be triggered in your programs,
there are 12 that are most likely to occur, especially for new program
mers. Here is a list of the "dirty dozen" and possible solutions.

II Jl Error I: ';' eHpected.
II

Figure 2-15. Missing Semicolon Error

The missing semicolon is probably the most common error encoun
tered in Pascal programming. Its source is obvious: there is no semico
lon where there should be one. When this is the cause, Turbo will
return you to the editor with the start of the line after the missing
semicolon highlighted.

There is a common but more subtle way to trigger this error. When
the begins and ends of a program are not balanced-that is, do not
match up-this error can be triggered. Consider the following pro
gram.

program SubtleError;
var
I, Sum Integer;

begin
for I := 1 to 10 do

TURBO PASCAL FUNDAMENTALS 43

begin
Sum := Sum • 2;
Sum := Sum + I
end.

Close examination of the program will show that there is a missing
end statement, the one needed to close the compound statement in the
For loop. The missing semicolon error will be triggered, and Turbo will
highlight the last end.

II*
' Error 41: Unknown identifier. II

Figure 2-16. Unknown Identifier Error

The unknown identifier error is caused by not declaring a variable
that is used in the program. For instance:

program Unknown!;
var

I : Integer;
begin
for I := 1 to 10 do
Sum := Sum + 1

end.

In this simple program, the identifier Sum is not declared and thus
will cause this error. The solution: simply add it to the variable decla
ration.

II t Error 2: ':' eapected. II
Figure 2-17. Colon Expected Error

The colon expected error is most often caused by failing to use a
data type in a variable declaration. For instance:

44 TUIUIO PASCAL FOR THE MAC

var
K

Here K is declared as a variable, but no data type is given. Since the
compiler is expecting a colon after the identifier, this error is trig
gered. Note that using the equal sign for the assignment operator will
not cause this en-or but instead will trigger Error 07, := expected.

II ;f(Error Io:'.' eupected.
II

Figure 2-18. Period Expected Error

The period expected error most often occurs when there are too
many ends in a program. For instance:

program TooEndorNotTooEnd;
var

I : Integer;
begin
for I := 1 to 10 do
Sum := Sum + 1
end

end.

In this program, there are two ends but only one begin. The pro
grammer apparently forgot that a compound statement was not used
with this For loop. Since the compiler expects a period after the first
end encountered, this is the error triggered.

II j Error 5: ')' eupected.
II

Figure 2-19. Expected Error

Right parenthesis expected is caused when the parentheses in a
statement are not balanced. This can occur either in an expression
such as

TURBO PASCAL FUNDAMENTALS 45

Total := ((Height. Weight) + (Age. Waist);

or, in a Writeln statement such as

Writeln (Name, Address, ZipCode;

This error happens more frequently than left parenthesis expected
since we type from left to right.

II ;fl Error n: Error In eHpression.

II
Figure 2-20. Error in Expression Error

The error in expression error is caused by improperly using opera
tors in an expression:

Dog := Cat div mod Bird;

I ;ft Error 91: UneHpected end of teHt.

Figure 2-21. Unexpected End of Text Error

The source of this error is almost always just a missing period at the
end of a program. Since this very subtle to catch, it can lead to great
frustration.

;ft Error 47: Operand types does not match operator.

Figure 2-22. Operand Types Do Not Match Operator

This is a simple error caused by using the wrong operator with a
value. For instance, all of these will trigger this error:

46 Turulo PASCAL FOR THE MAC

R := R Not 4;
Int := 4.0 div 12;
Ch : = 1 C 1 + ' A 1 ;

II jf; Error 44: Type mismatch.

Figure 2-23. Type Mismatch Error

II

This error happens when a value of one data type is assigned to a
variable of another. For instance, given the following variable declara
tion:

var
Int : Integer;
R : Real;

the following expression would trigger this error:

Int := R + 1.2;

since it is attempting to assign a real value to an integer variable. If
this operation need take place, either the real value must be con
verted to an integer with the Round or Trunc functions, or a real vari
able must be used instead.

II ;J Error 88: Unit missing.

II
Figure 2-24. Unit Missing Error

This error occurs when a Toolbox or QuickDraw routine is used, but
the proper Uses statement has not been included in the program. For
most of the Toolbox routines this Uses is required:

Uses MemTypes, QuickDraw, ToolintF, OsintF;

TURBO PASCAL FUNDAMENTALS 47

I Jf:: Error 43: Duplicate identifier.

Figure 2-25. Duplicate Indentifier Error

There are two common sources of this error. First is declaring the
same identifier for two variables as in the following:

var
JI K, L
L, M, N

Integer;
Real;

The other, more subtle, source is forgetting to start the program
with a begin. For instance:

program ANewBeginning;
var
Larry, Moe : Integer;
Moe := 15;

Since the compiler found no begin, it assumes that the assignment
statement is just another variable declaration and will trigger dupli
cate identifier.

II Jf:: Error 3: ',' eHpected.

II
Figure 2-26. Comma Expected Error

This error can occur in a multitude of situations. The most common
is failing to separate items in a Write statement with a comma.

Write(First Second);

A more subtle occurence is when a built-in function is used with the
wrong number of arguments. For instance, the GoToXY routine re
quires two arguments, X and Y. H one is missing, this error is trig
gered:

48 TURBO PASCAL FOR THE MAC

GoToXY(Y);

Turbo will apply this same standard to all the Toolbox routines and
thus provides a very high level of type checking for the use of the
Toolbox.

This error is caused by using a control variable that is not an enu
merated type. For instance:

var
R : real:
begin
For R := 1.a to s.a do

Here a real variable is being used as the control variable for the For
loop.

3
Pascal Structures

INTRODUCTION

We have already seen the basic building blocks of a Pascal program;
how a program is formed; how values are assigned to variables; and
how simple input and output is done. More will be needed to write
programs that are capable of doing more complex tasks. This chapter
will introduce you to some Pascal's structures, the building blocks of
programs. We will see how decisions can be made in programs, how
statements can be repeated and we will be introduced to rectangles,
the first of QuickDraw's many drawing shapes.

DECISION MAKING-IF-THEN

The If-then structure allows for execution of different statements
depending upon the result of a conditional test. A conditional test is
an expression that can have a value of either True or False. The form
of the If statement is

IF conditional test is True
THEN statement1;

statement2;

If the result of the test is True, then Statementl is executed; other
wise it will be skipped. Statement2 is executed no matter what the
value of the test. The following program uses an If-then statement to

49

50 TuRBo PASCAL FOR THE MAC

make a decision based upon a value that is entered. Enter it and then
run it several times with different values.

program FirstIF;
var

Rum : Integer;
begin

Write('Enter a number any number 1);

Readln(Num);
Write(Num,• is a 1);

if Num > 1aa then
Write(1 BIG 1);

Writeln(1 number 1);

Write(1 Press <Return> to continue 1);

Readln
end.

Here the If statement reads:

if Num > 1aa then
Write(1 BIG 1);

The value of Num is entered by the user. If the input is less than 100
(for instance 79), the Write statement that is part of the If will be
skipped, and the output would read: 79 is a number. However, if the
value is greater than 100, the Write statement contained in the If
statement would be executed, and the output would read: 179 is a big
number.

Conditional Tests

Several different types of comparisons called conditional tests can
be made in an If statement. Following are the possible conditions that
can be tested:

Equal to
<> Not equal to
< Less than
> Greater than
>= Greater than or equal to
<= Less than or equal to

PASCAL STRUCTURES 51

In Table 3-1 are some examples of conditional expressions and their
values. Assume I has a value of 3 and J has a value of 4.

Table 3-1. Conditional Expressions

Expression
3 > 2

I* 2 = 4
I<> J

I - J <= J

Value
True
False
True
True

The following program reads three positive integer values from the
keyboard and finds the largest of the three:

program Iffy;
var

Rum1, Rum2, Rum3 , Biggest: Integer;
begin

Write(1Enter 3 integer numbers separated by spaces 1);

Readln(Rum1, Rum2, Rum3);
Biggest := D;
if Rum1 > Biggest then

Biggest := Rum1;
if Rum2 > Biggest then

Biggest := Rum2;
if Rum3 > Biggest then

Biggest := Rum3;
Writeln(1!he largest of the numbers is •,Biggest);
Write(•Press <Return> to continue 1);

Readln
end.

In this program each value is compared against the current largest
value to see if it is larger. The variable representing the largest value,
Biggest, is initialized to zero, which we will assume is smaller than any
value entered. This assures that the first meaningful value of Biggest
will be the value of Numl. Try to enter several sets of values and see if
you can get the program to "crash." What input produces undesirable
results, and how can the program prevent itself from crashing?

52 l'uRBo PASCAL FOR THE MAC

Compound Statements

If we were only allowed a single statement to be executed as part of
an If-then, its usefulness would be severely limited. There exists a way
to execute many statements rather than just one. Wherever a single
statement can be used, it can be replaced by a compound statement. A
compound statement is a sequence of statements separated by semico
lons and bracketed by a begin and end. Thus, a program can have
many begin and ends sets. The statements contained in a compound
statement are always executed together. Here is a short example of a
compound statement:

program CompoundExample;
var

Num
Abs

begin

Integer;
Integer;

Write('Please enter number 1);

Readln(Num);
if Num < 0 then

begin !Start of Compound statement)
Abs := Num • -1;
Write(' The absolute value of 1 ,Num);
Writeln(1 is 1 ,Abs) (No semicolon)

end; {End of Coumpound statement) (Uses a semicolon)
if Num >= 0 then

Writeln(' The absolute value of 1 ,Num, 1 is ',Num);
Write('Press <Return> to continue ');
Readln

end.

This program finds the absolute value of a number (that number
without any sign). If the value entered is a negative value, the com
pound statement in the If-then is executed multiplying the number by
-1 and then displaying it. If the number is positive, the number is just
displayed as is. This program also demonstrates one of the rules of
good programming. Whenever a value is to be entered, the program
should prompt the user with a message telling what is expected.

A short note on semicolons. A statement before an end never gets a
semicolon. An end that comes before a statement gets a semicolon.

PASCAL STRUCTURES 53

If-then-else

The If-then statement allows a second clause called else to allow two
mutually exclusive statements (or compound statements) as part of
the If, one executed if the condition is True, the other executed if the
condition is False.

The form of the If-then-else is:

if condition then
Statement1

else
Statement2;

Statement3;

For example:

if Hours <= 40.0 then
Pay := Hours • Rate

else
Pay := 40 • Rate + (Hours - 40) • Rate • 2.0;

In this example from a hypothetical payroll program, the If state
ment is used to determine pay based on the number of hours worked.
If the value of Hours is 40 or less, the statement after the then, Pay : =
Hours • Rate; is executed calculating the paycheck. If the value of Hrs
is greater than 40, then the else clause, Pay := 40 • Rate + (Hours -
40) • Rate • 2.0; is executed and adds in overtime pay.

Nested If Statements

The statement that follows after a then or else can also be an If
statement. The nesting of If statements can be used to make multiple
decisions based on the same data. Type the following short program:

program CaliforniaDreaming;
var

Temp : Integer;
begin

Write(1 WHAT'S TODAY'S TEMPERATURE? ');

54 Turu!o PASCAL FOR THE MAc

Readln(Temp);
if Temp > 70 then

if Temp > 80 then
Writeln(1 GO TO THE BEACH')

else
Writeln(1 GO TO THE POOL')

else
Writeln(1 GO TO THE MOVIES');

Write(•Press <Return> to continue •);
Readln

end.

Table 3-2 shows a list of some possible inputs and their associated
output:

Table 3-2. Possible Inputs and Outputs

Input
75

60
89

Output
GO TO THE POOL
GO TO THE MOVIES
GO TO THE BEACH

In the program two "elses" are used. An "else" always belongs to
the If-then that is physically closest to it. In order to see what belongs
to what, it is important that a program be properly indented. The
reader of a program should immediately be able to tell which "else"
belongs to which If statement based upon the way it is indented. For
tunately, Turbo Pascal's editor has an auto indent feature that makes
it easy to properly format a program. Here is a look at another way of
structuring the If statements to get the same result.

if Temp > 80 then
Write(1 GO TO THE BEACH')

else if Temp > 70 then
Write(1 GO TO THE POOL')

else
Write('GO TO THE MOVIES');

Notice the indenting in this example. Each Write statement is in
dented the same number of spaces to emphasize that each is depend
ent on the value of temperature.

What do the following statements print?

Stars : = 4;
if Stars >= 3 then

if Stars = 5 then
Write(1 much better than•);

else
Write(•worse than•);

Writeln(•average•);

PASCAL STRUCTURES 55

If you said "average," then you are wrong. If you said "worse than
average," you are correct. Remember the rule that an "else" belongs
to the closest If statement? That rule applies here also; the "else"
clause belongs to the if Stars = 5 clause. This segment is tricky be
cause the indenting fools us into interpreting the code in the wrong
way. You can bracket an If statement in a begin-end pair and override
the "else" to the nearest If statement rule. The program should be
rewritten as follows to have the "else" belong to the if Stars > = 3
clause:

Stars : = 4;
if Stars >= 3 then

begin

end
else

if Stars = 5 then
Write('much better than')

Write(1 worse than');
Writeln(1 average');

THE BOOLEAN DATA TYPE

Closely related to conditional tests is the Boolean data type. In fact,
the result of a conditional test is a Boolean value. A variable of type
Boolean can have one of only two possible values represented by the
words "true" and "false." They are called Booleans in honor of George
Boole, the father of algebraic logic.

A variable is declared as a Boolean with

var
x, y Boolean;

56 'fuRBO PASCAL FOR THE MAC

Here the variables X and Y are both of type Boolean. A value is
assigned to a Boolean variable with an assignment statement.

I := True;
Y := False;

Boolean Operators

Since Booleans are not numeric values, they cannot use the same
operators as numeric types and therefore must have operators of their
own. These operators are the standard logical operators And, Or, and
Not.

Truth Tables

The operator And takes two values and gives a result of True only if
both values are True. The operator Or gives a result of True if either
value is True. The operator Not simply flips a single value. The table
of possible results of a Boolean operator is called a truth table. Table
3-3 to 3-5 are the truth tables for And, Or, and Not:

Valuel
True
True
False
False

Valuel
True
True
False
False

Table 3-3. And

Value2
True
False
True
False

Table 3-4. Or

Value2
True
False
True
False

Result
True
False
False
False

Result
True
True
True
False

Valuel
True
False

Table 3-5. Not

PASCAL STRUCTURES 57

Result
False
True

The Boolean operators should not seem all that strange to you since
they are used in everyday English. For instance, you might say, "I'm
going swimming and I'm going water skiing." If you did neither or only
one, the statement is False. On the other hand, if you said, "I'm going
bowling or I'm going to play Frisbee," then the statement would be
True if you did either.

Boolean Expressions

Just like numeric expressions where many values are reduced to a
single value, there are also Boolean expressions. A Boolean expression
can consist of

1) a single Boolean value; or

2) a single Boolean variable; or

3) a combination of values and variables connected by operators.

When more than one operator are used together, the order in which
the operations are evaluated is significant. All Nots are applied first,
followed by And operator and then Or. This order can be altered with
the use of parentheses. It is recommended that you always use paren
theses in large Boolean expressions to make them more readable and
understandable. For example, the following two expressions using
Boolean variables X, Y, and Z are equivalent:

I OR NOT I AND Y
I OR ((NOT I) AND Y)

In Table 3-6 are some sample Boolean expressions and their results.

58 Tmmo PASCAL FOR THE MAC

Table 3-6. Boolean Expressions

Expression
True
True or False
True or False and False
(True or False) and False
not True or False

Assuming

X :=True;
Y :=False;
True or Y and not X

Result
True
True
True
False
False

True

Only a Boolean value can be assigned to a Boolean variable. Pascal
goes to quite a bit of trouble to check that all values assigned are
compatible with the type of variable used. This is done to prevent
erroneous values from being assigned to variables. Because of the
large amount of the type checking done, Pascal is referred to as a
"strongly typed language."

LOOPS-MORE LIKE AN AIRPLANE THAN A
BRICK

Up to this point all the programs we have written have one thing in
common. They executed in a sequential order, starting with the first
statement and proceeding to the last (although sometimes an If state
ment provided a fork in the road). You can think of this type of pro
gram as being similar to a brick dropped out of a seventeenth-floor
window. It starts at the top and quickly descends straight down. There
was no way to repeat the execution of some part of the program, just
as there is no way for the brick to do a loop-the-loop on an air current.
Fortunately, Pascal has three different loop structures to make a pro
gram more like a paper airplane than a brick. The loop structure are
For, While, and Repeat. Each of the three different loops has its own
uses and attributes. The first loop to be discussed is the For loop.

To demonstrate the function of the For loop, run this short program,
which uses QuickDraw's rectangle commands.

program OverlappingRectangles;
uses

MemTypes, QuickDraw;
var

Square
Shift, I

begin
Shift := D;

: Rect;
: Integer;

for I := 1 to 20 do

PASCAL STRUCTURES 59

begin
SetRect(Square,1D+Shift,1D+Shift,

4D+Shift,4D+Shift);
FrameRect (Square); ' I Draw Rectangle l
Shift := Shift + 5

end;
Readln;

end.

Displayed by the program is the following:

Ouerlap pin gRec tangles

Figure 3-1. Overlapping Rectangles

60 TuRJIO PASCAL FOR THE MAC

A For loop is used to repeat the execution of a statement a fixed
number of times. In the program the For loops repeat the statements,
which draw a rectangle 20 times. The structure of the For loop is

for variable := expression to expression do
statement:

The loop uses a variable known as the control variable, which is set
to an initial value and then successively incremented each iteration of
the loop until it hits the final value. Both the initial and final values of
the control variable are given as either constants or expressions.
Three reserved words are used in the For loop. "For" indicates the
type of loop and comes before the initial value of the control variable.
This is followed by "to," which comes before the final value for the For
loop, and "do," which comes before the statement (or compound state
ment) that is to be repeated by the loop. This statement is sometimes
known as the body of the loop.

Here is an example:

for K := 1 to 5 do
Writeln('The value of K is •,K):

In this For loop the initial value is 1 and the final value is 5. The
statement after the "do" is executed once for every integer value of
control variable from 1 to 5, displayed as

The value of K is 1

The value of K is 2

The value of K is 3

The value of K is 4

The value of K is 5

The value of the control variable K is changed after each execution
of the Writeln statement contained in the loop. When the final value
of 5 was reached, the Writeln was executed for the last time.

PASCAL STRUCTURES 61

In the next example, the values of the control variable in the For
loop are added together.

Sum := D;
for I:= 1 to 3 do

Sum:=Sum + I;

I

1
2
3

In this loop, the statement after the "do" is execute once for every
integer value of the control variable (I) from 1 to 3.

Let's trace the execution of the loop presented in t e example.

Sum

a
1
3
b

(entering the For loop)
(before execution)

As you can see, the loop was executed three time , once for each
value of I from 1 to 3. This loop does the same thing s the following
statements:

Sum := Sum + 1;
Sum := Sum + 2;
S_um := Sum + 3;

The single statement in the For loop accomplished a three of these
additions. The value added to Sum is the same as the ntrol variable,
which is modified in the loop.

Nested For Loops

When one For loop is placed inside another, the result is known as
nested loops. When there are nested For loops, the inner loop is com
pletely executed for each value of the outer loop. To demonstrate this
concept, let's examine a program that produces a simple multiplica
tion table, the type you memorized back in grade school, generated by
one For loop nested inside another.

62 Tmu!o PASCAL FOR THE MAC

program MultTable;
var

Row, Col, Value : Integer;
begin

Writeln(' 1 :5, 'Multiplication Table');
Writeln;
Write(' •:5); <Generate Heading>
for Row := 1 to 10 do
Write(Row:3);
Writeln;
for Row := 1 to 80 do
Write('-');
Writeln;
{··Start to build table ••}
for Row := 1 to 10 do

begin
Write(Row:4,':');
for Col := 1 to 10 do

begin
Value := Row • Col;
Write(Value :3)

end;
Writeln

end;
Writeln;
Write('Press <Return> to continue ');
Readln

end.

The table is generated by the nested For loops:

{··Start to build table ••}
for Row := 1 to 10 do

begin
Write(Row: 4, ': ');
for Col := 1 to 10 do

begin
Value := Row • Col;
Write(Value :3)

end;
Writeln

end;

MultTable
Multiplication Table

1 2 3 4 5 6 7 8 9 10

1 : 1 2 3 4 5 6 7 8 9 10
2: 2 4 6 8 10 12 14 16 18 20
3 : 3 6 9 12 15 18 21 24 27 30
4: 4 8 12 16 20 24 28 32 36 40
5 : 5 10 15 20 25 30 35 40 45 50
6: 6 12 18 24 30 36 42 48 54 60
7: 7 14 21 28 35 42 49 56 63 70
8: 8 16 24 32 40 48 56 64 72 80
9: 9 18 27 36 45 54 63 72 81 90

10: 10 20 30 40 50 60 70 80 90100

Press <Return > to continue

Figure 3-2. The Multiplication Table

PASCAL STRUCTURES 63

For each value of Row, the inner loop with Col as its control variable
is completely executed for all 10 values of Col. It is then reexecuted
for the next value of Row. In summary, there are 100 iterations of the
inner loop but only 10 of the outer loop.

Down to

A slight variation in the For loop allows the loop to count down, too.
For instance:

for I := 5 downto 1 do
Write(!};

This loop prints 5 4 3 2 1. The keyword "downto" has replaced the
keyword "to," indicating the direction of the counting. The initial
value must now be greater than the final value, or the statement will
not be executed.

64 TuRBo PASCAL FOR THE MAC

One limitation of the For loop is that the control variable can only
be increased or decreased by one. This can be overcome by using a
second variable that is independent of the control variable. Let's write
a loop to add the even numbers between 1 and 10.

EvenNumber := D;
EvenSum := D;
for Count := 1 to 5 do
begin

EvenNumber := EvenNumber + 2;
EvenSum := EvenSum + EvenNumber

end;
Writeln(EvenSum);

Notice that Count goes from 1 to 5, but at the same time the values
of EvenNumber are from 2 to 10 by twos.

PROGRAMMING EXAMPLE-CALCULATING
BANK INTEREST

A For loop can be used in a program to calculate daily interest on
any amount for any period of time. In the following program, the user
is asked to enter the principal amount and the number of years for
which to compute the interest. The interest is compounded daily, and
the information is printed for every 30 days. The formula for com
pound interest is as follows:

Interest := Principal • (1 + Rate I 365)

Here is the pseudocode (see below) for the program:

Get principal amount
Get number of year
Get interest rate
for each year do

for every day in the year do
calculate the daily interest
add it to the principal
if the day is divisible by 30 then

Write (information)

PASCAL STRUCTURES 65

In this book we will express algorithms in a cross between Pascal
and English known as pseudocode. As your programs become more
and more complex, it will become increasingly difficult to conceive of
the entire program at one time. This is where pseudocode comes in.
Pseudocode is a language that is closer to the way people think than
Pascal. Pseudocode can be used to bridge the gap between the abstract
thoughts in your mind and a more concrete realization of these ideas
as a Pascal program. You may not need to write pseudocode for every
program you create, but if a program gets large and complicated or
you don't know where to start, pseudocode can be a indispensable aid
in organizing your ideas.

Now here is the program:

program Interest;
con st

DaysinYear = 365;
var

Day, Years, Yr : Integer;
Rate, Interest, Principal : Real;

begin
Writeln('Interest Compounded Daily');
Writeln;
Writeln;
Write(1Enter the principal 1);

Readln(Principal);
Write(1Enter the number of years 1);

Readln(Years);
Write(1Enter the interest 1);

Readln(Rate);
Rate:=Rate I 100 ; <Convert rate to a fraction>
for Yr := 1 to Years do

for Day := 1 to 365 do
begin

!Calculate daily interest}
Interest :=Principal* (Rate I 365);
!Add interest to principal}
Principal := Principal + Interest;
if Day mod 30 = 0 then

begin
Write(1 For day 1 , Day:3);
Writeln(' The Principal is •,

Principal:8:2)
end

end; {FOR loop}
Write(1 Press <Return> to continue 1);

Readln
end. !Program}

66 TURBO PASCAL FOR THE MAC

The While Loop

The second of Pascal's looping structures is the While loop. Unlike
the For loop, where the number of iterations is known before the loop
is executed, the While loop is a free loop dependent on what happens
inside the body of the loop.

The structure of the While loop is as follows:

while Boolean expression is True do
Statement1;

Statement2;

First, the value of the Boolean expression is evaluated (similar to
the if statement); if its value is True, the loop body is executed and the
Boolean expression is once again che'cked. This process continues until
the value of the Boolean expression becomes False.

Enter the following program, which uses the While loop as well as
one of the special features of the Macintosh:

program NewLoop;
uses

Memtypes, QuickDraw, OSintF, ToolintF;
var

Count Integer;
begin

Count := D;
while not Button do

begin

end
end.

Count := Count + 1;
Writeln ('Iteration Number•, Count)

If you run the program, you will see a quickly scrolling message in
the console window indicating the iteration of the loop. The loop is
stopped just by hitting the mouse button. How? Notice that the condi
tional test in the While loop is not Button. Button is a special Boolean
variable maintained by Turbo Pascal (actually it is a Boolean function,

PASCAL STRUCTURES 67

which we will discuss later, but for now let us think of it as a Boolean
variable). It has a value of False if the mouse button hasn't been
pressed since it was last checked and True if it has. Since we want the
loop to terminate when the button is pressed, we reverse the value of
Button so that it is False after the button has been pressed, terminat
ing the loop. The unusual statement just after the program declara
tion.

uses
Memtypes, QuickDraw, OSintf, Toolintf;

is not a Pascal structure but is rather a message to the Turbo compiler
that certain features of the language not currently included into a
program will be used. The use of Button necessitated this.

Normally, we must alter the value of the condition being checked in
the body of the While loop; otherwise an infinite loop will be created.
For example, the following loop will never end since the value of the
variable Int will never change and thus never be greater than 5:

Int := 1;
while Int <= S do

Writeln(Int);

This loop will continue forever, or until the frustrated programmer
turns off the computer. This is a good time to make an important
point: Always save your program before running it. This would pre
vent loss of the program if you had to reboot the computer to stop a
runaway loop. If you plan to do a lot of programming, it will make
sense to install the plastic programmer's switch on the left side of your
Mac. This will allow you to interrupt the execution of a program by
producing a System Error and should allow you to resume using the
Turbo editor without powering down the computer and losing any un
saved data.

Our next example of a While loop is used to simulate the div and
mod operators.

program Divide;
var

Top, SaveTop, Bottom, Answer, Remainder
begin

Write('Enter the dividend : ');

Integer;

68 TURBO PASCAL FOR THE MAC

Readln(Top):
Write('Enter the divisor '):
Readln(Bottom):
Answer := D:
SaveTop := Top:
while Top >= Bottom do

begin
Top := Top - Bottom:
Answer := Answer +1

end: !while}
Remainder := Top:
Writeln(SaveTop, 1 1 1 ,Bottom, '=' Answer:1, 'R'

Remainder:1):
Write('Press <Return> to continue 1):

Readln
end. !Program}

Let us trace the program for the values Top:= 18 and Bottom:= 5 in
Table 3-7.

Table 3-7. Values for Top and Bottom

Top Bottom Answer
18 -5- 0

Remainder

13 5 1
8 5 2
3 5 3

loop terminates
3 5 3 3

Save Top
18
18
18
18

18

Notice that SaveTop was needed to hold the value of Top since the
original value is changed in the loop.

QUICK TO THE DRAW

Perhaps the most important component of the Macintosh is the
QuickDraw graphics library stored in the Mac's ROM. QuickDraw
forms the foundation on which many of the features are built. Like the
other features of the User Interface, QuickDraw was designed to eas-

PASCAL STRUCTURES 69

ily interact with programs written in Pascal. This is especially true
with programs written with Turbo Pascal. At this point in our familiar
ity with the Pascal language, we can think of QuickDraw as consisting
of a number of "commands" used to generate and display graphics.
The first set of commands we will look at are the rectangle commands.
The QuickDraw commands operate in part with a special set of graphi
cal data types. To access these commands and data structures, a pro
gram needs to communicate with several of Turbo Pascal's units. A
unit is essentially a section of the Pascal system not normally con
nected to a program. To access the units needed to work with Quick
Draw, the Uses statement is included right after the Program
declaration.

uses
Memtypes, QuickDraw, OSintf, Toolintf;

The Mouse

We have already seen how the Button function can be used to report
on the state of the mouse button. Button and other mouse routines are
not actually part of QuickDraw but belong to the Toolbox's Event Man
ager, of which we will see more later on. The second of the mouse
routines is GetMouse, which reports on the position of the cursor on
the screen. By successive calls to GetMouse, we can track the cursor as
it is moved across the screen by the mouse. GetMouse reports the
cursor position in two components, the current horizontal and vertical
coordinates relative to the upper left-hand corner of the cursor win
dow. To do this we need to use one of QuickDraw's special data types
called point. A variable of type point has two components, horizontal
and vertical position. A variable is declared a Point in the variable
declaration section.

var
Position : Point;

This variable of type Point named position actually has two parts
known as Position.Hand Position.V.

70 TuRBo PASCAL FOR THE MAC

Position.H-holds the horizontal distance from the upper left-hand
corner
Position.V-holds the vertical distance from the upper left-hand cor
ner

The next program displays the position of the cursor in the console
window.

program MouseDemo;
uses

Memtypes, QuickDraw, OSintf, Toollntf;
var

Position : point;
begin

while not Button do
begin

GetMouse(Position);
Writeln('Horizontal = 1 : 15, Position.a : 3);
Writeln('Vertical = 1 : 15, Position.v: 3);

end;
Writeln(1 That•s all, folks')

end.

Run the program and move the cursor around the screen with the
mouse. The coordinates of the cursor will be displayed in the window.
Notice the speed with which the information is written to the screen.
The program is terminated by hitting the mouse button.

Rectangles

The first drawing shape of QuickDraw we have seen are rectangles.
Here is the deeper explanation promised. A rectangle is a mathemati
cal structure defined by two points, the point in the upper left-hand
corner of the rectangle and the point in the lower right-hand corner.

To display a rectangle in the console window, you must first declare
a variable of one of QuickDraw's data types called Rect. The Rect data
type is not a standard part of Pascal data type and is used only by
QuickDraw.

This variable declaration:

PASCAL STRUCTURES 71

(Upper, Left)

(Lower, Right)
Figure 3-3. Coordinates of a Rectangle

var
Square, Oblong : Rect;

declares the variables Square and Oblong to be of the Quickdraw data
type Rect.

Once we have defined a rectangle, we are ready to assign coordi
nates to it. This is accomplished with the use of the SetRect command.
SetRect works with five arguments, the name of the rectangle and the
upper left-hand and lower right-hand points listed as follows: upper
horizontal coordinate, upper vertical coordinate, lower horizontal co
ordinate, lower vertical coordinate. Here are two SetRect examples:

SetRect(Square, 10, 10, 40, 40);
SetRect(Oblong, 50, 50, 80, 90);

The first command defines Square as having an upper left-hand cor
ner of 10,10 and a lower right-hand corner of 40, 40. The second com
mand defines Oblong as having an upper left-hand corner of 50, 50 and
a lower right-hand corner of 80, 90. Assigning coordinates to a rectan
gle does not display that rectangle in the window. To do that we need
the FrameRect command.

program DrawRectangles;
uses

MemTypes, QuickDraw;

72 TURBO PASCAL FOR THE MAC

var
Square, Oblong : Rect;

begin
SetRect(Square, 1D, 1D, 4D, 4D);
SetRect(Oblong, SD, SD, 8D, 9D);
FrameRect(Oblong);
FrameRect(Square);
Readln

end.

Displayed in the window by this program is

D

Figure 3-4. Sample Rectangles

Now that we know how to draw a single rectangle, we can create
interesting effects by using a For loop to display a series of overlap
ping rectangles. We simply need to define a rectangle and then rede
fine it shifted slightly.

An animation effect can be achieved by erasing a rectangle after it
has been drawn and then redisplaying it shifted slightly. The
EraseRect command is used to erase the rectangle indicated.

program MovingRectangles;
uses

MemTypes, QuickDraw;
var

Square
Shift, I

begin

Rect;
: Integer;

Shift := 0;
for I := 1 to 20 do

begin
Shift := Shift + 5;

PASCAL STRUCTURES 73

SetRect(Square, 10 + Shift, 10 + Shift,
40 + Shift, 40 + Shift);

FrameRect(Square); {Draw rectangle}
EraseRect(Square) {Erase rectangle}

end;
Write(1 Press <Return> to continue 1);

Readln
end.

This program moves the rectangle across the window at a fast speed.
You can slow down the animation by ~asting time between the writing
and erasing of the rectangle. This can be done by inserting a For loop
that does nothing, such as

for K := 1 to 20 do;

Notice that no statement is actually executed by the For loop.
Experiment with these programs and try to create interesting dis

plays. You might want to use the PaintRect command instead of
FrameRect. PaintRect will display a rectangle that is filled in with
black.

You should note that the coordinate system in the console window
has 0,0 as the upper left-hand point. This will not change even if you
enlarge or move the window.

Try More

Develop a program using a While loop that draws increasingly
smaller rectangles inside of rectangles until they are too small to
draw.

7 4 TURBO PASCAL FOR THE MAC

Reach Further

Develop a program that moves a rectangle from the left side to the
right side of the screen, but rotate the rectangle as it moves.

Combining the Mouse and a Rectangle

QuickDraw contains a routine called PtlnRect, which will tell us if a
particular point is in a particular rectangle. PtlnRect is a Boolean like
Button and returns True if the point is inside the rectangle and False
otherwise. PtlnRect needs two pieces of information to work, the point
and the rectangle. This is deceptively powerful; by connecting this
with the GetMouse procedure, we can easily tell the position of the
mouse relative to other objects on the screen. A short example pro
gram:

program Boong;
uses

Memtypes, QuickDraw, OSintf, Toolintf;
var

R : Rect;
Position : point;
Done : Boolean;

begin
SetRect(R, 30,30,40,40);
FrameRect(R);
Done := True;

While not Done do
begin

GetMouse(Position);
if ptinRect(Position, R) then
begin

Writeln(1 Booong 1);

Done := False;
SysBeep(100)

end; {if}
end; I While}

end. {program}

PASCAL STRUCTURES 75

ple. For instance, SysBeep(100) will sound the speaker for 2.2 seconds.
A programming style note: This program had lots of ends, each one
labeled with a comment for clarity.

We can make this program slightly more interesting by moving the
rectangle across the screen, making it sort of a target to hit with the
mouse. This can be done by framing the rectangle, erasing it, changing
the coordinates of the rectangle, and then reframing it. An animation
effect is created by the continual drawing, erasing, and offsetting of
the rectangle.

program BooongBooong;
uses

Memtypes, QuickDraw, OSintf, Toollntf;
var

R : Rect;
Position : point;
Done : Boolean;
h,v : Integer;

begin
h := 30; v := 40;
Done := True;
While not Done do
begin

SetRect(R, h,h,v,v);
FrameRect(R);
GetMouse(Position);
if ptinRect(Position, R) then
begin

Writeln(1 Booong 1);

Done := False;
SysBeep(100)

end ;{if}
h : = h + 1; I move the rectangle}
v := v + 1;
{Check to see if the rect has crossed the screen}
if h > 511 then Done := False;

end; {while}
end.

H you run the program, you may think that the box moves too
quickly across the screen. This is because of the sheer speed of pro
grams compiled by Turbo. In fact, a precaution was taken to end the

76 TURBO PASCAL FOR THE MAC

program if the horizontal coordinate of the rectangle exceeds 511. A
way of slowing down the movement of the box would be to include
somewhere in the While loop a statement that does nothing but kill
processor time. A single statement just won't do, what is needed is a
For loop that just iterates without performing anything. Here is a
slower version of the program:

program SlowBoong;
uses

Memtypes, QuickDraw, OSintf, Toolintf;
var

R : Rect;
Position : point;
Done : Boolean;
h,v : Integer;
Wait : Integer;

begin
h := 30; v := 40;
Done := True;

While not Done do
begin

SetRect(R, h,h,v,v);
FrameRect(R);
GetMouse(Position);
if ptinRect(Position, R) then
begin

Writeln(1 Booong 1);

Done := False;
SysBeep(100)

end ;{if}
h : = h + 1; I Move the rectangle}
v := v + 1;
{Check to see if the rect has crossed the screen}
if h > 511 then Done := False;
for wait := 1 to 500 do; {Kill some time}
EraseRect(R);

end; {while}
end.

PASCAL STRUCTURES 77

CHAPTER SUMMARY

We have covered much ground in this chapter. First, decision mak
ing with the If statement and conditional tests were introduced. Two
loops, the For and While, were covered, and many examples of both
were presented. We also took our first look at QuickDraw implement
ing programs using rectangles and the mouse routines Button and
GetMouse. Finally, we used much of what was presented in the chap
ter all together in a program that moved a rectangle across the screen
and made the user catch it with the mouse. In the next chapter, we will
take a deeper look at data types, see more of the routines available in
Pascal and the Toolbox, and design and write our own routines.

4
Functions and More

on Data Types

INTRODUCTION

In Chapter 2, the data types Integer, Char, and String were intro
duced. These are not, however, the only data types available in Turbo
Pascal. In this chapter, we will take an in-depth look at all data and
the functions, both built-in and user-defined, that can be used with
them.

THE CHAR TYPE

We have seen that the data type string can be used to hold a se
quence of characters. The type Char also holds character data but is
limited to holding just one single character. It may seem strange that
both String and the more limited type Char are available. However,
historically, standard Pascal only included Char; String is an extension
added to the language by many versions of Pascal including Turbo.

The declaration:

var
Ch : Char;

declares a variable named Ch, capable of holding a single character.
The following statement

79

80 Turulo PASCAL FOR THE MAC

Ch : = I A I ;

Writeln(Ch);

assigns a character 'A' to Ch and then displays it.
Character data is stored in the Macintosh in a form known as ASCII

(which stands for American Standard Code for Information In
terchange). This code uses the integers 0 through 255 to represent the
different possible characters. If we could look into memory where a
character is stored, we would see an integer that in context will be
treated as a character.

Ordinal Types

Char and most other data types are known as ordinal types. Ordinals
are data types where each possible value (except the last and the first)
have a unique predecessor and successor. The ordinal types include
Integer, Boolean, Char, and the enumerated types (which are dis
cussed in later chapters). Reals are not ordinal types since a unique
successor and predecessor of a real cannot be determined; another
decimal place always exists. Strings are also not included.

Variables of any ordinal type can be used as the control variable in a
For loop. This loop

for Ch := 'A' to •z• do
Writeln(Ch);

will iterate 26 times and display all the uppercase letters from A to Z.

THE ORD AND CHR FUNCTIONS

We have already seen the built-in function Button; Turbo Pascal has
many other built-in functions that can be used in programs. A built-in
function is similar to an operator, except that it is invoked differently.
Like an operator, a function is given a value to work with, called the
argument, which is either a constant, variable, or expression. The
function then "returns" a value based on the argument. We have al
ready seen several built-in functions such as Button, which returns a

FUNCTIONS AND MORE ON DATA TYPES 81

Boolean. When used in an expression, functions have the highest order
of precedence. That is, functions are evaluated before any other oper
ations take place. A built-in function can be used in almost any in
stance that a variable can, such as an expression or a Write statement.
A function cannot be placed on the left side of an assignment state
ment; doing so will generate an error when you try to compile your
program.

The built-in function ORD takes a character as an argument and
returns the ASCII code for that character as an integer.

ORD('A') returns 65

ORD('a') returns 97

ORD('B') returns 66

ORD('Z') returns 90

ORD('4') returns 52

·A·---~l.__ __ o_R_D ___ _:--~ 65

Figure 4-1. The ORD Function

The ASCII code for the characters are in numeric order. This allows
us to compare two characters to find which is alphabetically greater.

if 'A' > 'B' then
Writeln('A IS GREATER')

else
Writeln('B IS GREATER');

This H statement will display BIS GREATER since the ASCII code
for 'B' is larger numerically than the ASCII code for 'A'. Notice that
the letters used in the above example are all uppercase. The lowercase
letters have different ASCII codes than the uppercase letters. All the
ASCII codes for characters are listed in Appendix J.

82 TuRBo PASCAL FOR THE MAc

The opposite of the ORD function is the CHR function. CHR takes
an integer number between 0 and 255, interprets it as an ASCII code,
and returns the corresponding character. For example:

Write(CHR(b5));

displays an A.
CHR and ORD are inverse functions; thus

Write(CHR(ORD(1 A1));

also prints an A. First, the ORD('A') is done returning 65, then
CHR(65) is done returning an A.

Figure 4-2. The CHR and ORD Functions

The ASCII codes of the characters that represent digits are also in
numeric order starting with 0, which is represented by ASCII 48.

1 0 1 - 48
1 1 1 - 49
12 1 - sa

1 9 1 - 57

The difference between a single-digit integer and its ASCII code
may not seem clear to you at this point, and rightfully so. The distinc
tion is the set of operations that can be done on either. You can't
perform any of the arithmetic operations on characters. Thus, two
characters can't be added to find their sum. We can convert the char
acter representation of a number into that number by subtracting
ORD('O') from it.

I:= ORD(1 8 1) - ORD(1 D1) assiqns the inteqer 8 (Sb-48) to I

We can use the ORD function to display the ASCII values of a set of
characters by using a For loop.

for Ch := 'A' to •z• do
Writeln(Ch, ORD(Ch)):

FUNCTIONS AND MORE ON DATA TYPES 83

Inversely, the characters corresponding to ASCII codes can be dis
played with the help of the CHR function and a For loop.

for I := D to 255 do
Writeln(I, Chr(I)):

THE SUCC AND PRED FUNCTIONS

The SUCC and PRED functions will return the successor and prede
cessor values of any ordinal value.

PRED('C') returns 1 B1

succ (SD) returns 51
SUCC (FALSE) returns True
SUCC (PRED(1 B1)) returns 1 B1

The PRED of the first value and the SUCC of the last value of an
ordinal type is undefined, and trying to find it will cause an error
when the program is run.

OTHER BUILT-IN FUNCTIONS

Besides ORD, CHR, PRED, and SUCC, there are many other built-in
functions that can be used. These functions can be broken up into
several categories.

The Conversion Functions

The Trunc and Round functions are used to convert a real value into
an integer. The Round function rounds off a real to the closest integer.

I := Round (4.3)
Round (3.002)

Assigns the value 4 to the Integer I
returns 3

84 TURBO PASCAL FOR THE MAc

Round (3.75)
Round (20.5)
Round (-20.lf)
Round (-20.b)

returns If
returns 21
returns -20
returns -21

The Trunc function, which stands for truncation, converts a real
value to an integer by cutting off the fractional part of the number
instead of rounding it.

Trunc(lf.3)
Trunc(20.7)
Trunc(-20.7)

returns If
returns 20
returns -20

All of these functions are useful in a wide variety of programming
situations, including graphics.

MORE ON REALS AND INTEGERS

Pascal is highly regarded as a programming language to express
ideas and to teach programming. The major complaint has been that
most versions of Pascal did not provide the great accuracy needed in
statistical and scientific work or the freedom from rounding errors
needed in banking and business work. Thus, old-fashioned and anti
quated languages such as FORTRAN and COBOL are still in wide
spread use. Turbo Pascal has solved these problems by providing easy
to-use extensions to the real and integer data types that provide preci
sion unheard of before in any microcomputer or even minicomputer
environment.

The Longint Data Type

A variable of type integer can only represent a value from - Maxlnt
to Maxint, which is from -32767 to 32767 (-215-1 to 215-1). Many
applications require that numbers greater than 32767 be represented.
In this instance, the type Longlnt (for "long integer") is available. A
Longlnt can hold any value from -2,147,482,647 to 2,146,482,647
(- 231-1 to 231-1). A variable is declared a Longlnt with

FUNCTIONS AND MORE ON DATA TYPES 85

var
L Longlnt~

Longlnt and integer are fully compatible as long as you don't try to
assign to an integer a Longlnt too large or small. Doing so will cause a
run-time error. Turbo Pascal converts all integer values to a Longlnt
for all arithmetic operations. If the value is assigned to an integer, it is
then converted back. This need not concern a programmer unless the
result of an expression returns a value too large or small to be as
signed to an integer variable. Longlnt is an ordinal type, and all func
tions that can be used with an integer can be used with a Longlnt also.
If you are familiar with UCSD Pascal, then note that this type has no
relation to that long integer type.

The Extended Real Types

Just like integers, the range of values that can be assigned to a real
is limited. Reals are represented in a mantissa (fractional part) and
exponent format. The range of positive values that can be stored in a
real variable is from 1.5•10-45 to 3.4•1038. This is a wide range but only
provides accuracy to seven or eight decimal digits. For greater accu
racy, two more real types, Double and Extended, can be used. Double
and Extended types work just like real except that the range of values
that can be represented is greater.

The range of the real types are shown in Table 4-1.

Type
Real
Double
Extended

Table 4-1. Real Types

Range
1.5•10-45 to 3.4•1038
S.O•lQ-324 to 1.7•10308
1.9•1Q-49Sl to 1.1•104932

Accuracy in Decimal Digits
7-8

15-16
19-20

Any negative real number whose absolute value falls within these
ranges can also be represented.

The use of these real types is analogous to what happens with inte·
ger and Longlnt types. All of the three real types are fully compatible,
but you can't assign a value to a variable if that value falls outside the
range of the variable's type. That would cause a run-time error. Before

86 1'uRBO PASCAL FOR THE MAC

any real operations are performed, all values are converted to Ex
tended. The result of a real operation is converted to whatever real
type is needed. The following example may clarify this situation:

var
R Real;
D Double;
E Extended;

R := D + E + R;

In this example, the values of R and D will be converted to Extended
values before addition with an Extended result produced. The result
will then be converted to a real and assigned to the real variable R.
This causes no problem unless the result of evaluating the expression
falls outside the range that can be represented by a real. In general,
you should use the type real unless you need the superaccuracy of the
Double or Extended types, since the memory storage requirements of
these types are substantial. This system provides the best of both
worlds. The high accuracy needed for scientific and statistical work is
available without imposing any burden on the programmer. These
data types belong to a part of the Toolbox known as SANE (Standard
Apple Numerical Interface).

Contrary to what might be expected, calculations actually occur
faster when all the variables are of the Extended type. This is because
all computations are done only on Extended variables. If variables of
other types are used, the Turbo compiler must generate the code nec
essary to do the data type conversion. When this code is executed it
slows down the execution of the program.

A fourth real type, called Comp (for "computational"), is like a dou
ble Longlnt that is converted to Extended for computations. It is pro
vided for applications such as accounting, which require calculations
to be done without any rounding errors being introduced into the frac
tional part of the number. With the Comp type, values are stored and
calculations are done as decimal numbers without any decimal points.
No rounding errors will occur as long as the values are in the range of
-263-1 to 263-1, The largest-possible value is 9,223,372,036,854,775,807.
This number is larger than the American National Debt multiplied by
one million and then expressed in Italian lire. Since values are stored

FUNCTIONS AND MORE ON DATA TYPES 87

without a decimal point, dollars and cents can be represented by as
suming a decimal point between the second and third digits. To display
Comp values with a decimal point placed between the second and
third digits, you can divide the value by 100 in the Writeln statement.
For instance:

var
C Comp;

C := 12345; {Assumed to be 123.45}
Writeln(C/10 : 8:2);

will display

123.45

The Summation of an Infinite Series

Mathematicians tell us that when you add together the values of an
infinite series such as 1+112+114+118+ 1116+ 1I32 ... the answer is
a finite value, which in this case is 2. This was proved through mathe
matical induction long before the invention of computers. We can use
Turbo Pascal to confirm this with the use of a For loop. The loop will
successively add together the terms of the series and print both the
terms and the current sum. This example is limited by the accuracy of
the real data type, which is seven to eight decimal places. Once that
accuracy is exceeded values are rounded off.

Here is the pseudocode for the infinite series program, followed by
the program itself:

Set first term to 1
for I := 1 to 30 do

add the term to the sum
divide the term in half to get the next term
write the information

program Prove_An_Old_Theory
var

I : Integer;

88 TURBO PASCAL FOR THE MAC

Sum, Term : Real
begin

Term := 1;
Sum := D;
for I := 1 to 30 do

end.

begin

end

Sum := Sum + Term;
Term := Term I 2;
Writeln (I, Sum : 9 7, Term 9

The output of the program appears on the next page.

7)

Proue_nn_Old_Theory
1 1.00000000 0.50000000
2 1.50000000 0.25000000
3 1.750000000.12500000
4 1.87500000 0.06250000
5 1.93750000 0.03125000
6 1.96875000 0.01562500
7 1.98437500 0.00781250
8 1.99218750 0.00390625
9 1.99609375 0.00195312
10 1.99804688 0.00097656
11 1.99902344 0.00048828
12 1.99951172 0.00024414 'Tl
13 1.99975586 0.00012207 ii
14 1.99987793 0.00006104 n g
15 1.99993896 0.00003052 z

"' 16 1.99996948 0.00001526 > z
17 1.99998474 0.00000763 t:1

18 1.99999237 0.00000381 ~
0

19 1.99999619 0.00000191 ::0
t'1

20 1.99999809 0.00000095 0 z
ti
>
~

i
"'
00
ID

Figure 4-3. Prove an Old Theory

90 TURBO PASCAL FOR THE MAc

Experiment by changing the number of iterations and the data types
used (try Double and Extended).

THE ARITHMETIC FUNCTIONS

Turbo Pascal's repertoire of built-in functions includes a set of arith
metic operations.

SQR

The SQR function returns the square of a number. The value used
can either be a real or an integer. The result is either a Longlnt or an
Extended real.

SQR(5) Returns 25
SQR(1.3) Returns 1.69

SQRT

The SQRT function returns the square root of the value given. The
value (argument) can be either a real or an integer, the result is al
ways an Extended real.

SQRT(9) Returns 3.0
SQRT(30) Returns 5.5e+O

ABS

The ABS function returns the absolute value of the value given. The
absolute value of a number is that number regardless of its sign. The
argument may be either a real or an integer, the result is always the
same type as the argument.

ABS
ABS
ABS
ABS

ODD

(s)
(-S)
(D)
(-l.32)

Returns S
Returns S
Returns D
Returns l.32

FUNCTIONS AND MORE ON DATA TYPES 91

The ODD function tests an integer to see if it is odd or even. Odd
returns a Boolean value True if the integer is odd and False if the
integer is even.

ODD (l) Returns True
ODD (b) Returns False

Float

The Float function converts an integer value into a real value. This
is normally not necessary to do when an integer is mixed with reals in
an expression since the compiler will automatically convert the inte
ger into a real for the computation.

Float(l2) Returns 12.D

ORD4

The ORD4 function performs the same task as the Ord function ex
cept that it returns a Longlnt as its result. This is most useful when
dealing with a pointer type; the ORD4 function will return the value of
the address pointed to by the pointer. We will discuss pointers in later
chapters.

92 TuRBo PASCAL FOR THE MAC

INT

The Int function returns the integer part of the expression passed to
it. No rounding takes place.

Int(12.3)
Int(12.8)

Returns 12
Returns 12

THE TRIGONOMETRIC FUNCTIONS

The Sin, Cos, and ArcTan functions are used for trigonometric oper
ations. They take either a real or an integer as an argument and as
sume it to be an angle expressed in radians. The result is always an
Extended real.

Cos(x)
Sin(x)
ArcTan(x)

Returns the cosine of x.
Returns the sine of x.
Returns the arctangent of x.

Any of the other trigonometric functions can be synthesized by us
ing the existing ones.

To find a tangent of x,
To find the cosecant of x,

Sin(x)/Cos(x)
1/Sin(x)

THE LOGARITHMIC FUNCTIONS

Turbo has the EXP and LN natural logarithmic functions. Both take
either an integer or a real as an argument and always return an Ex
tended real.

LN{x) Returns the natural logarithm of x.
EXP(x) Returns the value of ex.

FUNCTIONS AND MORE ON DATA TYPES 93

CONSOLE FUNCTIONS

Turbo Pascal contains a set of procedures and functions used to con
trol the output in the console window. The built-in procedures work
just like functions except that they return no value and therefore can
not be used in expressions. They are complete statements by them
selves. Examples of procedures with which you are already familiar is
Write and GetMouse.

Clear Screen

The ClearScreen procedure clears the contents of the console win
dow and places the cursor in the upper left-hand corner of the window.
All that is needed to use it is the procedure name.

ClearEOL

The ClearEOL procedure clears all the characters from the cursor
position to the end of that line without moving the cursor.

DeleteLine

The DeleteLine procedure erases the line containing the cursor and
moves all below it up one.

lnsertLine

The InsertLine procedure inserts a blank line at the cursor position
and moves all the lines below it down one line.

94 1'uRBO PASCAL FOR THE MAC

GotoXY (X, Y)

The GotoXY procedure moves the position of the cursor in the con
sole window. It takes two values, the horizontal position X and the
vertical position Y, in which to place the cursor. If Xis out of the range
of 1 . . . 80 or if Y is out of the range 1 ... 25, the cursor will not be
moved. The major use of GotoXY is to position the cursor at a specific
position in the window prior to writing text.

Key Pressed

The KeyPressed function returns True if a key has been pressed on
the keyboard and False otherwise. A typical use of this function is to
"freeze" a program until the user hits a key. This can be accomplished
with the help of a While loop.

Writeln('Bit any key to continue•);
while not(KeyPressed) do {do nothing};

TOOLBOX FUNCTIONS

The Macintosh's Toolbox contains several functions that are not part
of standard Pascal. Two functions, SysBeep and TickCount, are pre
sented here. Other Toolbox features will be introduced in later chap
ters of the book.

To use either of these functions, you will need to have the following
Uses statement right after the program declaration:

program Example;
uses MemTypes, QuickDraw, OSintF, ToolintF

(statements in your program.)

FUNCTIONS AND MORE ON DATA TYPES 95

SysBeep

SysBeep (duration);

The SysBeep function causes a tone to be generated on the Macin
tosh's speaker. The duration of the tone is determined by the integer
value passed to the function. The length of the tone will be duration
•0.022 seconds. For example:

SysBeep(100); creates a tone that will last 2.2 seconds.

Tick Count

The TickCount function returns a Longlnt representing the elapsed
time since the machine was turned on in increments of 1I60 of a sec
ond. This information is probably of little use by itself, but TickCount
can be used to time the execution of Turbo Pascal statements or to
compare the execution speeds of different Pascals for the Mac. For
instance, the following program was executed with both Macintosh
Pascal version 2.0 and Turbo Pascal (with, of course, small variations
needed to make the program work within the different environments):

program Timeit;
uses

Memtypes, QuickDraw, OSintf, Toolintf;
var

I, start, stop : integer;
R, S : real;

begin
Start := tickcount;
for I := 1 to 1000 do

R := R + 10;
Stop := tickcount;
writeln(Stop - Start);
Readln

end.

The first call to TickCount marks the elapsed time before the loop
starts. The second call marks the elapsed time after the loop termi-

96 TuRBO PASCAL FOR THE MAC

nates. The difference between the two represents the amount of time
needed to execute the loop.

When run in Macintosh Pascal this program took 203 ticks, or 3.83
seconds, to perform the 1000 calculations. The Turbo version took only
97 ticks, or 1.61 seconds. If Extended values were used rather than
Reals, the execution speeds would have been quicker since, as men
tioned above, all real values are first converted to extended prior to
arithmetic operations. By starting with Extended values, no conver
sion needs to take place. When the variables were changed to integers
rather than reals, the execution times were 106 ticks for Macintosh
Pascal and less than 1 tick for Turbo. Generally, integer operations are
faster than real since there is no need to handle the fractional parts of
the numbers.

USER-DEFINED DATA TYPES

When programming in Pascal, the programmer is not limited to us
ing Pascal's standard data types. You are free to declare your own
ordinal data types in a Pascal program with the Type statement. Any
programmer-declared data type of this kind is called a user-defined
type. The Type statement appears between the Const and the Var
statements.

program Typexample;
con st

C=1;
type

Days = (Sun, Mon, Tue, Wed, Thur, Fri, Sat);

This declares a new data type called Days. The set of possible values
of a variable of type Days is enumerated inside the parentheses in the
statement. A type where every possible value that a type can take on
is explicitly listed in the declaration is called an enumerated type.

Variables can now be created of type Days.

var
PayDay: Days;

FUNCTIONS AND MORE ON DATA TYPES 97

The variable PayDay is of data type Days. The operations that can
be performed on enumerated types are limited, but several are possi
ble. An assignment statement looks the way you might expect it to.

PayDay := Thur;

Notice that there are no quotation marks around Thur. This is be
cause it is not a string value and should not be confused with one. It is
one of the possible values that can be assigned to a variable of the
data type Days. This is not any different from using an assignment
statement with a Boolean variable.

Switch := TRUE;

Here, one of the possible Boolean values is assigned to the Boolean
variable Switch. As a matter of fact, the type Boolean can be thought
of as a predeclared enumerated type with the declaration

Type
Boolean (FALSE, TRUE) ;

Since enumerated types are ordinal types, the SUCC and PRED
functions are available. Assuming PayDay :=Thur;

SUCC(PayDay)
PRED(PayDay)
PRED (Sun)
succ (Sun)

Returns Fri
Returns Wed
Is undefined and causes an error
Returns Mon

When given a user-defined type, the ORD function returns an inte
ger representing the value's position in the declared list of values. The
ORD of the first value declared is zero. Here is the declaration of type
Days and the ORD of the values.

Days = (Sun, Mon, Tue, Wed, Thur, Fri, Sat);
ORDs a 1 2 3 4 5 b

The following loop will print the ORDs.

for PayDay:= Sun to Sat do
Writeln(ORD(PayDay));

98 TURBO PASCAL FOR THE MAC

a
1
2
3
4
s
b

Displayed by the loop is:

Unfortunately, the actual value of a user-defined variable cannot be
directly printed by Turbo. A programmer must handle that task her
self. Luckily, one of Pascal's structures, the Case statement, can help.

THE CASE STATEMENT

The Case statement is a selection structure that can be used to re
place several If statements. The following nested If statements:

if I = 1 then
Wri teln ('ONE')

else if I = 2 then
Writeln('TWO')

else if I = 3 then
Writeln('THREE')

else
Writeln('NONE OF THESE')

can be replaced with

case I of
1: Writeln('ONE');
2: Writeln('TWO');
3: Writeln('THREE');
Otherwise

Writeln('NONE OF THESE')
end; {CASE}

In the Case statement, the keyword "case" is followed by an expres
sion whose value may be any ordinal type except Longlnt. This is fol-

FUNCTIONS AND MORE ON DATA TYPES 99

lowed by the reserved word "of." Between the "of" and the "end"
statements is a list of statements, each labeled with a value of the
same type as the expression. The expression is evaluated, and then the
statement whose label matches the value of the expression is exe
cuted. Since an expression can only have one value, one and only one
of the labeled statements is executed. If the value of the expression is
not found, the statement following the reserved word "otherwise" is
executed. If the Otherwise statement is absent (it is not required) and
the value of the expression is not found, a run-time error occurs. The
Otherwise clause is a Turbo Pascal language extension not found in
standard Pascal.

More than one value may be used as a label, as shown by this exam
ple:

case I of
1, 2, 3
4, s, b

end;

Writeln(1 1 to 3 1);

Writeln(1 4 to 6 1)

If the value of I is from 1 to 3, then the first statement is executed. If
it is from 4 to 6, then the second statement is executed. If it's greater
than 6 or less than 1, oops.

A Case statement can be used to display enumerated types by find
ing the Ord of a variable and using separate Write statements for each
different value possible. For example:

case ORD(Payday) of
D Write(1 Sun 1);

1 Write(1 Mon 1);

2 Write(1 Tue•);
3 Write(1 Wed 1);

4 Write(1 Thur•);
5 Write(1 Fri 1);

b Write(1 Sat 1)

end;

Notice that no Otherwise statement was necessary. Why not? Since
these are the only possible values of Payday, ORD(Payday) would not
produce a value not listed in the Case statement.

100 TuRBo PASCAL FOR THE MAC

COMPARING ENUMERATED VALUES

When two enumerated values are compared, their ORDs are used to
determine which one is the greater. For instance, Tue is greater than
Sun because the ORD(Tue) is numerically greater than ORD(Sun).

ORD(Wed) is greater than ORD(Tue)
ORD(Sat) is greater than ORD(Sun)

Enumerated types are a feature not available in many other popular
programming languages. Although they might appear trivial, they are
a powerful programming tool that will make a program easier to write,
read, and debug. They should be used wherever possible in your pro
gramming.

SUBRANGES

A subrange is a subset of a declared ordinal data type. Here are
some examples:

type
Letters = 'A' •• 'Z':
Cards = 1 •• 52

Two subranges, Letters and Cards, have been declared as subsets
Char and Integer. The first and last values of the range is given with
the two periods (..) standing for all the values in between.

Variable of these subranges can be declared like

var
Deck : Cards:
Ch : Letters:

The possible values of Deck are only the integers from 1 to 52, inclu
sively, and of Ch from 'A' to 'Z', uppercase only, inclusively. Any at
tempt to assign a value other than one in the subrange would result in
an error. The philosophy behind this is that it is preferable to have an
error occur and a program stop than to let the program continue with

FUNCTIONS AND MORE ON DATA TYPES 101

invalid data. This is an example of Pascal's strong typing, the careful
checking of value and data types for compatibility. It is a good pro
gramming practice to use subranges wherever a set of possible values
will fall into a predictable range. Examples of this might be exam
grades, temperatures, ages, models of the Macintosh from 1984 on,
and countless others.

Subranges can also be declared for enumerated types.

type
Days = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
Weekdays = Mon •• Fri;

Here the type Weekdays is a subrange of the user-defined type Days.

USER-DEFINED FUNCTIONS

Pascal allows the programmer to define his own functions in a pro
gram. Let's look at a user-defined function that raises an integer
number to a power, one function that has been left out of Turbo Pas
cal. A function starts with a function heading, much like a program
starts with a program heading. The function heading lists the name of
the function, any arguments to be sent to the function, and the data
type of the value returned by the function. The rules for naming func
tions are the same as for any identifier:

function Power(Base, Exponent : 1 •• Maxint) : Integer;

This is followed by the body of the function. That is where all calcu
lations take place and is analogous to the body of a program. It can
even have its own variable declarations, for variables that can be used
only in the function.

var
I, Ans : Integer;

begin
Ans := 1;
for I := 1 to Exponent do

Ans := Ans • Base;
Power := Ans

end;lfunctionJ

102 TuRBo PASCAL FOR THE MAc

Here is the body of the function. The result of the function is as
signed to the function name (Power). The entire function declaration
is placed after the variable declaration but before the first "begin" of
the program.

The user-defined function is used by in the program the exact same
way a built-in function is used. For instance to raise 3 to the power of
4:

I := Power(3, 4)

In the function, the arguments listed become the value of those de
clared in the function heading. For instance, in this call of the function
Base would be equal to 3 and Exponent equal to 4. The value returned
by Power is an integer because of the type declaration we used in the
function heading. All the rules for assignment hold for the values re
turned by functions. Why define a function for use in a program?
There are two reasons. First, a function can eliminate the need to
include the same or similar programming instructions in more than
one place in a program. The function is defined once and then called
when needed. The second reason is that functions allow us to break
down a program into smaller logical units and help make the program
simpler to conceptualize and program.

The similarity between user-defined and built-in functions goes
more than skin deep. In fact, all of the built-in functions have been
declared as user-defined functions and included in the compiler. For
example, the built-in function ODD might be written like this:

function ODD(N Integer) : Boolean
begin
if (N div 2) • 2 = N then

ODD := FALSE
else

ODD := TRUE;
end; {ODD}

Remember that in integer division the fraction value is lost. When N
DIV 2 is done the remainder is lost if N is ODD. For instance, 5 DIV 2
equals 2. When the result is multiplied by 2 it no longer equals the
original odd value. This is not true for an even number.

FUNCTIONS AND MORE ON DATA TYPES 103

DRAWING OVALS

Along with drawing rectangles, Turbo Pascal can access the Quick
Draw routines necessary to draw ovals. The FrameOval, EraseOval,
and PaintOval commands are analogous to FrameRect, EraseRect, and
PaintRect, except of course they work with ovals rather than rectan
gles. What exactly is an oval? An oval is defined by QuickDraw as the
largest ellipse that can be inscribed inside a particular rectangle.

Figure 4-4. Oval Inscribed in a Rectangle

For instance, to draw a circle, define a rectangle that is a square (all
sides equal) and then use FrameOval.

SetRect(R, 10, 10, 60, 60);
FrameOval(R);

Drawn by these two QuickDraw calls is

Figure 4-5. Drawing an Oval

104 TuRBo PASCAL FOR THE MAc

The radius of the circle drawn is one-half the length of a side of the
square. To display an ellipse, define a nonsquare rectangle instead of
a square.

SetRect(R, 10, 10, bO, 80);
FrameOval(R);

The output would be

Figure 4-6. An Ellipse

A demonstration that comes to mind when drawing ovals is that of a
moon rotating around a fixed planet. The moon will be oriented in an
orbit that is a fixed radius from the planet's center. To do this, we
must be able to calculate the coordinates for any point along the orbit
using the formula for a circle given us by analytic geometry.

R2 = (X-a)2+(Y-b)2

R is the radius, X and Y are points on the circle, and the constants a
and b are the coordinates of the circle's origin. We can calculate the
points on the orbit by using a For loop to iterate through the X coordi
nates in the orbit and solving the equation for Y.

Y = the square root of (R2-(X-a)2)+b

Some built in functions will come in handy for calculating Y.

y := Round(SQRT(SQR(Radius)-SQR(X-a))+b);

FUNCTIONS AND MORE ON DATA TYPES 105

For every X point in the circle there exist two Y points, one on the
bottom half of the circle and one at the same position on the top half.
The equation above will calculate the Y coordinates on the bottom
half of the orbit, but to calculate the points on the top half, we have to
subtract from the bottom half point twice the Y coordinate of the ori
gin, or 2 * b.

y := 2 * b - Round(SQRT(SQR(Radius)-SQR(I-a))+b):

We can use a second For loop to calculate the points in the top half
of the orbit, but we must remember to start calculating the top points
at the spot we finished with the bottom points. Therefore, the second
For loop will be a Downto loop. The formula for the Y coordinates in
the top and bottom halves is very similar, and part of it can be placed
into a user-defined function for simplicity.

function Coordinate : Integer:
begin

Coordinate := Round(SQRT(SQR(Radius)-SQR(I-A))+B)
end:

This function is simple to write but will make the program easier to
implement. The function takes no arguments--all the values it works
with will be the variables from the program. That is fine; a function is
allowed to use any of the variables defined in the program. The value
calculated will be returned using the name of the function.

PROGRAMMING EXAMPLE-KEPLER'S DELIGHT

Here is the program utilizing the oval commands. A new command,
InvertOval, is used to erase the moon right after it is drawn, providing
an animation effect. InvertOval simply changes the color of the black
circle to white, which essentially erases it.

program KeplersDelight:
uses !emtypes, QuickDraw:

con st
A SS:
B = SS:

var

106 l'uRBo PASCAL FOR THE MAC

R : Rect;
Radius, X, Y : Integer;

begin
Radius := 45;
SetRect(R, 45, 45, 65, 65);
FrameOval(R); !Draw the planet}
{Calculate the points in the bottom half of the orbit}
for x := 10 to 100 do

begin
Y := Coordinate;
SetRect(R, X-5, Y-5, X+5, Y+5);
PaintOval(R);
InvertOval(R);

end;
{Calculate the points in the top half of the orbit}
for x := 100 downto 10 do

end.

begin

end

Y := 2·B - Coordinate;
SetRect(R, X-5, Y-5, X+5, Y+5);
PaintOval(R);
InvertOval(R);

• 0
Figure 4-7. Kepler's Delight

Run the program and watch the moon orbit the planet. A real chal
lenge to those comfortable with analytic geometry (and who isn't)
would be to have an even smaller moon which orbits the larger moon
which as the larger moon orbits the planet. This program can make
you stop and think just what the Macintosh would have meant to the
early mathematicians if it had been available to them. Wonder about
the discoveries that would have been made centuries earlier. Figure
out where they would have plugged one in. Would Kepler have turned
out to be another Steven Jobs?

FUNCTIONS AND MORE ON DATA TYPES 107

CHAPTER SUMMARY

This chapter covered much ground, but the trip was worth it. We are
starting to develop programs of increasing sophistication using ad
vanced Pascal structures such as functions and QuickDraw graphics.
The next chapter will advance our ability to develop large programs
even further with the use of procedures.

5
Procedures

INTRODUCTION

Complex problems are easier to solve if they can be broken down
into several components. You have probably noticed this in many fac
ets of life. Once reduced, each component of the problem can then be
analyzed separately. Programs, as well as problems, can benefit from
being partitioned into smaller and simpler pieces. Pascal provides a
way to break a large program into smaller sections called sub
program's. There are two types of subprograms used in Pascal: proce
dures and user-defined functions. We have, of course, already seen the
user-defined function in the previous chapter.

Like a function, a procedure has almost the same structure as a
program except that it begins with the reserved word "procedure,"
and the final "end" in a procedure is followed by a semicolon rather
than a period. A procedure can contain any statement a program can.
When a program contains procedures you usually refer to the non
procedure part as the "main program."

Table 5-1. Comparison of a Program and a Procedure

Structure of a Procedure
procedure <procedure name>;

<type declaration>
<constant declaration>
<variable declaration>
<procedure declaration>

begin
<statements>

end;

109

Structure of a Program
program <program name>;
<type declaration>
<constant declaration>
<variable declaration>
<procedure declaration>

begin
<statements>

end.

110 TURBO PASCAL FOR THE MAC

Before a procedure can be used, it must be declared. A procedure is
placed after the variable declarations but before the "begin" state
ment of the main program. A procedure is used by placing its name as
a statement into the body of a program, just the way GetMouse was
used earlier. Executing a procedure is referred to as "calling a proce
dure." Here is an example of a simple procedure used in a program:

1. program Example;
2. var
3. I, Y, Z : Real;
4.
5. procedure Add;
b. begin {Procedure Add}
7. Z := I + Y;
8. end; {Procedure Add}
9.

10. begin {Main program}
11. Writeln('Enter two numbers•);
12. Readln(I,Y);
13. Add;
14. Writeln(1 The sum is 1 ,Z:b:2);
15. Readln
16. end. {Main program}

SEQUENCE OF EXECUTION

Procedures change the sequence in which statements are executed
in a program. Our example has each line numbered to make it easier
to describe. As always, execution of a program starts with the first
executable statement in the main program (line 11). It then continues
sequentially (one line after another in order) until line 13, where the
statement simply reads "Add." This statement calls the procedure
named Add and transfers execution to the first executable statement
in the procedure (line 7). The procedure is executed sequentially until
the last statement in the procedure (also line 7; this is a very small
procedure). Control returns to the main program, and execution re
sumes at the statement following the one that called the procedure
(line 14). The main program then continues.

This was a short and simple example of a procedure, yet it illustrates
how procedures are written and called.

PROCEDURES 111

USING PROCEDURES

Procedures are best used in a program to either divide a complex
task into subtasks or to handle a task that must be repeated several
times in the program. The procedure allows us to avoid using the same
sequence of statements in several places in the program. Let's create a
program that draws triangles in the console window. To do so, we must
further explore some features of QuickDraw.

Drawing Lines

Lines, like the other graphics we have seen, are drawn with Quick
Draw's pen. Obviously there is physically no pen drawing on your
screen. The pen is a metaphor for describing drawing operations as
though they were done on paper with an ink pen.

To draw lines, we utilize the old saying that the straightest path
between two points is a line. First we position the pen with the
MoveTo command.

lloveTo(X, Y):

MoveTo picks up the pen and moves it to the point X, Y without
drawing anything. We do this to position the pen to the starting point
of the line. The line is actually drawn with the LineTo command.

LineTo(X,Y):

LineTo draws a line from the old pen position to the new point given
in the command.

For example, to draw a line across the window from 10,10 to 10,100
we would

lloveTo(1D,1D):
LineTo(1D,1DD):

{!love to starting point}
{Draw line to ending point}

Let's combine drawing lines with procedures in order to create a
procedure that draws an equilateral triangle. An isosceles triangle has
two equal sides. The procedure will use three pieces of information,

112 TURBO PASCAL FOR THE MAC

(10,10) (10,100)

Figure 5-1. Drawing a Line

the coordinates of the upper left-hand point in the triangle and the
length of the sides. Geometry and Pythagoras tell us the coordinates of
the other points.

In the procedure, we first position the pen at point X, Y and then
draw sides 1, 2, and 3.

procedure Tri (I, Y, Side Integer);
begin

MoveTo(X, Y);
LineTo(X +Side, Y);
LineTo(X +Side div 2, Round(Y + Side I Sqrt(2));
LineTo(X, Y);
Readln

end;

The procedure heading looks as follows:

procedure Tri (I, Y, Side : Integer);

After the name of the procedure are the parameters to be used by
the procedure (also called arguments). Parameters are a means of
passing information from a main program (or procedure) to a proce-

X,V side 1 X, V+Side

side 2

X+Side div 2, V+Side/Sqrt(2)
Figure 5-2. An Isosceles Triangle

PROCEDURES 113

dure. Placing variable names in the parameter list is similar to declar
ing them as variables. They are declared by listing the parameter and
its type in the procedure heading. However, parameters differ from
variables in that they are automatically given values by the statement
that calls the procedure from the main program. Let's look at an exam
ple.

program Triangles;
uses

!emTypes, QuickDraw;

procedure Tri (I, Y, Side Integer);
begin

!oveTo(X, Y);
LineTo(X + Side, Y);
LineTo(X + Side div 2, Round(Y +

Side I Sqrt(2));
LineTo(X, Y)

end;

begin {main program}
Tri(lD,lD,lD);
Tri(lfD, lfO, 5);
Tri(ao, as, 18);
Readln

end.

Figure 5-3. Displayed by Triangles

As you can see, our main program draws three triangles by calling
the procedure Tri three times. Each statement that calls the procedure
has a list of values after it.

114 TURBO PASCAL FOR THE MAC

Tri(1D,1D,1D);
Tri(lfD, lfD, 5);
Tri(80, 85, 18);

These values correspond to the parameters in the procedure head
ing. For each particular call to the procedure, the value of the parame
ters are as given in Table 5-2.

Call 1
Call 2
Call 3

Scope of Variables

Table 5-2. Values of Parameters

x
fO
40
80

y
fO
40
85

Side
10

5
18

Besides parameters, procedures can have variables declared in them
just like a main program. This presents a puzzling question. When a
procedure has its own variable declaration, where and when can they
be used? Can they be used in the main program? How about the vari
ables declared in the main program-can they be used in the proce
dure? Pascal has a very strict but easy-to-use set of rules for this
situation. It is often ref erred to as the "scope of a variable."

In our first procedure example, it was obvious that a procedure may
use the variables declared in the main program. This is because the
main program's variables are declared at the begining of the program.
They can be used anywhere throughout a program and are said to be
"global" in scope. On the other hand, a procedure's variables can be
used only in the procedure in which they are declared. They are said
to be "local." The same rules apply to functions. Consider the follow
ing diagrams demonstrating the scope of variables in two programs.

Program XX;
YAR

A,B,C : Integer;

Procedure YY;
D ,E,F : Integer.

I

PROCEDURES 115

A,B, C, D ,E,F can all
be used here.

A,B,C can be
used here.

Figure 5-4. Scope of Variables

Program XX;
YAR

A,B,C : Integer;

Procedure YY;
D ,E ,F : Integer;

A,B, C, D ,E,F can all
be used here.

A, B, C, H, I ,J can a 11
be used here.

A,B,C can be
used here.

Figure 5-5. A More Complex Situation

116 TuRBo PASCAL FOR THE MAC

To be a little clearer, you can think of variables as having a lifetime,
the period between its creation and its destruction. When a procedure
that declares variables is called, the variables declared in it are cre
ated. While that procedure is executing, the variables are alive, but
once the procedure ends, the variables are destroyed and thus can't be
used. Even when a procedure is called multiple times, the variables
are created and destroyed in each call. This means that a value can't
be left in a procedure for subsequent calls to that procedure. Since the
main program is always active (until the final "end" is encountered)
its variables are always available for use.

Local variables inside a procedure may even have the same name as
a global variable. For example:

program TwoNames;
var

X : Integer;

procedure TheSame;
var

X : Integer;
begin

x : = 1;
Writeln(X)

end; {Procedure}

begin

end.

x := If;
Writeln(X);
TheSame;
Writeln(X);
Readln

The output is 4
1
4

In this example, there are two separate variables X. One is the
global variable X, declared at the top of the program. Its lifetime is as
long as the program runs. The other variable X is the one that is de
clared in the procedure TheSame. Its lifetime is only while the proce
dure is being executed. If a local and global variable have the same

PROCEDURES 117

name, the local variable is the one used in the procedure where it is
declared. Hence, in the procedure the local variable named X was
used and the value of the global variable named X was not changed.
The global variable X is used everywhere in the program except in the
procedure where the local variable takes precedence. This exercise
was used only to emphasize the difference between global and local
variables and constitutes a bad programming practice because of the
confusion created.

More on Parameter Passing

We have already seen a simple example of parameter passing. Now
for a little more formal discussion. The parameters listed in the proce
dure declaration are called formal parameters, while the values listed
in the call to the procedure from the main program are called actual
parameters. The actual and formal parameters must agree in number
and type, and their position in the list is significant. When the proce
dure is called, the formal and actual parameters are matched up. The
first formal parameter is matched with the first actual parameter, the
second formal parameter is matched with the second actual parame
ter, and so on. What happens from then on will depend upon the type
of parameter passing being utilized. There are two different mechan
isms used with parameter passing. So far we have demonstrated what
are known as value parameters. When value parameters are used, a
copy of the actual parameter is created and is used as the formal pa
rameter. For example, if we use the procedure declared below:

procedure Swap(E,F : Integer);

and call that procedure from the main program with this statement:

Swap(A, B)

the corresponding actual parameters are copied into the formal pa
rameters.

118 Turulo PASCAL FOR THE MAC

Formal
parameters

Actual
parameters

E _3_11 - -3-1 A

F_I _ 4 _I 1 __ 4 _1 6

Figure 5-6. Value Parameters

When the values of the formal parameters are changed inside the
procedure, the changes do not affect the main program's actual param
eters. Therefore, value parameters cannot be used to send information
from a subroutine to a main program. When using value parameters,
either a constant or expression can be used in the actual parameter
list. Some examples of this are

Proc1(A, 2)

ColorProc('Blue•,•Green 1 , 1 Yellow•)

DoJ!ath(2*3, I* x, I* 5)

In the final example above, the expression is evaluated first, and
then the resulting value is passed to the procedure.

Variable Parameters

The second type of parameter passing is known as variable parame
ters. When using variable parameters, no copy of the actual parameter
is made, but rather a pointer to the actual parameter is created. This
essentially creates two names for the same memory location. A param
eter is declared as a variable parameter by including the keyword
"var" before its declaration in the procedure heading.

PROCEDURES 119

procedure Swap(var E,F : Integer);

This procedure is called from the main program with the statement

Swap(A, B)

Formal
parameters

Actual
parameters

E"----~----i _________ _

F"-----------~----------
Figure 5-7. Variable Parameters

A

B

Here is a program written to utilize parameter passing with several
Writeln statements used to help clarify the situation:

program Demo;
var

A, B, c, D : Integer;

procedure Swap(var E,
var

Temp : Integer;
begin /

Wri teln (• E= I E ,
Temp := E;
E := F;
F := Temp;
Wri teln ('E= I E ,

end; {Procedure}

begin {Main}

F Integer);

1, I F= I ,F 1);

1, I F= I ,F 1)

120 TuRBo PASCAL FOR THE MAc

A := 4:
B := 3:
c := S:
D := 1:
Writeln(1 A= I A 1, I B= I ,B 1):
Swap(A, B):
Writeln('A= I A 1, I B= I ,B 1):
Readln

end.

A=
E=
E=
A=

The output is

4 B= 3
4 F= 3
3 F= 4
3 B= 4

We say that E and F point to the variables A and B. When a change
is made to E, the change is actually made to the variable that E points
to, which is A. When a change is made to F, B is actually affected.
When a change in a formal parameter is reflected in an actual parame
ter, it is referred to as a "side effect." Using variable parameters is
also sometimes called passing parameters by reference. From the out
put you can see how the formal parameters were exchanged and the
actual parameters in the main program were affected.

Comparing Value and Variable Parameter Passing

To emphasize the difference between the two methods of parameter
passing, Table 5-3 shows two versions of the same program, one using
variable parameters, the other value parameters.

Table 5-3. Two Methods of Parameter Passing

Variable Parameters
program Vars;
var

X, Y : Integer;

procedure PT(var A, B: Integer);
begin

Value Parameters
program Vals;
var

X, Y : Integer;

procedure PT(A, B :Integer);
begin

1
2
2

PROCEDURES 121

Table 5-3. Two Methods of Parameter Passing (Continued)

A:= A+ 1;
B: = B + 2;
Writeln(A : 2, B : 2);

end;

begin { Main }
x := 1;
y := 1;
Writeln(X : 2, Y : 2);
PT(X, Y);
Writeln(X : 2, Y : 2);
Readln

end.

The outputs are

1
3 <---from procedure
3

A:= A+ 1;
B := B + 2;
Writeln(A : 2, B : 2);

end;

begin { Main J
x := 1;
y := 1;
Writeln(X : 2, Y : 2);
PT(X, Y);
Writeln(X : 2, Y : 2);
Readln

end.

1 1
2 3
1 1

<---from procedure
<---no side effect

As you can see in the program on the left, variable parameters were
used, and the variables in the main program were affected by the
operations in the procedure. In the program on the right, value param
eters were used, and there was no effect on the variables in the main
program. Normally, any time you know that the actual parameter will
not be changed by a procedure, you should use value parameters.

Mixing Variable and Value Parameters

In many situations you will mix the use of variable and value param
eters. Both types can be included in the procedure's parameter list.
Each separate declaration of variable parameters must have its own
"var" in front of it.

The following example raises a number to a power (a mathematical
operation left out of Pascal). It is a typical example of mixing both
value and variable parameter in a procedure. The information sent to
the procedure, the number, and the power are both value parameters.
The answer is sent back to the main program in a variable parameter
(Ans).

122 TURBO PASCAL FOR THE MAC

program PowerTest;
var

Num,Power : Integer;
Ans : Real;

procedure DoPower(var Ans
Power : Integer);

var
I : Integer;

begin
Ans := 1;
for I := 1 to Power do
Ans : = Ans*Base

end;
begin

Real; Base,

Writeln('Enter the number and the power
to raise it to•);

Readln(Num, Power);
DoPower(Ans, Num, Power);
Writeln(Ans);
Readln

end.

This procedure worked by multiplying the Base by itself Power
number of times. Let's trace the procedure for 2 and 3 in Table 5-4 as
the values of Base and Power.

Table 5-4. Results of Using 2 and 3 as Base and Power

I Ans Base Power
-1- -2- --3-

1 2 2 3
2 4 2 3
3 8 2 3 <---Done

When to Use Parameters, Local and Global Variables

The experience of many hours of debugging have taught program
mers to use carefully and wisely the various information-passing tech
niques discussed. There are several guidelines you can follow in

PROCEDURES 123

choosing how to pass information to procedures that will prevent you
from having to spend much time debugging.

Use global variables as little as possible for passing information to
procedures. Global variables are visible to every procedure in your
program, and a change made to a global variable in one procedure
may cause unforeseen changes to other procedures that use that
global variable. You should never use global variables to pass informa
tion to only one or two procedures. It would be better to pass that
information as parameters instead. The only time passing information
through globals is desirable is when many procedures in your program
access the same information; in this case passing the same parameter
to every procedure is a burden, and global variables may be better.

Use variable parameters only when necessary. Only use variable
parameters when a procedure must change the value of a variable in
the caller. Never use a variable parameter if a value parameter could
be used instead. Use value parameters as much as possible. If a value
and variable parameter could be used to do the same job, always
choose the value parameter. If a local variable will suffice, do not use
a global variable. 1

PROGRAMMING EXAMPLE-MORTGAGE
CALCULATOR

Let's turn to a larger, more complex application that requires the
use of procedures to help organize the program development process.
From time to time people find themselves in a situation where they
have to borrow a substantial sum of money. Loans of this type, of
which a mortgage is one (the Latin translation of mortgage is "death
commitment"; if you have a house, you know what this means), are
known as amortized loans. In such a loan the monthly payment is con
stant throughout the life of the loan, but the part of the payment that
goes toward interest and the part that goes toward reducing the
amount borrowed (principal) varies. In the early years of the loan, the
interest component of the payment is high, indicating very little prin
cipal is paid off. Little by little, the principal is reduced, decreasing
the interest component of the payment and increasing the principal
part of the payment. Analyzing this process is complicated, so it would
be helpful to have a program to calculate the payments. The program

124 TuRBo PASCAL FOR THE MAC

not only calculates the monthly payment and the yearly principal and
interest paid, but also reports the true cost of the payments after con
sidering the income tax deduction on the interest paid and subtracting
that from the total yearly payment.

The formulas for the calculations are
Interest rate * (Interest rate+l)#of years + Principal

Annual payment=---------------------
(Interest rate+l)#of years-t

Monthly Payment = Annual payment I 12

Yearly Interest paid = Interest rate * Principal remaining

Yearly Principal paid = Annual Payment - Yearly interest paid

Principal Remaining = Principal - Principal paid to date

Actual Cost = Interest paid* (1- Tax bracket/100) + Principal paid

The program will prompt the user to enter

• the Principal amount

• the Interest rate (as a fraction)

• the Term of loan in years

• the Tax bracket (as a percentage)

First let's pseudocode the program:

Get input
Calculate annual and monthly payment
For I:=L to Years Do
begin

calculate yearly principal and interest paid
calculate yearly cost
write information

end.

Now let's take a stab at writing the main program without the proce
dures.

program !ortgage;
var

Years : Integer;
AnPay,
!onthPay,
Principal,
AnCost,
AnPrinPay,
AninterestPay,
IntRate,
TaxBrac

: Real;

!Procedures will go here!

begin
Getinfo;

PROCEDURES 125

Humber of years of mortgage
Amount of payment each year
Amount of payment each month
Amount of principal still owed
Actual cost after tax is considered
Amount of principal paid off each year
Amount of interest paid each year
Interest rate of loan
Percentage of income paid to Uncle Sam

CalculatePayment(AnPay, !onthPay, Years, IntRate);
Writeln('The monthly payment is 1 ,!onthPay : & : 2);
PrintTable;
Readln

end.

Now let's put everything together.

Listing 5-1. Mortgage Program with Procedures.

program !ortgage;
var

Years : Integer;
AnPay,
!onthPay,
Principal,
AnCost,
AnPrinPay,
AninterestPay,
IntRate,
TaxBrac

: Real;

Humber of years of mortgage
Amount of payment each year
Amount of payment each month
Aamount of principal still owed
Actual cost after tax is considered
Amount of principal paid off each year
Amount of interest paid off each year
Intereset rate of loan
Percentage of income paid to Uncle Sam

(-----------------------------}
procedure Getinfo;
begin

Writeln(1Enter amount of loan•);
Readln(Principal);
Writeln(1Enter number of years•);
Readln(Years);
Writeln(1Enter interest rate as a fraction•);

126 TuRBo PASCAL FOR THE MAc

Readln(IntRate);
Writeln(1Enter your tax bracket');
Readln('faxBrac)

end;
(-----------------------------)
procedure CalculatePayment (var AnPay, !onthPay

var

Years : Integer;
IntRate Real);

TempResult
I

Real;
Integer;

begin
TempResult := L;
for I := L to Years do

TempResult := TempResult * (IntRate + L);

Real;

AnPay := (IntRate * TempResult * Principal) I (TempResult - L);
!onthPay := AnPay I 12

end;

(-----------------------------}
procedure PrintTable;
var

Temp, I : Integer;
begin

Writeln('Year', ' •:If, 'Interest', ' ', •Prine•, • ' 'Cost');
for I := L to Years do

begin
Write(I : 3);
AninterestPay := Principal * IntRate;
Write(AninterestPay : & : 2);
AnPrinPay := AnPay - AninterestPay;
Write(AnPrinPay : & : 2);
Principal := Principal - AnPrinPay;
AnCost :- (TaxBrac I LOO * AninterestPay) + AnPrinPay;
Writeln(AnCost : & : 2)

end !For loop)
end; !Procedure)
(-----------------------------)
begin I !ain program I

Getinfo;
CalculatePayment(AnPay, !onthPay, Years, IntBate);
Writeln(1 The monthly payment is 1 , !onthPay : & : 2);
PrintTable;
Readln

end. I Kain program I

PROCEDURES 127

H the values entered were an $80,000 loan at 13 percent for a period
of ten years and the borrower's tax bracket was 40 percent the pro
gram would produce this table:

Enter amount of loan :
80000
Enter number of years
10
Enter interest rate as a fraction
. 13
Enter your tax bracket
40
The monthly payment is
Year Interest Prine

1 10400.00 4343. 17
2 9835 .39 4907 . 78
3 9197 .38 5545 .79
4 8476 .42 6266 .74
5 7661 . 75 7081 . 42
6 6741 . 17 8002 . 00
7 5700 .90 9042 . 26
8 4525 .41 10217 . 75
9 3197 . 10 11546.06

10 1696 . 12 13047 . 05

1228 .60
Cost

8503 . 17
8841.93
9224 .74
9657 .31

10146 . 12
10698 . 47
11322 .62
12077 . 92
12824 .90
13725 . 50

The Total Cost is 106972 .67

Mortgage

Figure 5-8. Mortgage Table

This program could have been written without using procedures, but
it would have been harder to organize and write. You will find proce
dures a great aid to you in your future programs.

6
Arrays and Strings

INTRODUCTION

As our programming skill increases, so does the need to use more
sophisticated data types in our programs. In this chapter, we will look
at the data type array, which can contain several distinct but related
components. This is unlike the other data type we have seen where
each variable is a discrete entity. Also discussed in this chapter is the
String data type, which is a Turbo Pascal extension to standard Pascal.

ARRAYS

Let's look at an example that will demonstrate the need for arrays
by writing a program that will read and average three integers.

program Average:
var

A, B, C : Integer:
Avg : Real:

begin
Writeln('Enter three numbers to average•):
Readln(A, B, C);
Avg := (A + B + C) I 3.D;
Writeln(Avg : b : 2):
Readln

end.

129

130 TURBO PASCAL FOR THE MAC

You should recognize this as a straightforward problem whose solu
tion is simple. However, how would you write a program to average
100, 1,000, or 10,000 numbers? It is obvious that it would be extremely
impractical to use 100, 1,000, or 10,000 separate variables. That would
create quite a long Read statement! What is needed is an array.

An array is a group of variables of the same data type, all with a
common name. Each individual variable (called an element) is refer
enced by using a subscript along with the array name.

The declaration of an array is as follows:

Num : Array [1 .. 1 o J of Integer;

Index) \Element type
Figure 6-1. Declaring an Array

Here we have declared an array called Num. Num is an array of 10
memory locations, numbered 1 through 10, each holding an integer.
The standard form for declaring an array is

ArrayName : array [subrange] of DataType;

An array is usually pictured as a linear list of variables.

Num[1 J

Num[2J
Num[3J
Num[4J
Num[5J
Num[6J
Num[7J
Num[8J
Num[9J
Num[1 OJ

Num[1 J 1 s the f1 rst element

Num[2J 1 s the second e I ement
•
•
•
•
•
•
•

Num[1 OJ 1 s the tenth element

Figure 6-2. An Array

ARRAYS AND STRINGS 131

The number of elements in an array and the range of subscripts is
determined by the subrange used.

A : array [3 •• 7] of Integer;

Array A has five elements A [3] , ... ,A [7] .

B : array [-1 •• 10] of Boolean;

Array B has 12 Boolean elements, B [-1], B [0] , B [1] , ... , B [10].
The subrange need not be integer, it can be of any enumerated type.

C : array [False •• True] of Integer;

Array C has two integer elements, C [False] and C [True] .

D : array ['A' •• 'z' J of Boolean;

Array D has 26 Boolean elements, D ['A'], D ['B'], ... ,D] 'Z'].
Each of the separate variables in an array is referred to by the array

name and the subscript in brackets. The subscript can either be a
constant or an expression that must evaluate to a legal subscript. The
following examples all show legal subscripts.

var
Num : array[1 •• 10] of Integer;

Rum [1 l : = 7;
Num[8] := Num[1] + 3;
K : = 4;
Rum[KJ := 3;
Num[K + 21 := 4;

Arrays and For loops are a natural combination. The For loop can be
used to sequentially access all the elements of an array. Let's use a For
loop to initialize all the elements in array Num to zero.

for I:=1 to 10 do Rum[IJ ':= 0;

As this For loop iterates, the assignment statement is executed with
all the different values of I. Thus, each of the ten elements in Num is
set to zero. Let's now write the code to place into Num the following
values:

132 TuRBo PASCAL FOR THE MAc

Num[1]

Num[2]
Num[3]
Num[4]

Num[5]

Num[6]

Num[7]

Num[8]

Num[9]

Num[1 O]

1

2
3
4
5
6
7
8
9
10

Figure 6-3. Array with Values

for I := 1 to 10 do
Num[I] := I;

In this example, the values assigned to each element are the same as
the subscript. Using an array, let's now write the 100 number average
program discussed in the beginning of the chapter.

program Average;
var

Sum, I : Integer;
Avg : Real;
Num : array [1 •• 100] of Integer;

begin
Sum := O;
for I := 1 to 100 do
begin
Writeln('Enter number•, I);
Readln(Num[IJ)

end; [For loop J
for I := 1 to 100 do

Sum := Sum + Num[IJ;
Avg := Sum I 100;
Writeln('The average is ' Avg :b 2);
Readln

end.

ARRAYS AND STRINGS 133

The first For loop is used to read 100 values and place them into the
array. The second For loop is used to add together all the values in the
array. Finally, the average is computed. The use of the array has pre·
served the values entered for use in further calculations.

Two-Dimensional Arrays

Sometimes problems don't lend themselves to representation in a
one-dimensional array but can more easily be represented in a two
dimensional data structure. The data type of the elements in an array
can also be an array.

var
A array [1 •• 3] of array [1 •• 2] of Integer;

This creates a structure called a two-dimensional array. A two-di
mensional array can be pictured as a matrix. Here is the array de
clared above:

Figure 6-4. A Two-Dimensional Array

This two-dimensional array is said to have three rows and two col
umns. Normally, we compact the declaration of a two-dimensional ar
ray to

var
A : array [1 •• 3,1 •• 2] of Integer;

134 TURBO PASCAL FOR THE MAC

The number of rows is always specified first, then the number of
columns. Each element in the array has two subscripts, one for the row
and one for the column. Each element is referred to as
A [row,column]. Here is the same array with each element marked
with its subscript.

Column 1 Col umn2

Rawl A[1 , 1] A[1,2)

Row2 A[2, 1] A[2,2]

Row3 A[3 I 1] A[3,2]

Figure 6-5. A Two-by-Three Array

Two-dimensional arrays are used to represent data that has a row
and-column relationship. A good example of this is a tic-tac-toe board.

Let's look at some examples involving two-dimensional arrays.

var
TwoD: array [1 •• 3, 1 •• SJ of Integer;

The above var section declares a two-dimensional array of three
rows and five columns. Let's fill each element in this array with its
column number.

for Row := 1 to 3 do
for Col := 1 to S do

TwoD[Row, Col] := Col;

The array would now appear as

ARRAYS AND STRINGS 135

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Figure 6-6. A Three-by-Five Array

Notice that the array is filled one row at a time. That is, the value of
the outer "For" control variable, Row, was 1, while the values of the
inner loops control variable, Col, varied from 1 to 5. The effect was the
same as if the following statements had been executed:

TwoD[1, 1] := 1:
TwoD[1, 2] := 2:
TwoD[1, 3] := 3:
TwoD[1, If] := If:
TwoD[1, s] := S:

The same thing happens in the other rows.
Now let's write the code that will add together the value in a column

of the array. This is done by holding a column constant as we vary the
rows. Let's first add the first column.

Sum := D:
for Row := 1 to 3 do

Sum := Sum + TwoD[Row, 1] :

This loop is equivalent to the following statement:

Sum := TwoD[1, 1] + TwoD[2, 1] + TwoD[3, 1J:

Notice that these are the three elements in the first column. All the
columns can be added together by placing this loop into another For
loop.

for Col := 1 to S do
begin

136 TURBO PASCAL FOR THE MAC

Sum := D;
for Row := 1 to 3 do
Sum := Sum + TwoD[Row, Col] ;
Writeln('The sum of column•, Col

end;
2, 1 is 1 , Sum 2)

The contents of a row can be added together by holding the row
constant while varying the columns.

Sum := 0;
for Col := 1 to 5 do

Sum := Sum + TwoD[1, Col];

This is equivalent to the following statement:

Sum := TwoD[1, 1] + TwoD[1, 2J +
Two D[1, 3] + TwoD[1, 4] +TwoD[1, SJ;

Now that we are familiar with using two-dimensional arrays, we can
write a program that acts as a tic-tac-toe board for a game between two
players. The program will keep track of the moves and inform the
players of a win or tie. The tic-tac-toe board could be represented with
a two-dimensional array with three rows and three columns. Each ele
ment in the array will hold an integer, 1 representing an X and 0
representing an 0. Here is the declaration of the array:

Board : array [1 •• 3,1 •• 3J of Integer;

Let's begin by writing the pseudocode for the program.

while no.winner do
begin

Get player A's move
Mark it in the array
Print board
Is it a win?
Get player B's move
Mark it in the array
Print board
Is it a win?

end

ARRAYS AND STRINGS 137

A second level of refinement includes some of the variable declara
tions, the procedure calls, and the main program.

program TicTacToe;
type

var

Win = (Yes, No, Tie);
Player= (I, 0);

Board : array [1 •• 3, 1 •• 3] of Integer;
CurrentPlayer : Player;
Winner : Win;
Sum, Total : Integer;

begin
Winner No;
InitializeArray;
CurrentPlayer := B;
while Winner = No do

begin
if CurrentPlayer = O then {Flip

CurrentPlayerl

end.

CurrentPlayer := I
else

CurrentPlayer := O;
Get!!ove;
PrintBoard;
WinOrTie;
if Winner = Yes then

Writeln(•Game won by •, CurrentPlayer);
if Winner = Tie then

Writeln ('Game ends in a tie');
end

Now all that is left to do is write the procedures. The procedure
InitializeArray will assign a -9 to all the elements in the array. This is
done to make it easier to tell if there is a winner.

procedure InitializeArray;
var

R,C:1 •• 3;
begin

for C := 1 to 3 do
for R := 1 to 3 do

138 TuRBo PASCAL FOR THE MAc

Board[R, CJ := -9
end; {Initialize Board}

This initialization is performed with the help of two nested For loops.
The loops will produce every combination of the subscripts in the fol
lowing order.

Board[1, 1]

Board[2, 1]

Board[3, 1]

Board[1, 2]

Board[2, 2]

Board[3, 2]

Board[1, 3]

Board[2, 3]

Board[3, 3]

Note that the variable R is changed by the inner For loop, which iter
ates three times for each value of C.

The procedure GetMove will prompt the current player for his
move.

procedure Get!ove;
begin

Writeln('Player 1 , PrintPlayer, ' Your Move•);
Writeln('Enter the row•);
Readln(Row);
Writeln(•Enter the column•);
Readln(Column)

end; {Get!ove}

ARRAYS AND STRINGS 139

GetMove calls a small function, PrintPlayer, used to display the
player since CurrentPlayer is a user-defined type and cannot be out
put by a Writeln statement.

function PrintPlayer Char;
begin

if CurrentPlayer = X
then PrintPlayer := 'X'

else
PrintPlayer := '0'

end;

The procedure PrintBoard writes the two-dimensional array to the
console window. Two nested For loops are used for this.

procedure PrintBoard;
var

R,C:1 •• 3;
begin

for R := 1 to 3 do
begin

for C := 1 to 3 do
Write(Board[R, CJ, ' ');

Writeln
end; {For R loop!

Writeln
end;

The outer loop counts the rows, the inner loop the columns. This
means the array is printed row 1 column 1, row 1 column 2, row 1
column 3, then row 2 column 1, and so forth. Note that after a com
plete row is printed, a Writeln is done to advance to the next line. Note
also that the Writeln statement is not contained in the innermost loop.

The procedure WinOrTie is the most complex part of the program. It
analyzes the board and reports back to the main program if there is a
win or tie. To tell if there is a win we must check if either player has
all three positions in a row, column, or diagonal of the array. Since
player A's moves are marked by a 1, if any row, column, or diagonal
adds up to 3 then A is the winner. If any row, column, or diagonal adds
up to 0 then B is the winner. This is why the array elements were

140 TURBO PASCAL FOR THE MAC

initialized to -9 rather 0: so that three empty positions added together
don't add up to 0.

Listing b-1. WinOrTie Procedure for the TicTacToe
Program.

procedure WinOrTie;
var
R,C:1 •• 3;
Sum, Total : Integer;

begin
Winner := No;
if CurrentPlayer X then !Switch current player}

Total := 3
else

Total := D;
{Check columns)
for c := 1 to 3 do

begin
sum := D;
for R := 1 to 3 do

Sum := Sum + Board[R, C];
if Sum = Total then

Winner := Yes
end; !For C loop}

!Check rows}
if Winner No then

begin
for R := 1 to 3 do

begin

end;

Sum := D;
for c := 1 to 3 do

Sum := sum + Board[R, C];
if Sum = Total then

Winner := Yes
end !For R loop}

if Winner = No then
begin

{Check diagonals}
Sum := D;
for C := 1 to 3 do

Sum := Sum + Board[C, C];

if Sum = Total then
Winner := Yes

end; I Ifl
if Winner = No then

end;

begin
Sum := D;
Winner := Tie;
!Look for any empty position}
for C := 1 to 3 do

end

for R := 1 to 3 do
if Board[R, Cl = -~ then

Winner := No

ARRAYS AND STRINGS 141

The output of the routine is in the global variable Winner. Depend
ing upon the move of the last player, Winner is set to either Yes, No, or
Tie, the three possible values of the data type Win. This routine is
divided into three parts. First all columns are checked. We add to
gether the contents of each of the columns. This is done with two For
loops. The column that is varied by the outer loop is held constant as
the inner loop controls the rows. Once all three elements in a column
are added, the sum is compared to the total, which would indicate a
winning move was completed for that player. All three columns are
checked even if a winner has already been determined. This is be
cause the rows are checked with For loops, and there is no way to
abort the checking even after finding the condition we want (this
could have been done with a While loop). However, this is no problem
since Winner is initially set to No and only set to Yes if a winning row
is found. A variable used in this way is called a toggle or switch.

{Check columns}
for C := 1 to 3 do

begin
Sum := D;
for R := 1 to 3 do

Sum := Sum + Board[R, Cl;
if Sum = Total then

Winner := Yes
end; {For loop}

142 'fuRBO PASCAL FOR THE MAC

H no winning column is found, we now move on to check the rows.
The rows are checked in the same manner except that the columns are
kept constant as the loop adds together the contents of each row.

{Check rows}
for R := 1 to 3 do

begin
Sum := O;
for C := 1 to 3 do

Sum := Sum + Board[R, CJ;
if Sum = Total then

Winner := Yes
end !For loop}

The diagonals have to be checked in a different way. The major
diagonal, the one that goes from the upper left-hand corner to the
lower right-hand corner, consists of the elements Board [1, 1],
Board [2, 2], and Board [3, 3]. Note that in each of these elements the
row and column subscripts are the same. The contents of these ele
ments can be added with one For loop using the loop control variable
as both subscripts.

for C := 1 to 3 do
Sum := Sum + Board[C, Cl;

if Sum = Total then
Winner := Yes

The minor diagonal, the one that goes from the upper right-hand
corner to the lower left-hand corner, contains the elements Board [1,
3] , Board [2, 2] , and Board [3, 1] . All these elements can be added
with one For loop if the relationship between the row and column
subscripts is noticed.

for C := 1 to 3 do
sum := Sum + Board[C, 4 - CJ;

if Sum = Total then
Winner := Yes;

H no winning move was made, the array is now checked to see if
there is a tie. In tic-tac-toe there is a tie if there is no place for a player
to move. This would be represented in the array by no element equal

ARRAYS AND STRINGS 143

to the initial value of -9. First, Winner is set to Tie and then two
nested For loops are used to examine the contents of all the array
elements. If any element is found to have the initial value, then there
is a place to move, and Winner is toggled to No.

if Winner = No then
begin

end

Sum := 0;
Winner := Tie;
!Look for any empty position)
for C := 1 to 3 do

for R := 1 to 3 do
if Board[R, CJ = -9 then

Winner := No

PROGRAMMING EXAMPLE-THE TIC-TAC-TOE
PROGRAM

Here is the TicTacToe program all together. This program has more
than just entertainment value. Running the program, we help ac
quaint you with the row and column positions in a two-dimensional
array. Worth noting in this program listing is the comment line of
dashes used to separate procedures. This is done to improve the reada
bility of the program.

Listing b-2. The Complete TicTacToe Program.

program TicTacToe;
uses

Memtypes, QuickDraw, OSintf, Toollntf;
type

Win = (Yes, No, Tie);
Player= (0, X);

var
Board : array [1 •• 3, 1 •• 3 J of Integer;
CurrentPlayer : Player;
Winner : Win;
Row, Column : 1 •• 3;

procedure InitializeArray;

144 Turulo PASCAL FOR THE MAC

var
R,C:1 •• 3;

begin
for c := 1 to 3 do
for R := 1 to 3 do
Board[R, Cl := -9;

end; [Initialize Board]
(---}
function PrintPlayer Char;

begin
if CurrentPlayer = I

then PrintPlayer := 'I'
else
PrintPlayer := '0'

end;
{---}

procedure GetMove;
begin
Writeln('Player •, PrintPlayer, ' Your Move•);
Writeln(1Enter the row•);
Readln(Row);
Writeln('Enter the column•);
Readln(Column)

end; {GetMove}
(---}
procedure PrintBoard;
var
R,C:1 •• 3;

begin
for R := 1 to 3 do
begin
for C := 1 to 3 do

Write(Board[R, Cl, ' 1);

Writeln
end; {For R loop}

Writeln
end;
{--}

procedure iinOrTie;
var
R,C:1..3;
Sum, Total : Integer;

begin

ARRAYS AND STRINGS 145

Winner := Ro;
if CurrentPlayer = I then !Switch current player}
Total := 3

else
Total := D;

{Check columns!
for C := l to 3 do
begin

Sum := D;
for R := l to 3 do

Sum := Sum + Board[R, Cl;
if Sum = Total then
Winner := Yes

end; !For C loop}
!Check rows}
if Winner = Ro then
begin
for R := 1 to 3 do
begin

Sum := D;
for C := 1 to 3 do

Sum := Sum + Board[R, Cl;
if Sum = Total then
Winner := Yes

end {For R loop}
end;

if Winner = Ro then
begin

{Check diagonals}
Sum := D;
for C := 1 to 3 do

Sum := Sum + Board[C, Cl;
if Sum = Total then
Winner := Yes

end; llfl
if Winner = Ro then
begin

Sum := D;
Winner := Tie;

{Look for any empty position}
for c := 1 to 3 do
for R := 1 to 3 do
if Board[R, Cl = -~ then

146 TuR!!o PASCAL FOR THE MAC

Winner := No
end

end;
{---)
function GoodMove (R, C : Integer) : Boolean;
begin
If Board[R,CJ = -9 then

GoodMove := True
else
begin

GoodMove := False;
SysBeep(2);
Writeln('Invalid Move•)

end
end;

{---)
begin {Main program)

Winner := No;
InitializeArray;
CurrentPlayer := 0;
while Winner = No do
begin
if CurrentPlayer = I then
CurrentPlayer := O

else
CurrentPlayer := I;

repeat
GetMove;

until GoodMove(Row, Column);
if CurrentPlayer = I then

Board[Row, Column] := 1
else

Board[Row, Column] := D;
PrintBoard;
WinOrTie;
if Winner = Yes then
begin

SysBeep(10);
Writeln('Game won by ' PrintPlayer)

end; {If}
if Winner = Tie then
begin

SysBeep(10);

Writeln(1 Game ends in a Tie')
end {If}

end; (While loop}
Readln;

end. {TicTacToe}

Do More

ARRAYS AND STRINGS 147

An interesting way to adapt the TicTacToe program is to replace the
two-dimensional array of integer with a two-dimensional array of a
user-defined type with three values: a value of each of the two player's
moves and a third value for an unused position (initial value). Think
about the changes that would be required in the WinOrTie procedure.

Reach Further

A second and more complex change in the program is to replace one
of the players with the computer itself. This requires the program to
identify which of the empty positions is the most advantageous and
requires analysis of the strategy of the TicTacToe game. To proceed,
play several games on paper and try to identify why you made each
move. Then try to quantify your reasoning into an algorithm which can
be programmed.

Arrays of Characters

A limitation of standard Pascal is that the type Char can only hold a
single character. An array whose elements are of type Char can be
used to handle a stream of character data. To read from the keyboard
and store up to 80 characters, we can declare an array as follows:

Inchar : array [1 •• 80 J of Char;

The array Inchar has 80 elements, each one capable of holding 1
character. We can read characters from the keyboard and place them
into Inchar with

148 TuRBo PASCAL FOR THE MAC

I : = D;
Read(Ch);
while not (eoln) do

begin
I := I + 1 ;
IncharCIJ := Ch;
Read(Ch)

end; (while}

We want this loop to keep on reading characters from the keyboard
until a carriage return is entered. EOLN, which stands for End of Line,
is helpful in such situations. EOLN is a Boolean function that returns a
value of False if a carriage return has not been entered since EOLN
was last used and True otherwise. We want the loop to continue exe
cuting when EOLN is False, but a While loop executes when the condi
tion is True. We therefore reverse the value of EOLN with the use of a
"not." When EOLN is used, the Read statement must be used instead
of Readln. Using Readln will cause the program to work improperly.
Note that in this loop, the characters are first read into the Char vari
able Ch and then placed into the array. This is done to trap the car
riage return character and not place it into the array.

This loop could also be written a different way without using EOLN.
We could use the While loop to check the ASCII value of the character
entered.

I : = 1;
Read(Ch);
while ORD(Ch) <> 13 do

begin
Inchar CI J : = Ch;
I := I + 1;
Read(Ch)

end; {While l

Note that the ASCII code for a carriage return is 13.

STRINGS

Character data is often processed by a computer. However, handling
character data in an array of type Char is inefficient and awkward.

ARRAYS AND STRINGS 149

Fortunately, Turbo Pascal has available an extended data type known
as string. A variable of type string can hold a sequence of from 1 to 255
characters long. A variable is declared to be a string with the following
type of declaration:

s string[8DJ;

This declares S to be a string variable. The maximum number of
characters the string can hold is called its size and is indicated in
brackets. The default size is 255 if no size is specified. The size of S is
80, but the length of the string may vary dynamically from 0 to 80
characters at any time. We could say that a string's size is its maximum
length. A value is placed in a string variable with an assignment state
ment.

S: = 'ABCD';

The string value 'ABCD' is enclosed in single quotes. The current
length of string S is now 4. A string variable can be cleared by as
signing to it the null string, which is a string with no contents indi
cated by two consecutive quotes. The length of the null string is zero.

S:=••; {Assign null string to S}

An error will occur if an attempt is made to assign a string value
whose length is greater than the size of the string variable. For exam
ple, the following program segment will produce a run-time error:

var
SJ. : string[lf];

SJ.:='ABCDEF';

Arraylike Access

The individual characters in a string can be accessed as though they
were elements in an array. For instance:

150 TURBO PASCAL FOR THE MAC

s : = I ABCD I;
Write (S [1]) ;

would print 'A'. The integer in the brackets is an index to the charac
ters in the string. An attempt to reference S [0] or a position greater
than the current length of the string would result in a run-time error.
The contents of a string can also be changed in this manner.

s : =I HI I;
S[1] := 1 B1 ;

Writeln(S);

The above program segment would print BI.

Reading a String

String values can be read from the keyboard using Readln.

Readln(S1,S2);

This Readln statement will read two strings, S1 and S2. A carriage
return is used as a sentinel to signify the end of a string when reading
it from the keyboard. The carriage return is not placed in the !!tring.

Comparing Strings

The value of two strings can be compared in a Boolean expression.
The comparison is based on the value of the ASCII codes of the charac
ters in the strings. When two strings of different lengths are compared,
each extra character in the longer string is considered to be greater
than the missing characters in the shorter strings. Two strings must be
of equal length to be equal.

'AB' is greater than 'AA'

'AT' is less than 'ATTACH'

ARRAYS AND STRINGS 151

'BILL' equals 'BILL'

'BILL' is not equal to 'HILL'

Numerically, the ASCII codes for uppercase letters are smaller than
those for lowercase letters, so that

•a• is greater than 'l'

An array of strings can be alphabetized in this way.

THE STRING FUNCTIONS AND PROCEDURES

The arithmetic operators(+,-,/, DIV, and so on) cannot be used
with string values. Operations on strings are performed with the help
of a set of built-in functions and procedures.

The Length Function

function Length(Str : string) : Integer:

The Length function returns the current length of the given string.
For example, the following program segment:

S:= 1 GOOD 1 :

lrite(Length(S)):

prints 4.

The Concat Function

function Concat(S1, 82, ••• : string) : string:

The Concat function is used to combine any number of strings into
one. For example, this statement:

152 TURBO PASCAL FOR THE MAC

S:=Concat(1 GOOD 1 , 1 ' 'MORNING');

produces a value of S of 'GOOD MORNING.' The length of the result
should not exceed 255, or else the characters past 255 will be trun
cated.

The Pos Function

function Pos(Substr, Str : string) : string:

The Position function returns as an integer the position of the first
occurrence of the substring in the string. The statement

I : = Pos ('CD' , 'ABCD 1) :

assigns 3 to I, since the substring 'CD' starts at the third position in
'ABCD.' If the substring is not present, a zero is returned.

The Copy Fundion

function Copy(String, Index, Count : string) : string:

The Copy function returns a string of count characters starting at
String [Index]. The following statement:

StrgVar := Copy('ABCDE', 3, 2)

assigns to StrgVar

1 CD'

The Delete Procedure

procedure Delete(var Str
Integer):

string, Index, Count

ARRAYS AND STRINGS 153

The Delete procedure removes from the specified string Count
number of characters starting at String [Index] . The statements

S:= 1 ABCDE 1 ;

Delete(S, 3, 2);

results in the value of S being 'AE'. If characters outside the length of
the string are referenced, it is not an error. Only the characters that lie
within the range are deleted. Note that Delete is a procedure, not a
function, and does not return a value.

The Insert Procedure

procedure Insert(var Source : string; Destination
string; Index : Integer);

The Insert procedure places the destination string into the source
string at the index position. After execution of the statements

S : = 'ABCDE' ;
Insert(S, 'FF', 3);

the value of S is now

ABFFCDE

7
More on Structures

INTRODUCTION

Because it is a sophisticated programming language Pascal has a
large menu of structures. The set of structures is large enough to pro
vide the programmer with the right tool for the right job. In this chap
ter we will start to complete our study of Pascal's structures by looking
at the last of Pascal's loops, the Repeat loop, and several other fea
tures of the language.

THE REPEAT LOOP

The third of Pascal's loop structures is the Repeat loop. Repeat is a
free loop (like While, unlike For) and can be roughly described as an
upside-down While loop.

The form of the Repeat loop is

repeat
statements

until expression is True;

When executed, the Repeat loop executes all the statements in the
loop and then checks if the condition is True.

Repeat is very much like the While loop. There are three differ
ences:

155

156 l'uRBO PASCAL FOR THE MAC

1) The Repeat loop checks the condition at the bottom of the
loop rather than at the top, as is done in the While loop, so in
the Repeat loop the body of the loop is always executed at
least once. In the While loop, if the condition is initially False,
the body of the loop will not be executed at all.

2) The "repeat" and "until" reserved words automatically
bracket a compound statement. "Begin" and "end" are not
needed.

3) The Repeat loop iterates if the condition is False, the While
loop iterates when the condition is True.

Let's look at a Repeat loop side by side with a While loop.

l : = 1;
repeat

Writeln(l);
l : = 1+1

until l > 10;

l : = 1;
while l <= 10 do
begin
Writeln(1);
l := 1+1

end;

These loops both print the integers from 1 to 10. In examining the
differences, notice where in the loop the condition is checked and how
the opposite conditions are used. The Repeat loop uses the condition I
> 10, and the While loop uses the condition I < = 10.

Checking Input Validity

A useful application of the Repeat loop is to check the validity of
input. For example, a program that analyzed exam grades might use
the following loop to make sure that the values entered as exam
grades were valid:

repeat
Writeln('Enter Grade');
Readln(Grade)

until (Grade >= O and Grade <= 100);

MORE ON STRUCTURES 157

Here the condition is a multiple test. Since we want the value en
tered to fall inside a range, the logical operator And is used. H the
value entered does not fall within the range, the condition is not met,
and the body of the loop is performed again. Think of the difference
between this and declaring the variable Grade as the subrange
1 .. 100. In the case of using the subrange, if a value out of the range is
entered, an error would occur while the program was executing, stop
ping the program. In this loop execution would not stop execution, but
rather would prompt the user to enter the value a second time. This
method is preferable since a major goal in programming is to prevent
a program from crashing (stopping due to an error) because of run
time errors.

However, this input validity technique is useless if the user enters a
noninteger that would "crash" the program (think about the example
back in Chapter 2). How can we protect the program from this? The
most common technique is to accept the input to the program as a
string and then convert the string into an integer. This requires scan
ning through the string, isolating each digit in the string (which is in
character form), converting it to an integer, and then creating the
entire number from the individual digits. We can build a function that
takes a string that represents a positive integer and returns either the
integer or a negative number as an error code.

function String!oint(S : string) : Integer;
var

Sum1 Rum, Ct : Integer;
Val d : Boolean
Ch : Char;

begin
Ct := 1; Valid := True
Sum := O;
repeat

Ch : = S [Ctl;
If not (Ch >= 1 0 1) and (Ch <= ,,,, then

Valid := False;
Rum := Ord(Ch) - Ord(1 0 1); (Convert to an integer}
Sum := Sum • 10 + Rum; {Build the number}
Ct := Ct + 1;

until (Ct > Length(S)) or (Valid= False);
if Valid then

StringtoRum := Rum
else
StringtoRum := -1

end {Function}

158 TuRBO PASCAL FOR THE MAC

The function uses the Repeat loop to iterate through the string. The
condition checked is whether the last character in the string has been
looked at or if an invalid character (doesn't represent a digit) has been
found. This function can now be placed in a Repeat loop, which is
driven by the result returned by the function

repeat
Read(Grade)

until StringToint(Grade>=D);

THE BUBBLE SORT

A sort is an algorithm used to place the values in an array in numeri
cal order. There are many different sorting methods; the bubble sort is
one of the easiest to follow and sufficiently efficient to be used in
many situations. A book on data structures will explain in much more
detail different sorts and the criteria used to evaluate them.

The bubble sort operates by comparing each two adjacent elements
in an array. If they are out of order, they are exchanged. The compari
sons run through the entire array. After a pass is complete, if any
exchanges were made, the process is started again at the top. When no
exchanges take place in a pass through the array, the array is sorted.

Here is the bubble sort in a procedure. The array to be sorted is
passed to the procedure in a variable parameter and is of the global
type ArrayType. Its elements are of the global type ElementType. The
parameter NumElements is an integer containing the number of ele
ments in the array.

procedure BubbleSort(var A
Integer);
type
Exch = (Yes, No);

var
Exchanged : Exch;
Temp : ElementType;
I : Integer;

begin
repeat

I : = 1;
Exchanged := No;

ArrayType; NumElements

for I := 1 to NumElements - 1 do
if A[I] < A[I+1] then
begin

Exchanged := Yes;
Temp := A[I+1];
A[I+1] := A[I];
A[I] := Temp

end
until Exchanged No

end;{Procedurel

4

1

3

2
5

1

3

2

4

5

BEFORE AFTER PASS 1

Figure 7-1. The Bubble Sort

RECORDS

MORE ON STRUCTURES 159

1

2

3

4

5

AFTER PASS 2

One of the most important and powerful data types in Pascal are
records. While arrays consist of variables of the same data type, a
record is a collection of variables that can be of different data types
and are logically related to each other. For example, a record might
contain all the information about a person-name, age, sex, and so on.

A record declaration includes a name of the record and a name and
type of each record element.

type
PayRec = record

ID : Integer;
Hours : Real;
Rate : Real;
Pay : Real

end;{ PayRecl

160 TuRBo PASCAL FOR THE MAC

Examining the declaration above, we see that PayRec is declared in
the type section. The record type PayRec consists of four components,
ID of type Integer, and Hours, Rate, and Pay of type Real.

We can now declare a variable to be of type PayRec.

var
Payroll : PayRec;

Payroll is now of type PayRec and has four components (also called
elements or fields). They are referred to as

Payroll.ID

Payroll.Hours

Payroll.Rate

Payroll.Pay

Each field (or element) is referred to by both its record name and its
field name; a point or period is used to separate them. A record ele
ment can do anything that any other variable of that type can do. The
only difference between a record element and any other variable of
that type is that the record element is part of a larger structure. Exam
ples of assignment statements are

Payroll.ID := 99;

Payroll.Hours : = 40.0;

Payroll.Rate : = 12.5;

Payroll.Pay:= Payroll.Hours • Payroll.Rate;

If more than one record is declared of the same record type such as

var
DayPay,WeekPay : PayRec;

then an entire record can be assigned to another with a simple assign
ment statement.

MORE ON STRUCTURES 161

WeekPay := DayPay;

Any operation other than simple assignment has to be performed
with each separate element. For instance, to multiply all the elements
of our record by 5:

WeekPay.ID := DayPay.ID * 5;
WeekPay.Bours := DayPay.Bours * 5;
WeekPay.Rate := DayPay.Rate * 5;
WeekPay.Pay := DayPay.Pay * 5;

Information in a record is written to the screen or read from the
keyboard into a record by using the complete field name.

Writeln(PayRoll.ID);
Readln(WeekPay.Rate);

This is only a beginning to the use of records. Records are used
extensively by the Toolbox to organize data. For instance, the defini
tion of a Rectangle is a record defined as follows:

Rectangle
top
left
bottom
right

end;

record
Integer;
Integer;
Integer;
Integer

We haven't been aware of the structure of a rectangle because the
SetRect procedure has been used to fill a rectangle's structure without
actually having to view the record. When records are used in conjunc
tion with files, they provide a powerful tool for business applications
and a way to save data for future use. When used with pointers they
can represent myriad situations. Both files and pointers will be pre
sented in the next few chapters.

The With Statement

When using records, it can become tedious to have to use the com
plete name of a record element over and over. The With statement is

162 'fuRBO PASCAL FOR THE MAC

used to shorten the name of a record element when used in a state
ment.

with Payroll do
Readln(ID);

This is the equivalent of

Readln(Payroll.ID);

The With statement automatically prefixes the field name ID with
the record name Payroll to result in Payroll.ID.

The power of the With statement can be expanded by including it in
a compound statement.

with Payroll do
begin

ID := 10;
Readln(Hours,Rate);
Pay := Hours * Rate

end;

This With statement replaces

Payroll.ID := 10;
Readln(Payroll.Hours,Payroll.Rate);
Payroll.Pay := Payroll.Hours * Payroll.Rate;

Consider the following declarations:

type
BirthRec = record

Age : Integer;
Date: String;

end;

AnnivRec = record
Length : Integer;
Date : String

end;

var

BirthDay
Anniversary

Birth Rec;
AnnivRec;

MORE ON STRUCTURES 163

More than one record name can be included in the With statement.

with Birthdays, Anniversaries do
Age := Length;

is equivalent to

Birthdays.Age := Anniversaries.Length;

The proper record name is found and is added to the field name. The
position of the record name in the With statement is insignificant. It
follows, then, that the With might have read

with Anniversaries, Birthdays do
Age := Length;

Using either of the two With statements, this assignment statement
would be ambiguous:

Date := Date;

It is impossible to tell which field is in which record, and therefore this
kind of programming is considered bad practice.

Arrays of Records

We can declare an array whose elements consist of records. This is a
powerful structure capable of holding a large amount of information
easily. Let's design a program that keeps track of the weather over a
period of a year. Here are the declaration sections:

type
SkyType = (Sun, Rain, Cloudy);
WeatherRec = record
Temp : Integer;
Sky : SkyType

end;

164 TuRBO PASCAL FOR THE MAC

var
Weather : array [1 •• 3b5 J of WeatherRec;

We have set up a type, WeatherRec, as a record with two fields. An
array was then declared, Weather, which has 365 elements (one for
each day of the year) of type WeatherRec. Thus there are 365 records
in the array. When we have an array of records, we specify a particular
field in a particular record as

Weather[IndexJ.Temp

The record name with its position in the array given as a subscript is
followed by the field name. This array can be pictured as follows:

~,.._~~~~:·Temp
Weather[11 · .Sky

Weather[2)~ : ::~;P

· ~ :.Temp We ather[365 .--------.-
.Sky ..._ ____ ___.

Figure 7-2. An Array of Records

Since each record is an element in the array, we always use the
array name with a subscript, even when using the With statement.
Here the Temp field of the first record is read

with Weather[1J do
Readln(Temp);

Here the Temp field of the Ith record is read

with Weather[!] do
Readln(Temp);

MORE ON STRUCTURES 165

To continue our weather tracking program, let's read the weather
for each day of last year.

for I := 1 to 3b5 do
with Weather[IJ do
begin
Writeln('Enter temperature for day•, I);
Readln(Temp);
Writeln(1 S)un, R)ain or C)louds 1);

Readln(SkyTemp);
case SkyTemp of
s : Sky := Sun;
R : Sky := Rain;
c : Sky := Clouds;
otherwise Writeln('incorrect value•)

end; {With}

Because of the With statement, when Temp was used in the Readln
statement it referred to Weather[IJ.Temp.

We can now average the daily temperatures.

Temp Sum : = D;
for I:= 1 to 3b5 do

with Weather[IJ do
TempSum := TempSum + Temp;

AvgTemp := TempSum I 3b5;'
Writeln(1 The average temperature was•, AvgTemp

Here is the whole weather program together:

Listing 7-1. Weather Program.

program Weather;
const

DaysinYear = 3;
type

var

SkyType = (Sun, Rain,
WeatherRec = record

Temp : Integer;
Sky : SkyType

end;

SkyTemp char;

\

Cloudy);

2);

166 TuRBo PASCAL FOR THE MAc

Weather: array [1 •• DaysinYearl of WeatherRec;
I, TempSum : Integer;
AvgTemp : Real;

begin !program)
for I := 1 to DaysinYear do

with Weather[!] do
begin

Writeln('Enter temperature for day•, I 2);
Readln(Temp);
Writeln(1S)un, R)ain or C)louds 1);
Readln(SkyTemp);
case SkyTemp of

1s1 : Sky : = Sun;
1R1 : Sky : = Rain;
'C' : Sky := Cloudy;
otherwise Writeln(1incorrect value')

end
end; !With)

TempSum := D;
for I:= 1 to DaysinYear do

with Weather[!] do
TempSum := TempSum + Temp;

AvgTemp := TempSum I DaysinYear;
Writeln('The average temperature was•,

AvgTemp : b : 2);
Readln

end.I Program I

The obvious limitation of this program is that the data entered into
the array will be lost as soon as we stop using the program. What is
needed is a mechanism to save the data for further use on an external
device such as the built-in disk drive. This is the role played by exter
nal files, which will be covered in Chapter 8.

Nested Records

The data type contained in a record can also be a record. This nests
one record inside another. Let's examine the following type declara
tions:

type
FileRec record

File1 : string[20l;

end;

File2 string[20J;
File3 : string[20J

DiskRec = record
DiskName string[20J;
Contents : FileRec

end;

var
Disk1 : DiskRec;

MORE ON STRUCTURES 167

We now have a record (Diskl) that has as an element a subrecord.
Pictorially it looks like this:

DiskName

File 1

Disk 1

· ------------ Contents File2

File3

Figure 7-3. A Nested Record

The way we assign data to a field in this record will differ depending
upon which level of a record the field is in. The field DiskN ame is in
the first level, so we need to use the record and the field name

Disk1.DiskName := •Pau1Stuff 1 ;

168 TuRBo PASCAL FOR THE MAC

The fields Filet, File2, and File3 are all in the second level of the
record, and their names are composed of the record name, the sub
record name, and the field name:

D1sk1.Contents.F1le1 := 'Resume•;

A field in a record can also be an array. Let's change the declaration
of FileRec to

FileRec = record;
Files : Array[1 •• 1DJ of Str1ng[2DJ;

end;

The record Diskl can now be pictured as

File[1]

Disk 1

------------ Contents File [2]

File[10]

Figure 7-4. Nested Record with Array

The fields that are array elements are ref erred to as

D1sk1.Contents.F1les[IJ

MORE ON STRUCTURES 169

Notice that here the subscript is after the field name rather than
after the record name, as it is when we have an array of records.

TIME AND DATE OPERATIONS

The Macintosh Toolbox contains two procedures to fetch and alter
the real time clock built into the computer. To access the clock, Turbo
Pascal has a built-in record type defined as

DateTimeRec = record
Year,
Month,
Day,
Hour,
Minute,
Second,
DayOfWeek Integer

end;

The meaning of most of the fields is obvious. Hour is the number of
hours since midnight, sometimes referred to as the 24-hour clock.
Month is the number of the month from 1 to 12. Day of the week is 1 to
7, from Sunday to Saturday.

To fetch the clock information, first declare records of type Date
TimeRec and Longlnt.

var
Clock
Secs

DateTimeRec;
Longint;

The clock is read by the system's GetDateTime procedure.

procedure GetDateTime(var Secs : Longint);

The GetDateTime procedure returns the number of seconds be
tween January 1, 1904, and the time at which the procedure was called
(kudos to the reader who can figure out the last date that the clock can
hold). Fortunately, you need not convert this figure into the Date-

170 TuRBo PASCAL FOR THE MAC

TimeRec yourself, the built-in Secs2Date procedure will do that opera
tion.

procedure Secs2Date (secs
DateTimeRec};

Longint; var date

The Secs2Date procedure takes the number of seconds elapsed since
January 1, 1904, and converts that into a DateTimeRec. So in order to
read the clock and make sense out of the data, we would use the two
procedures together.

GetDateTime(Secs};
Secs2Date (Secs, Clock};

The fields of Clock now contain the current time and date informa
tion. Two Case statements could now be used to display the name of
the month and day.

SETS

Sets are a structured data type unique to Pascal among the more
popular programming languages. A set is an unordered collection of
items of the same data type, called members. Unlike any other type in
Pascal, the number of elements in a set may change dynamically. A set
is indicated by enumerating members of the set inside brackets.

[1,3,S,'lJ
['A 1 1 1E1 ,'I 1 1 101 , 1U1]

is the set of odd numbers from 1 to 10.
is the set of uppercase vowels.

A subrange can also be used to enumerate the members of a set.

is the set of all lowercase letters.

The general form for the declaration of a set is

var
SetName : set of data type;

The data type can be any ordinal type other than real. A user-de
fined ordinal type can also be used.

MORE ON STRUCTURES 171

This declaration creates a set whose members can be uppercase let
ters:

var
Vowels : set of 'A' •• 'Z';

The declaration of a set does not place any members into it any more
than declaring a variable to be an integer gives it a value. Members
have to be assigned to the set. The members of a set are represented
as shown before.

Letters := [1 A1 , 1 B1 , 1 C1 l;

The set Letters now has three members. The order of the members
of a set has no significance, nor can a set have more than one of the
same member. A set with no members is called the empty set and is
represented with two brackets next to each other [] .

Set Operators

To perform operations on sets of the same type, there are several set
operators.

+ Set Union or Addition

Set Difference

* Set Intersection

SET UNION

Set union forms a third set made up of each of the elements in two
sets. Any member appearing in both sets is only included once.

Expression
D,2,3J + C3,4J
c1 1•,•c•,•B•] + ['B','D']

Result
[1,2,3,4]
c•1•,•s 1 , 1 c•,•n•,•B•l

172 'fuRBo PASCAL FOR THE MAC

SET DIFFERENCE

Set difference forms a third set with the members of the first set
that are not in the second set.

Expression
[L,2,31 - [3 1 11]

Result
[L,21

[IA' •• 'Z'l - ['l','E 1 , 1 I 1 ,'0','0 1] the set of all uppercase
consonants

SET INTERSECTION

Set intersection forms a third set with all the members that the first
and second sets have in common.

Expression
[L,2,31 * [2,~,bl

Result

[111 ,'b','c','D'l * ['a 1 , 1b1 , 1c 1 ,'d'l
[2]
[1b 1 ,'c'l

As shown in Table 7-1 relational operators also can be used with
sets, although their meanings change slightly.

Table 7-1. Regional Operators Used With Sets

Expression

Setl = Set2
Setl < > Set2

Setl <= Set2

Setl < Set2

Setl >= Set2

Setl > Set2

Member in Setl

Returns True If

Setl and Set2 are identical.
The intersection of Setl and Set2 would
produce the empty set.
Setl is a subset of Set2 (all the
members of Setl are in Set2).
All the members of Setl are in Set2,
and at least one member of Set2 is not
in
Setl. Setl is a strict subset of Set2.
Set2 is a subset of Setl (all the members
of Set2 are in Setl).
All the members of Set2 are in Setl and
at least one member of Setl is not in
Set2. Set2 is a strict subset of Setl.
Member is in Setl.

All of these operators except "in" work with two sets.

MORE ON STRUCTURES 173

Sets are useful for input verification. Their use can simplify the type
of function we wrote before. If we were writing a program that ac
cepted student's grades of A,B,C,D, and F, we might use the following
code:

var
Grades et : set of 'A' •• 'z';
Grade : 'A' •• 'Z' ;

GradeSet := ['A','B','C','D','F'l;
repeat
Writeln(•Enter Grade');

Readln(Grade);
if Grade not in GradeSet then

Writeln('Reenter grade');
until Grade in GradeSet;

Some programs require the use of uppercase characters. To convert
from upper- to lowercase, note that the ASCII codes for the lowercase
letters are 32 less than the uppercase. For example:

'A' equals CBR(ORD('a')+32)

Sets can be used in a program that changes the case of a character.

program Convert;
type

CharSet = set of Char;
var
InString : stringC8Dl;
Lowercase: CharSet;
Ct : Integer;
Ch : Char;

begin
Lowercase := c•a• •• •z•l;
Writeln('Enter a string•);
Readln(Instring);
for Ct := 1 to Length(InString) do

if InStringCCtl in Lowercase then
InStringCCtl := CBR(ORD(InStringCCtl)-32);

Writeln(InString);

174 TuRBo PASCAL FOR THE MAC

Beadln
end.

In program Convert, a set, Lowercase, contains all the lowercase
characters. A string is read and a For loop is used to see if any of the
characters in the string is a member of Lowercase. If so, the charac
ter's case is converted and reassigned to the same position in the
string.

A similar program can use sets to list all the characters that appear
in a string. The string is entered and stored in a string variable. The
individual characters in the string are examined and added to the set.
The characters that are members of the set are then displayed. Note
that both upper- and lowercase characters can both be set members.

program ExamineCharacters;
type

CharSet = set of char;
var
InString : stringC8Dl;
LetterSet : = C 'A' • • 'z' l;
Ct : Integer;
Ch : Char;
begin
Writeln('Enter a string');
Readln(Instring);
for I := 1 to Length(InString) do

LetterSet := LetterSet + CinStringCCtll;
Writeln(1 These are the characters');

for Ch : = 'A' to 'z' do
if Ch in LetterSet then
Writeln(Ch);

end.

Sets are a powerful Pascal structure and can be used to replace
many If and Case statements. Their use helps create elegant, well
written programs.

MORE ON STRUCTURES 175

RECURSION

The last topic to be covered in this varied chapter is a programming
technique rather than a structure, which answers the question of what
happens when a subprogram calls itself. The result is not a loop but a
very powerful and complicated technique called recursion. Recursion
is one of the most puzzling and interesting aspects of Pascal.

Recursion can be easily demonstrated by writing a function that
calculates the factorial of a number. The factorial of a number, de
noted with a exclamation point such as N!, is that number multiplied
by all its predecessors down to one. For instance, 5! is 5•4•3•2•1, which
equals 120. Factorials are used extensively in statistical and probabil
istic work. We can also define the factorial of a number as that number
itself times the factorial of that number minus one, or 51 = 5•41. This is
a recursive definition. A recursive definition is not defined in terms of
itself as it might appear, but rather as a simpler version of itself. Here
is the function:

function Factorial(N
begin
if N =D then
Factorial := 1

else Factorial :=
end; {Factorial}

Integer) Integer;

N * Factorial(N - 1)

This function has just one statement. If the value of N is 0, then the
function simply returns a 1 and ends. If N is greater than 1-say 5-
then the Else clause is done. This is where the recursive definition
takes place. N factorial is defined as N times N-1 factorial. At this
point what happens tends to be confusing but need not be. The func
tion now calls the function Factorial, which happens to be itself. The
current state of the function (the value of the variables and which
statement is executed in the function call) is saved, and the function is
started again with the new parameter. When this second call is termi
nated, the original call to the function is resumed with the value re
turned by the second call. Where this starts to get confusing is when a
second call to the function calls the function again and so on. This is
similar to a busy executive on the phone. When a second call comes in,
she puts the first caller on hold and attends to the second caller. When
a third call comes the second caller also goes on hold. Depending upon

176 TURBO PASCAL FOR THE MAC

how busy she is, this sequence of events may take place several times.
Of course, in order for this not to go on forever there must be some
mechanism to end a call. Eventually a conversation ends and the next
to the last call is resumed (assuming, of course, that the person on the
line was patient). The process repeats until she is back to the original
call. This is also true of recursive functions; there must be some way
for each call to the function to terminate. We call this the stop rule. In
this procedure the stop rule may be stated as follows: After N calls to
the function, the value of the parameter N will be 0. This will cause
the "then" part of the If statement to execute and that call to the
function to finish returning a value. If there was no mechanism for the
recursive calls to end, the mechanism used to track the successive
calls to the procedure would overflow memory and cause a run-time
error. When that call ends the function that called it is provided with a
value and can also end. Recursive calls to a function are often viewed
as levels, not unlike several windows on the Macintosh's screen sitting
on top of each other. When the top window closes the one under it
becomes active. This diagram demonstrates the recursion process.

Fact := 1

l 1
Fact := N * Fact(1) Fact:= N* 1
N is 2 N is 2

1
Fact := N * Fact(2) Fact:= N*2
N is 3 N is 3

I
Fact := N * Fact(3) Fact:= N*6
Nis4 N is 4

1 1
Fact := N * Fact{4) Fact:= N*24
Niss N is 5

i i
Write 1 n(F act(5)) 120

Figure 7-5. Recursion

MORE ON STRUCTURES 177

Demonstrated are the successive calls to the function Fact with an
initial value of 5. Notice that no value is returned until the fifth call to
the function. At that point each previous call is evaluated and returns
to the call under it.

RECURSION WITH QUICKDRAW

Graphics are a further way to help demonstrate recursion. A simple
program with rectangles can help show the levels of nesting involved
in recursive calls.

Enter the following program and run it:

program Recurse;
uses

MemTypes, QuickDraw, OSintF, Toollntf;
var

R : Rect;
procedure Box (U, D : Integer);
begin

if (D - U) > 0 then

end;

begin

begin
SetRect(R, u, u, D, D);
FrameRect(R);
Box(U + 5, D - 5) {Recursive call}

end

Box (1, 15 0) ;
Readln

end.

When the program is run, 16 recursive squares will appear in the
console window. A procedure is used to draw a rectangle and then
recursively call itself to draw a smaller rectangle inside the one previ
ously drawn. The stop rule will check to see that the rectangle to be
drawn can't be drawn because the left and right sides of the rectangle
will overlap.

178 TuRBo PASCAL FOR THE MAC

Figure 7-6. Recursive Boxes

The procedure draws a rectangle prior to a recursive call and thus
draws smaller rectangles inside of the bigger one. We can reverse the
drawing order (bigger outside of smaller) by moving the FrameRect
statement to after the recursive procedure call. This way no rectangle
is drawn until after the stop rule is reached, and therefore the smallest
rectangle is drawn first. Another interesting variation in the program
is to keep the FrameRect in the original position, then add an
EraseRect statement after the stop rule. This will display all the rec·
tangles prior to reaching the stop rule and erasing them after the stop
rule is reached.

While the two recursion examples we have seen are interesting and
intellectually stimulating, they demonstrated programs that could eas
ily have been written without recursion (try to see if you can write
them). The next two examples harness the power of recursion to sim
plify more complex tasks.

Let's look at a program that displays a large square and then recur
sively divides itself into four smaller squares. Each rectangle will con
tinue to divide itself until the stop rule is hit. In this case, the stop rule
tests to see if the width of a square is less than five points.

program SubDivide;
uses

MemTypes, QuickDraw, OSintF, Toollntf;

procedure Box (Left, Top, Right, Bottom
var

Integer);

Reenter, Vcenter : Integer;
tempRect : Reet;

begin
if (Right - Left) >= 5 then
begin

MORE ON STRUCTURES 179

SetRect(tempRect, Left, Top, Right, Bottom);
FrameReet(tempReet);
Reenter := (Left + Right) div 2;
Vcenter := (Top + Bottom) div 2;
Box(Left, Top, Reenter, Vcenter);
Box(Rcenter, Top, Right, Vcenter);
Box(Left, Veenter, Reenter, Bottom);
Box(Rcenter, Veenter, Right, Bottom)

end
end;

begin
Box(D, D, 256, 256);
readln

end.

This program differs from the one before because there are four
recursive calls to the procedure rather than one. The original call to
the procedure from the main program draws the largest box and then
calls itself with the first recursive call. This new call draws a box in the
upper left-hand corner of the largest box and then calls itself again.
This new call draws a box in the upper left-hand corner, and the recur
sive calls continue until the stop rule is enacted. At this point all the
upper left-hand corner boxes have been drawn, and control returns to
the second recursive call, which starts drawing upper right-hand-cor
ner boxes. Run the program and watch the order in which the boxes
are drawn. Move the FrameRect statement to after the procedure call
and watch the order in which the boxes will then be drawn.

Our last recursion example utilizes a procedure that draws equilat
eral triangles.

program Recursive_Triangles;
uses

MemTypes, QuickDraw, OSintF, Toollntf;
procedure Tri (X, Y, Side : Real);
begin

if Side >= 5 then

180 TURBO PASCAL FOR THE MAC

end;

begin

Recursiue_Triangle

Figure 7-7. Dividing Triangles

begin
Tri(X, Y, Side I 2);
Tri(X +Side I 2, Y, Side I 2);
Tri(X + Side I 4, y + Side I

Sqrt(2) I 2, Side I 2);
MoveTo(Round(X), Round(Y));
LineTo(Round(X +Side), Round(Y));
LineTo(Round(X + Side I 2),

Round(Y + Side I Sqrt(2)));
LineTo(Round(X), Round(Y));

end

Tri(10, 10, 300);
readln

end.

This procedure differs slightly from the one written before. Real
values are used instead of integers to increase accuracy. In procedures
such as LineTo, which require integer parameters, the Round function
is used to convert from real to integer. Run this program and observe
the order in which the triangles are drawn, which is from smallest to
largest. This is because the triangles are drawn after the procedure
calls rather than before, as in the preceding programs.

8
A Formal Look at Graphics

INTRODUCTION

In the preceding chapters we dabbled with QuickDraw, having used
"commands" that allowed us to draw graphics. As you might have
guessed, these "commands" are actually functions and procedures.
QuickDraw consists of these functions and procedures, along with a
set of special graphics data types all stored in the ROM. While using a
QuickDraw routine, you are actually executing code stored in the
ROM.

Anything displayed on the screen, text or graphics, is displayed
through QuickDraw, which really lives up to its name. Arguably,
QuickDraw is the most important and innovative feature of the Macin
tosh since all features of the User Interface are implemented via
QuickDraw.

In this chapter, we will take a more formal and structured look at
QuickDraw, starting with its most elemental structure, the point.

POINTS

The most basic of QuickDraw's data types is the point. A point can
be thought of as the spot where two lines on the coordinate grid inter
sect. A point is identified by two integers representing its X (vertical)
and Y (horizontal) coordinates. We have already seen the point when

181

182 l'uRBO PASCAL FOR THE MAC

using the GetMouse procedure, but we did not see that it is defined as
a record.

type
Point = record of

V : integer;
H : integer

end;

A variable of type Point is declared as follows:

var
Pt : Point;

Here the variable Pt is of the data type Point. When we saw
GetMouse, the value was placed in the record by QuickDraw. To assign
a value to a record, we must access the individual fields.

Pt. v := 10;
Pt. h := 20;

Or even better:

with Pt do
begin

v := 10;
h : = 20

end;

The point Pt now has a value (10, 20). Assigning a value to a point
does not draw that point on the screen. It merely defines a value in the
coordinate plane. Next we will see how to use points to define lines.

DRAWING LINES

In Chapter 5 we saw how to draw lines in the console window. Let's
take a second look at the procedures used. Lines, like all other graph
ics objects, are drawn with the pen, a fictitious drawing tool used by
QuickDraw. To draw a line, we position the pen to one end point of the

A FORMAL LOOK AT GRAPJDCS 183

line. This can be done with either of two procedures, one of which we
have already seen.

procedure Moveto(X, Y : Integer);

The MoveTo procedure positions the pen (without drawing) at the
point specified by the horizontal coordinate X and the vertical coordi
nate Y. Notice how the procedure was specified. In this chapter the
QuickDraw procedures will be shown as they are declared in Quick
Draw. This will give you an opportunity to examine the data types of
the parameters used and determine whether they are variable or
value parameters. Incidentally, this is the same way all ROM routines
are shown in Inside Macintosh.

The second procedure that moves the pen is Move, which moves the
pen relative to its old position.

procedure Move(X, Y : Integer);

The Move procedure adds X and Y to the current horizontal and verti
cal positions of the pen respectively, to yield the new current position.
For example, let's examine the position of the pen after each of the
following two statements are executed:

Moveto(3, 2);
Move (If, 2) ;

After the MoveTo statement, the pen is located at point (3, 2). After
the Move statement, the pen is moved to point (7, 4), which can be
thought of as point (3+4, 2+2).

To actually draw a line, there are two procedures that work in ex
actly the same way as Move and MoveTo (except that they draw).

procedure Line(X, Y : Integer);
procedure LineTo(X, Y : Integer);

The following program illustrates the use of the pen positioning and
line-drawing procedures:

program Fishy;
uses

Memtypes, QuickDraw;

184 TURBO PASCAL FOR THE MAC

var
TempRect : Rect;
I, J : Integer;

begin
I := 20;
J := 491;
while I <= 491 do

begin
MoveTo(I, Round(100 • Sin(! I 120)) + 150);
LineTo(J, -Round(100 • Sin(JI 120)) + 160);
I := I + 5;
J := J - 5

end;
Write(1 Press <Ret> to continue');
readln

end.

Fishy

Figure 8-1. Drawing Lines

A FORMAL LOOK AT GRAPHICS 185

Rectangles

The first graphics data structure we saw back in Chapter 2 was the
rectangle. The data type Rect, as you know, is actually defined as a
record type. Let's look again at its definition.

type
Rect = record of

Top Integer;
Left Integer;
Bottom Integer;
Right Integer

end;

Here, the fields in Rect define lines in the coordinate grid that en
close the rectangle.

(Upper, Left)

(Lower, Right)
Figure 8-2. Coorclinates of a Rectangle

Top and Left are the Y and X coordinates of the upper left-hand point
in the rectangle and Bottom and Right are the Y and X coordinates of
the lower right-hand point.

Values can be assigned to a variable of type Rect as in any record.

var
TempRect Rect;

TempRect.Top := 10;
TempRect.Left := 20;
TempRect.Bottom := 140;
TempRect.Right := 78;

186 TURBO PASCAL FOR THE MAC

As you know, we need not initialize a rectangle this way. Instead we
can use the SetRect procedure to do the same thing more conve
niently. Remember that defining a rectangle does not display it in the
window; a second routine must be called to do that.

procedure SetRect(var R : Rect;Left, Top, Right, Bottom:Integer);

The SetRect procedure assigns to the rectangle the four boundary co
ordinates. The result is a rectangle with the coordinates Left, Top,
Right, and Bottom. Notice that in the procedure declaration of Set
Rect, the lines are in the order Left, Top, Right, and Bottom, the same
order as in the previous Rect declaration. The four assignment state
ments used before to assign values to the rectangle could be accom
plished with the single statement

SetRect(TempRect,20,10,78,140);

DRAWING RECTANGLES

We have already learned how to draw rectangles and erase them
with the FrameRect and EraseRect procedures. There are a total of
five procedures used for drawing rectangles.

procedure FrameRect(R : Rect);

The FrameRect procedure draws a box that is enclosed by the rectan
gle specified by R.

procedure PaintRect(R : Rect);

The PaintRec procedure fills the rectangle specified by R in black.

procedure EraseRect(R : Rect);

The EraseRect procedure erases the rectangle indicated by R.

procedure InvertRect(R : Rect)

A FORMAL LOOK AT GRAPHICS 187

The lnvertRect procedure inverts (white pixels made black, black pix
els made white) the area enclosed by the rectangle specified by R.

procedure FillRect(R : Rect, Pat : Pattern);

The FillRect procedure draws a rectangle filled with the pattern
indicated by the second parameter. The valid patterns are

White

Black

Gray

LtGray [light gray]

DkGray [dark gray]

The following program illustrates the use of FillRect:

program Fills;
uses

Memtypes,QuickDraw,OSintf,Toolintf;
var

Rect1, Rect2, Rect3, Rect4, RectS : Rect;
begin

InitGraf(ithePort);
InitFonts;
InitWindows;
FillRect(screenBits.bounds, White);
SetRect(Rect1, 10,30,30,50);
SetRect(Rect2, 40,bO,b0,80);
SetRect(Rect3, 70,70,100,100);
SetRect(Rect4, 110,130,130,150);
Fil1Rect(Rect1, Black);
Fil1Rect(Rect2, Gray);
Fil1Rect(Rect3, ltGray);
Fil1Rect(Rect4, dkGray);
Readln

end.

188 TURBO PASCAL FOR THE MAC

Notice t,hat the first four statements of this program call Toolbox
routines that we have not discussed. These routines are needed be
cause version 1.0 of Turbo Pascal does not initialize the patterns with
out explicitly initializing QuickDraw with the InitGraf call. The other
routines, as you probably can guess from their names, initialize the
systems fonts and the Toolbox's Window Manager. These additional
calls are always required after QuickDraw is initialized. The rectangle
screenBits.bounds covers the entire Macintosh screen. In this case we

. fill it completely with white to clear the screen. This rectangle is avail
able to you whenever your programs use QuickDraw. This is a useful
piece of information because it lets you know the size of the Macin
tosh's screen for any kind of Macintosh, be it a 512 by 342 Mac Plus, a
640 by 480 Mac II, or some future 2,048 by 2,048 giant-screen Macin
tosh.

.
g;1l11gg111g111gggg1gg1
::::::::::::::::::::::::::::::::: ·································
lgg1ggg111~11lrngg1l1gg
lllllllllllllllllllllllllllllllll ·································

Figure 8-3. Fill Patterns

A FoRMAL LooK AT GRAPmcs 189

Other Shapes

Similar procedures exist for drawing ovals and round-cornered rect
angles. The procedures for ovals work in exactly the same manner as
those for rectangles. The size and shape of the oval is determined by
the largest oval that can be inscribed in the rectangle passed to the
procedure.

Oval inscribed
in a rectangle

Figure 8-4. Oval Inscribed in a Rectangle

The oval drawing procedures are

procedure FrameOval(R Rect);
procedure PaintOval(R Rect);
procedure Eraseoval(R Rect);
procedure InvertOval(R : Rect);

There are analogous procedures for drawing round-cornered rectan
gles. These procedures work in the same fashion as the oval drawing
procedures, except additional parameters are passed indicating the
roundness of the corners. These parameters, OvalWidth and
OvalHeight, specify the shape of an oval that is "fitted" into the cor
ner of the rectangle. Figure 8-5 illustrates the distinction:

Oval Width Oval Height

Figure 8-5. Defining a Round-Cornered Rectangle

190 TuRBo PASCAL FOR THE MAc

The round-cornered rectangle procedures are

procedure FrameRoundRect(R : Rect;Ovaliidth, OvalHeight : Integer);
procedure PaintRoundRect(R : Rect;Ovaliidth, OvalHeight : Integer);
p~ocedure EraseRoundRect(R: Rect;Ovaliidth, OvalHeight : Integer);
procedure InvertRoundRect(R : Rect;Ovaliidth, OvalHeight :Integer);

Use the Change feature of the Turbo editor to change the rectangles
in the Fills program to ovals and round-cornered rectangles.

THE PEN

The pen is the imaginary drawing tool used by QuickDraw to draw
the shapes on the screen. It's a simple concept-when the position of
the pen is moved, drawing occurs on the screen. QuickDraw also has
the ability to change the characteristics of the pen.

The default pen size is one pixel high by one pixel wide. To change
the size of the pen, the PenSize procedure is used.

procedure PenSize(Width, Height : Integer);

Width and Height specify the size of the pen.
We can also change the pattern contained in the pen.

procedure PenPat(Pat : Pattern);

The pattern actually drawn on the screen is not necessarily the pen
pattern. It is determined by three things, the pen pattern in the pen,
the pattern of the pixel already on the screen, and the mode of the
pen. The pen mode determines how pixels on the screen and the pat
tern in the pen interact to produce graphics on the screen. The pen
mode can be altered by using the PenMode procedure.

procedure PenMode(Mode : Integer);

The valid values for Mode are the predeclared QuickDraw constants
PatCopy, PatOr, PatXor, PatBic, NotPatCopy, NotPatOr, NotPatXor,
and NotPatBic. For example, let us look at the default pen mode
PatCopy. If the pen is black, then the pixel on the screen will be black
no matter what it was before. If the color in the pen is white, then the
pixel on the screen will end up white no matter what it was before.
This is graphically represented in the following chart:

patCopy

SCREEN

B W

p B B B
E
N

w w w

A FORMAL LooK AT GRAPmcs 191

Figure 8-6. PatCopy Pen Mode

The chart is read as follows: If the pixel on the screen is black and
the pen is white, the pixel on the screen shall be white; if the pixel on
the screen is black and the pen is black, the pixel on the screen shall
be black.

The purpose of the various pen modes is to make it possible to draw
on different color backgrounds. The PatCopy pen mode corresponds to
a real-life pen drawing on paper. The actions of each of the pen modes
can be understood by examining the following charts:

Pat Or PatXor PatBic

SCREEN SCREEN SCREEN

B B w B w w
p p p
E E E
N N N

B w B w B w

NotPatCopy NotPatOr NotPatXor NotPatBic
SCREEN SCREEN SCREEN SCREEN

ffl fR :lfl :ITT rn rn m tEJ
Figure 8-7. Pen Modes

Run the following program to demonstrate several of the different
pen modes against different backgrounds:

192 TuRBo PASCAL FOR THE MAc

Listing 8-1. Program that Demonstrates Different
Pen Modes.

program ModeDemo;
uses

Memtypes,QuickDraw,OSintf,Toolintf;
var

tempRect
begin

Rect;

InitGraf(@thePort);
InitFonts;
InitWindows;
FillRect(screenBits.bounds, White);
{ Draw color bands }
SetRect(tempRect,80,10,120,240);
FillRect(tempRect, Black);
setRect(tempRect,120,10,1bo,240);
FillRect(tempRect, Gray);
SetRect(tempRect,1bo,10,200,240);
FillRect(tempRect, LtGray);
setRect(tempRect,200,10,240,240);
FillRect(tempRect, DkGray);
SetRect(tempRect,240,10,280,240);
FillRect(tempRect, White);
SetRect(tempRect,240,1IT,280,240);
FrameRect(tempRect);

PenSize(S, 5);
{Draw first line, default mode}
PenPat(Black);
Moveto(bO, 20);
Lineto(300, 20);
{Draw second line}
PenMode(PatCopy);
Moveto(bO, 40);
Lineto(300, 40);
{Draw third line}
PenMode(PatOr);
Moveto(bO, bO);
Lineto(300, bO);
{Draw fourth line}
PenMode(PatXor);
Moveto(bO, 80);
Lineto(300, 80);
{Draw fifth line}

PenMode(PatBic);
Moveto(60, 100);
Lineto(300, 100);
!Draw sixth line}
PenMode(NotPatCopy);
Moveto(60, 120);
Lineto(300, 120);
!Draw seventh line}
PenMode(NotPatOr);
Moveto(60, 140);
Lineto(300, 140);
!Draw eighth line}
PenMode(NotPatXor);
Moveto(60, 160);
Lineto(300, 160);
!Draw ninth line}
PenMode(NotPatBic);
Moveto(60, 180);
Lineto(300, 180);
Readln

end.

Displayed by this program is

A FORMAL LOOK AT GRAPmcs 193

Figure 8-8. Pen Modes against different backgrounds

To get a real feel for the purpose of each pen mode, do some experi
mentation with each by modifying the ModeDemo program.

194 TURBO PASCAL FOR THE MAC

THE CURSOR

You have probably noticed from using the Macintosh that the cursor
is always displayed on the screen-sometimes in different shapes, but
always displayed. Whether it is displayed is actually controllable from
a program by using two important QuickDraw routines:

procedure Showcursor;
procedure HideCursor;

These procedures act exactly as you think they would from their
names. HideCursor hides the cursor from the screen, and ShowCursor
restores it. It is important to notice that when the cursor is hidden it
still exists and is at some location on the screen. It is moved by the
mouse even when it is hidden from view. Verify this by running the
MouseDemo program again, but this time with a call to HideCursor
before the While loop.

BUILDING A SKETCHPAD

Now that we have some tools to work with, let us write a simple
application program that allows us to draw on the Macintosh's screen
using the mouse. First let's look at some English-like pseudocode for
the program.

repeat
if button still down then

draw a line from last position to current position
otherwise if the button was pressed

make current position the last position
(starting position of new line}

until forever

This pseudocode is easily translated into the following program:

A FORMAL LooK AT GRAPmcs 195

Listing 8-2. Program That Allows Drawing on the
Macintosh Screen.

program SketchPad;
{ Make the screen a drawing pad and the mouse a

pen }
uses

Memtypes,QuickDraw,OSintf,Toolintf;

con st
Forever False;

var
Pnt : Point; { Holds the cursor's

position }
TempRect Rect;
alreadyDown : Boolean;

begin
alreadyDown := False;
repeat

GetMouse(Pnt);
if Button then

begin
if alreadyDown then

LineTo(Pnt.H, Pnt.V)
else

MoveTo(Pnt.H, Pnt.V);
alreadyDown := True

end
else

alreadyDown := False;
until Forever

end.

~96 'fuRBo PASCAL FOR THE MAC

SketchPad

@
• •

~
Figure 8-9. The SketchPad Program

This program works fine for what it is, a simple sketch program that
duplicates the capabilities of a pencil and paper. The program can be
improved with some more QuickDraw features, presented in the next
section.

DISPLAYING TEXT

Turbo Pascal makes the display of text output very simple to do just
by using the Writeln statement. This is a very convenient feature, but
in some cases you will want to be able to use QuickDraw's text display
capabilities directly. There are several reasons for learning to do this.
First, you may display your own window in a program and thus be able
to use Writeln, which works only with Turbo's console window. And
second, by using QuickDraw you can control the font, size, and style of
the text displayed.

Two important procedures are used for displaying text with Quick
Draw.

A FORMAL LOOK AT GRAPHICS 197

procedure DrawString(S : string);

The DrawString procedure displays the string constant or variable
specified by S at the current pen location. The upper left-hand corner
of the first character is placed exactly at the current pen location, and
all subsequent characters are drawn to the right.

procedure DrawChar(Ch : Char);

The DrawChar procedure works exactly the same way as Drawstring
except it only displays a single character at the current pen location.

Working With Fonts

Several other QuickDraw routines allow you to change the attri
butes of the characters displayed on the screen.

procedure TextFont(Font : Integer);

The TextFont procedure sets the font used by QuickDraw for the text
that will be displayed. The default value is 0, which will display the
system font (Chicago). Each font has a unique font number. If a partic
ular font is unavailable, the default font will be used. Experiment with
other values for font to see which fonts are available on your machine.

Some of the fonts that might be available in your System File are

Chicago
Geneva
Helvetica
Monaco
Times

Figure 8-10. Fonts

198 TuRBo PASCAL FOR THE MAC

procedure TextSize(Size : Integer);

The TextSize procedure determines the size in points of the charac
ters being displayed. The default size of the system font size is 12.
Examples of different font sizes are

9 points

1 0 points

12 points
14 points

18 points
Figure 8-11. Point Sizes

procedure TextFace(Face : Style);

The TextFace procedure selects the special characteristics of the
text displayed. The parameter passed to TextFace must be of the type
Style, which is defined as a set of predefined constants.

type
Styleitem (Bold, Italic, Underline, Outline,

Shadow, Condense, Extend);
Style = set of Styleitem;

Examples of some of the different characteristics available are

Plain
Bold
lt8lic
riiloofl u ~ Uil®

llbEr!llD'll
Underline

Figure 8-12. Font Styles

A FORMAL LOOK AT GRAPIDCS 199

For example, to set the text face to italic, you could use this procedure
call:

!extFace(Citalicl);

Notice that "Italic" is in brackets because it is a member of a set of
type Style (we told you sets would come in handy). To set the text face
to both italic and underlined, you would use a set containing both:

!extFace(Citalic, Underline]);

To set the text face back to normal, you would use the empty set:

!extFace(Cl);

CALCULATIONS WITH RECTANGLES

For our program, we will need to know if the position of the cursor is
inside a rectangle on the screen or if two rectangles are touching each
other. We have already worked with the PtlnRect function; the other
one we need is called SectRect.

function SectRect(FirstRect,SecondRect:Rect;
var !hirdRect:Rect) : Bo~lean;

The SectRect function looks at two rectangles and if they intersect
returns True. It also returns as a variable parameter a new rectangle
representing the intersection of the other two.

SKETCHPAD REVISITED

Let's redesign the SketchPad to be able to change the size of the pen
used to draw with. We will implement this by creating two boxes on
the screen. One box will have the word "Bigger" in it, and the other
will have the word "Smaller" in it. When the cursor is placed inside
the "Bigger" box and the button is clicked, the size of the pen will
increase. When the cursor is put into the "Smaller" box, the size of the
pen will decrease.

200 TuRBo PASCAL FOR THE MAc

SketchPad

Bigger

Smaller

@
• •

~
Figure 8-13. SketchPad with New Feature

Now that we have the required tools, we are ready to implement the
new features into our computerized SketchPad. To implement the new
features we will add several parts to our old SketchPad program.

1. We must initialize the "Bigger" and "Smaller" boxes, draw
them on the screen, and label them. This will be done in the
new initialization procedure.

2. Each time through the loop we must check if the user moved
the mouse into (selected) the "Bigger" or "Smaller" boxes.
This will be done with a call to a new function called Select,
which returns True if "Bigger" or "Smaller" has been selected.
To be consistent with the rest of the Macintosh environment,
we will invert the box when selected and uninvert it when the
mouse button is released.

A FORMAL LOOK AT GRAPIIlCS 201

3. If the box was selected, we take the appropriate action. In this
case it means calling the procedure ChangePenSize to incre
ment or decrement the size of the pen.

Listing 8-3. Program Using the ChangePenSize
Procedure.

program SketchPad;
uses

!emtypes, QuickDraw, OSintf, Toolintf;
con st

Forever = false;
var

Pnt : Point;
Xpen, Ypen : Integer;
BiggerBox, SmallerBox, TempRect
alreadyDown : Boolean;

procedure Initialize;
begin

Rect;

{ Draw selection boxes on screen }
SetRect(BiggerBox, 20, 40, 80, 60);
SetRect(SmallerBox, 20, 60, 80, 80);
FrameRect(BiggerBox);
FrameRect(SmallerBox);
!oveto(22, 54);
DrawString(1 Bigger•);
!oveto(22, 74);
DrawString(1 Smaller 1);

{ Initialize PenSize }
Xpen := 1;
Ypen := 1

end;

function Select (Box : Rect) : Boolean;
{ Returns True if Box was specified }
begin

Select := False;
if PtinRect(Pnt, Box) then

if Button then
begin

InvertRect(Box);
repeat

2q2 TuRBo PASCAL FOR THE MAc

end
end;

until not Button;
InvertRect(Box);
Select := True

procedure ChangePenSize (I
begin

Xpen := Xpen + I;
Ypen := Ypen + I;
PenSize(Xpen, Ypen)

end;

begin
Initialize;
repeat

Get!ouse(Pnt);

integer);

if Select(BiggerBox) then
ChangePenSize(1)

else if Select(SmallerBox) then
ChangePenSize(-1);

if Button then
begin

end
else

if alreadyDown then
LineTo(Pnt.H, Pnt.V)

else
MoveTo(Pnt.H, Pnt.V);

alreadyDown := True

alreadyDown := False;
until Forever

end.

This same technique can be used to add many other easy-to-use fea
tures to this and other programs.

Do More

Improve on SketchPad by adding features that

1. change pattern of the pen.

A FORMAL LoOK AT GRAPIDCS 203

2. change the pen mode.

3. allow selection of different shapes, rectangles, ovals, and
round-cornered rectangles. (Hint: Use the animation tech·
nique of drawing, then erasing the shapes while the mouse's
button is down. Draw a final version of the shape when the
button is released.)

FUN TIME WITH QUICKDRAW-THE
PADDLEBALLPROGRAM

It is about time we had a bit of fun, so let's make use of our newly
acquired skills in programming Pascal and QuickDraw to design and
write a game. We will use a top-down approach that will allow us to
develop the overall structure of the game first and develop the details
as we go along.

When we were younger we spent a lot of time playing paddleball; so,
in a spell of fond memories, let's write a Macintosh racket game where
the player controls a racket using the mouse and attempts to hit a ball
against a wall. If the ball goes by the racket, it goes out of play, and
the game is over. Figure 8-14 shows a picture of the ball in play. To
implement this program, we will need to develop several techniques
that have yet to be used in this chapter. We will need to be able to

1. control the movement of a rectangle (the paddle) with the use
of the mouse;

2. detect when the ball hits the paddle;

3. detect when the ball hits the side or front walls;

4. determine at what angle the ball hits the wall and change the
ball's direction.

204 TURBO PASCAL FOR THE MAC

PaddleBall

D •

l
Figure 8-14. PaddleBall Program

Let us look at a very rough outline of the game.

program PaddleBall;
begin

initialize;
while not game over do

begin

end;

movepaddle;
moveball

end

This pseudocode can actually be used as our main program with a
few additions such as variable declarations. Let's continue to develop
our program by developing each of the procedures in the above pro
gram.

procedure initialize;
begin

A FORMAL LOOK AT GRAPHICS 205

initialize score to zero
initialize ball shape and position
initialize ball direction
initialize paddle shape and position
initialize boundary walls

end;

procedure moveball;
begin

erase ball from old location on screen
if the ball hits right wall then

set direction to reflect it backward
else if the ball hits the top or bottom walls then

set direction to reflect it vertically
else if the ball hits the left wall then

the game is over
else if the ball hits the paddle then

set direction reflect it forward
move the ball in direction
draw ball in new location on screen

end;

procedure movepaddle;
begin

erase paddle from screen location
get location of mouse controlled cursor
draw paddle at new location

end;

We can achieve an animation effect in much the same way we did
earlier by drawing some object on the screen, leaving it there a short
period of time, erasing it, and redrawing it a short distance away. If
this process is done repeatedly at high speed, the drawn object ap
pears to move smoothly across the screen. In the pseudocode, both the
paddle and the ball are animated in this way.

Now that the rough design for our game is complete, we can turn our
attention to the details of how our graphics objects move and how they
can be represented using the Macintosh's QuickDraw routines. First to
be examined in more detail is the procedure that will move the ball
around the screen. There are several factors to consider when moving

206 TuRBo PASCAL FOR THE MAc

the ball-the direction the ball is heading, the position of the ball, and
whether or not the ball hits a wall or the paddle. We will need a vari
able to keep track of which horizontal direction the ball is traveling.

var
Direction (East, West);

When the ball moves across the screen it will travel in both horizon
tal and vertical directions, so in order to keep track of how many
pixels the ball should travel in each direction on the screen, we will
need two variables, Dh to track the number of pixels to move horizon
tally, and Dv to track the number of pixels to move vertically. Since
screen coordinates are integer values, these variables will be integers.

The ball will travel at angles, so we need to declare a variable Slope
that will hold the angle the ball is moving in. The slope will tell how
many pixels the ball travels up or down for every pixel it travels side
ways. For example, to move due east, the direction would be right and
the slope would be 0 to represent no up or down movement, just move
ment to the right.

Figure 8-15. Moving Horizontally

To move the ball north-northwest, the direction would be left and
the slope would be -2: 2 pixels up for every 1 pixel to the left.

A FORMAL LOOK AT GRAPHICS 207

~
\

Figure 8-16. Slope

This representation of the ball's direction allows us to specify pre
cisely every direction except for straight up and straight down. The
slope for these directions would be infinity and negative infinity re
spectively. Since the computer cannot represent these numbers, the
ball will not be able to travel in these directions. This is fine because
the ball would never reach the paddle on the left side of the screen if
it were to travel vertically. When the ball hits a wall or paddle, it
should reflect off the wall in a natural manner.

Figure 8-17. Reflecting Shot

Before the ball hits the top wall, it is traveling X pixels up for every
pixel it is traveling across the screen. After bouncing off the top wall,
the ball is traveling X pixels down for every pixel across. The horizon
tal direction of the ball does not change. Therefore only the sign of the
slope changes when the ball hits the top wall. The same is true for the

208 TURBO PASCAL FOR THE MAC

bottom wall. When the ball bounces off the right wall or the left side of
the paddle, the slope remains the same, but the direction changes.

Well, we are now about ready to develop the entire program.

Listing 8-4. Complete PaddleBall Program.

program PaddleBall;
{Play a game of hit the ball off the wall, but don't

let it get by}
uses

var
Memtypes, ~uickDraw, OSintf, Toolintf;

Ball, Paddle, Top, Bottom,
Left, Right : Rect;
Difficulty, XPaddle, YPaddle, DispHoriz,
DispVert, Slope : Integer;
Gameover : Boolean;
Direction (East, West);

procedure Init;
begin

InitGraf(ithePort);
InitFonts;
InitWindows;
FillRect(screenBits.bounds, White);
HideCursor;
{ Size of ball is 9 by 9 }
SetRect{Ball, O, O, 9, 9);
{ Set the boundaries of the game }
SetRect(Left, O, 11, 1, 332);
SetRect(Top, O, 20, 502, 21);
SetRect(Bottom, O, 342, 511, 343);
SetRect(Right, 511, 20, 512, 342);
{ Initial position of ball is 100,100
DispHoriz := 100;
DispVert := 100;
{ Set initial direction of ball }
Slope := 2;
Direction := East;
{ Set initial position of paddle }
Difficulty := O;
Gameover := False

end;

{ Erase paddle and redraw at new location }
procedure MovePaddle;

A FORMAL LOOK AT GRAPffiCS 209

var
XMouse, YMouse : Integer;
location : Point;

begin
GetMouse(location);
XMouse := location.h;
YMouse := location.v;
EraseRect(Paddle);
SetRect(Paddle, Difficulty, YMouse, Difficulty

+ 11, YMouse + 25);
FrameRect(Paddle);

end;

{ Display ball in appropriate location on screen
taking I
{ into account reflection of the ball off the borders
I
procedure MoveBall;
var

TempRect : Rect;
begin

if SectRect(Right, Ball, TempRect) then
begin

SysBeep(1);
Direction := West

end ,
else if SectRect(Left, Ball, TempRect) then

Gameover := true I Hit left wall, game over
else if SectRect(Top, Ball, TempRect)

or
SectRect(Bottom, Ball, TempRect) then

begin
SysBeep(1);
Slope := -Slope

end
else if SectRect(Paddle, Ball, TempRect) and

(Direction = West)
then

begin
SysBeep(1);
Direction := East;
Difficulty := Difficulty + 10;

end;
if Direction = East then

DispHoriz := DispHoriz + 10
else

DispHoriz := DispHoriz - 10;
DispVert := DispVert + Slope;

210 TURBO PASCAL FOR THE MAC

EraseOval(Ball);
SetRect(Ball, DispBoriz, DispVert, DispBor~z + 9,

DispVert + 9);
PaintOval(Ball)

end;
begin {Main program}

Init;
while not Gameover do

begin

end

MoveBall;
MovePaddle;

end. {Main program}

Do More

Try to add the following features to the PaddleBall program:

1. Scoring

2. Obstacles on the playing field

3. Oth~r animated objects such as another ball or other moving
objects

CHAPTER SUMMARY

In this chapter we have seen several of QuickDraw's features and,
more important, learned how to harness them with programming tech
niques. We are close to our final goal to being able to produce a true
Macintosh-style application, but more still needs to be learned. In the
next chapter we will learn how to store data over the long haul in files,
and then we will increase our ability to work with the Toolbox by
seeing how to work with the Mac's memory management techniques.

/

9
Files

INTRODUCTION

Computers would not be very useful if they were limited to working
only with the information that could fit in their memories. Even the
most formidable of Macintoshes can only store up to 16 million bytes
in RAM. This would never be enough to store all the programs and
data files you will use over a long period of time. To overcome this
limitation, computers store information on secondary storage devices
such as disk drives and retrieve this information into memory only
when needed.

FILES

Information is stored on a disk in a structure called a file. If you are
familiar with the Mac, you will probably have seen or used both a
floppy disk drive (such as the one built into the machine) and a "hard"
disk, a permanently sealed disk capable of holding large amounts of
data. A file is a collection of components all of the same data type.
This is similar to an array, but there are significant differences be
tween files and arrays. An array is held entirely in memory and is
limited to the number of elements it was declared to have. A file is
maintained on a secondary storage device and has no fixed size; com
ponents can be added or deleted at any time. Because a file is kept on
disk, it is in one sense independent of the program that created it. A

211

212 TuRJIO PASCAL FOR THE MAC

file can continue to exist after the program that built it has termi
nated. A file created by a Turbo Pascal program can be seen in the
Desktop with an icon and its own name.

6 ;terns

Fu11Pa;nt

n
~

System

File created

RRMdisk
414K ;n d;sk

n
~

Mac'w'r;te CJ;pboard Ffle

Figure 9-1. Data File on Disk

34K av aflab le

• iill

An example of a file you are already familiar with is a text file. All
source codes for Turbo Pascal programs are stored in text files. As we
will see, a text file is a file where all the components are of the Char
data type. Of course, the components of a file could be of any declared
type.

File Access

In this chapter we will be looking at the two ways to store and re
trieve data in a file, sequential and random access. In a sequential file,
all the file components must be accessed in the order in which they
were placed into the file. This can be thought of as being similar to a
cassette tape: to hear a song recorded at the end of the tape, all the
songs before it must be passed over. In a random file, any particular

FILES 213

file component can be accessed in any order. This is sometimes called
direct access and is more like moving the tone arm of a phonograph
(for the CD generation: a tone arm is an antiquated device for playing
old-fashioned phonograph records) directly to the particular song you
want to hear. Each component of a file, called a record, is numbered
starting with zero. Random access is accomplished by specifying the
record number of the desired component. Don't confuse this use of the
term "record" with the record data type. The records in a file may
contain data whose type is any valid Pascal data type.

File access is a feature of Pascal that is highly implementation de
pendent. By this we mean that each version of Pascal has its own sys
tem for storing and accessing data. The original description of the
Pascal programming language was not very concerned with input and
output, so each Pascal system included its own extensions to the lan
guage to handle files. As we will see, Turbo uses a somewhat different
approach to files that varies with the most modern versions of Pascal.

Declaring a File

A file is created in the variable declaration section of a program or
procedure by declaring a filename and the type of the file's compo
nents. For example:

type
Personinfo = record

FirstName,
LastName : string[2DJ
Phone : string[1Dl

end; { Personinfo }
var

People
Numbers

file of Personinfo;
file of integer;

This declaration creates two file variables, People and Numbers.
The data type of the components of a file can be any standard Pascal
type or any type created in a type declaration. Very often the compo
nent type of a file is a record. In People, the components will be of the
type Personlnfo. All the components of Numbers will be integers. A
file variable such as People and Numbers are different from other

214 TuRBo PASCAL FOR THE MAC

types of variables in that they can be used only with the file proce
dures that we will soon look at. No other operations such as assign
ment can be performed with them.

Using Files

There are three major steps in using files: opening a file, accessing a
file, and closing a file. For each of these steps, Turbo Pascal provides
built-in procedures.

..... .r --.., /'
Open ... Recess _._ Close - -File

.......
File

.......
File

Figure 9-2. File Processing

Opening a File

Opening a file is the first step before storing or retrieving data from
that file. Associated with each file are two names. The first is the file
variable, which is used in the program to refer to the file. This is
sometimes called the logical filename. The other name is that by
which the file will actually be called on the disk. This is called the
physical filename. It is the one you can see next to the icon for the file
on the Macintosh Desktop. The logical and physical filenames are
linked together when you open the file in a program. We always ref er
to a file in a program via its logical name.

There are two procedures provided by Turbo Pascal for opening
files, Rewrite and Reset.

Rewrite(FileVar, FileTitle)

Rewrite creates a file on disk with the physical filename specified
by FileTitle. FileTitle may be either a string constant or a variable of
type string. If a file with the name specified already exists on the

FILES 215

device, it is destroyed and a new file with that name is created. The
logical filename for the file is specified by File Var. From this point on,
all references to the file will use that logical filename. After Rewrite is
executed, the current file position is positioned to record number zero
of the file. The current file position points to the location in the file
where the next file access will occur.

File
Buffer

Record Record Record
0 1 2

Record
3

Record Record
4 5

Figure 9-3. File Pointer

Reset(FileVar [, F1leT1tle J)

Record Record
6 7

The second way to open a file is with the Reset procedure. Reset
opens the disk file specified by the FileTitle (the brackets mean that it
is optional). Reset assumes that the disk file already exists, otherwise
an error condition will exist and an error message will be displayed in
an alert box. Like Rewrite, the FileTitle can be either a string constant
or a string variable, and the file variable File Var is associated with the
open file. After a Reset, the current file position is record number zero
of the file (the first record). FileTitle is omitted if you don't want to
open the file but wish to rewind the current file position to the begin
ning of the file (record zero).

Quick Review

Rewrite is used to create and open a new file and will destroy any
file with the same filename. Reset is used to open an existing file or
rewind an open file. For the record, all files created will be placed on
the same disk drive that Turbo Pascal itself is placed. We can change
this, as we will soon see.

216 TuRBo PASCAL FOR THE MAC

A4cessing a File

Data is written to a file with the Write procedure and read from a
file with the Read procedure. This would seem perfectly natural to you
unless you have used other versions of Pascal. Other Pascals use the
standard procedures Get and Put for file access. Turbo has forsaken
this standard in favor of simplicity. As you might expect, Write places
information into a file, and Read retrieves it. How does the compiler
know that Read does not refer to the keyboard and Write to the
screen? When you are using Read and Write to refer to a file, you must
use an additional parameter.

Write ([file J, var1, var2 ••• var3) ;
Read ([file J , var1, var2 ••• var3);

This parameter is the logical name of the file being referenced. Of
course, that file needs to have been opened previously, or an error will
result.

The following section of code uses the Rewrite procedure to create a
file and Write to place in it the integers from 10 down to 1.

Rewrite(Numbers, •space Ship');
for Countdown := 10 downto 1 do
' Write(Numbers, Countdown)

The logical filename in this example is Numbers, which we have previ
ously declared to be a file of integers. The Rewrite procedure creates
a file on the disk called Space Ship and equates the logical and physi
cal names. The For loop assigns the values to Countdown, which is
used in the Write statement. After each Write or Read statement, the
current file position is moved to the next component in the file.

A word about physical filenames. They do not have to follow the
rules for identifiers. Physical filenames may be broken up (such as
Space Ship) and may start with a number.

After this loop executes, the records of this file will contain as fol
lows:

FILES 217

Record 0 contains 1

Record 1 contains 2

Record 2 contains 3

Record 9 contains 10

We can then read that information from the file with Read.

var
Numbers : file of integer;
I, Value : Integer; . .
Reset(Numbers,•Space Ship'};
for I := 1 to 10 do

begin
Read(Numbers, Value};
Writeln(Value};

end;

Closing a File

Read from the file
Write to the screen

The last part of using a file is closing it. Closing a file terminates the
association between the logical file and the physical file. All subse
quent attempts to access the file will produce an error because the file
no longer exists as far as the program is concerned. A file must be
closed before the program ends in order to save all the information
placed into the file. This is easily done with the Close procedure.

Close(FileVar};

FileVar is the file's logical filename.

218 TURBO PASCAL FOR THE MAC

Random File Access

We have seen that as we read information from a file, the current
file position is advanced to the next record. We have also seen how a
file can be "rewound" to record number 0 with the Reset procedure.
This has been an example of what is known as sequential file access.
That is, all the information in the file is accessed in sequence. H you
think about this type of access for a minute, you will quickly realize
the shortcomings of such a system. For instance, how could we be able
to replace the information contained in one particular record of the
file? Since it is impossible to backtrack a record, we couldn't read a
record, change its contents, and then rewrite it to the file. There are of
course ways of doing this, but they are inefficient and slow. Two solu
tions to this problem come to mind. One would be to read the entire
file into an array in memory (if there is enough memory space),
change the record, erase the file, and then write the new file to the
disk. A second way might be to keep track of the record number of the
record to be replaced. Read it, rewind the file, read each record prior
to the one to be replaced, then write them all to a new file and place
the changed record into the new file, followed by the rest of the
records from the original file. Needless to say, a program that de
pended heavily on the ability to change records in a file would per
form poorly working in this fashion. Why is this the case? When Pascal
was first developed, small, inexpensive disk drives did not exist, and
large amounts of input/output processing were done with magnetic
tapes, which by their very nature are sequential-access devices. The
sequential file access in Pascal was designed to work with this type of
storage device.

Fortunately, today we have small, inexpensive, high-density storage
devices such as the Mac's microfloppy disk drive, which can access any
portion of a disk directly. Turbo and other Pascals have implemented
extensions to the Pascal language to work with these devices. These
random-access techniques allow a record anywhere in the file to be
accessed without first accessing any other records. For this reason ran
dom-access files are also sometimes known as direct-access files.

The key to random file access in Turbo Pascal is the Seek procedure.

Seek(File, RecordNumber)

FILES 219

Seek will advance any file to the position right before the record
whose number is passed as the parameter RecordNumber. For in
stance, to read the tenth record of a file directly, we would use the
following:

Seek(MyFile, 9);
Read(MyFile, MyRecord);

Remember, the tenth record is record number 9, since records are
numbered starting with 0. The Seek positions the current file position
to the desired location, and the Read gets the record.

As an example of a typical use of a Seek statement, let's go back to
our file of integers and change the value of all the records we have
placed in the disk file named Space Ship.

for RecordOfNumber := 0 to 9 do
begin

Seek(Numbers, RecordOfNumber);
Read(Numbers,Value);
{Change the value}
Value:= Value + 1;
Seek(Numbers, RecordOfNumber);
{ Put the changed record in Value back

into the file l
Write(Numbers, Value)

end;

Why is the Seek procedure used twice? After the first Seek, a Read
is used to get the record from the file. When performed, the Read
advances the current file position to the next record so the next Read
would access the subsequent record. So we must backtrack one record
so that the Write replaces the correct record.

Finding the End of a File

The above program goes through a file whose size is known in ad
vance (held in NumberOfRecords). This is not always the case. A busi
ness is not likely to know the number of customers or transactions to
be stored in a file in advance. Therefore, the size of a file usually
changes dynamically as needed. If a program that changes all the
records in a file accesses such a file, then it is necessary to determine,

220 TURBO PASCAL FOR THE MAC

while the program is running, when the end of the file has been
reached. Pascal has a built-in function known as EOF for End of File,
which returns True if a Read or Seek has attempted to access past the
end of a file and False otherwise. EOF is a simple Boolean function of
the form Eof(FileVar). We can use this to determine if the record we
are attempting to read is contained in the file. Our program could be
written for a file of unspecified size as follows:

Reset(Numbers,'Space Ship');
RecordofNumber := D;
while not Eof(Numbers) do

begin
Seek(Numbers, RecordOfNumber);
Read(Numbers, Value);
Value := Value + 1;
{ Put the changed record in the file
{ buffer back into the file
Seek(Numbers, RecordOfNumber);
Write(Numbers, Value);
RecordofNumber := Recordof Number + 1

end;

Since the EOF function returns False if a record exists and the
While loop needs a condition of True, we must reverse the Boolean
value returned by the function using a Not. The EOF function can also
be used with data read from the keyboard. Holding down the Com
mand key on the keyboard while typing the period (.) is used to signal
the End of File condition.

TEXT FILES

In addition to using files to store information on secondary storage
devices, files are also useful for transferring information to in
put/output devices. All along we have been using files for this purpose
without even knowing it. Every time we have used a Write statement
to display information on the screen, we have used a predeclared file
called Output, which is automatically opened for writing to the con
sole. Each time we used a Read or Readln, we read from a predeclared
file called Input, which is automatically opened for reading from the

FILES 221

keyboard. It's just that we have not been required to use the optional
filename parameter since a Write is assumed to be directed to the
screen and a Read to accept input from the keyboard, unless the file
parameter is used to indicate otherwise. While Turbo uses Write and
Read to access all types of files, these instructions behave a little dif
ferently when used with text files.

A text file is essentially a file of characters where each line is termi
nated by a carriage return character. A text file is declared as follows:

var
myTextFile : Text;

"Text" is a Pascal reserved word.
As you can see, there is a relationship between keyboard input,

screen output, and text Files. All output is sent to the console window
and input read from the keyboard via a text file known as 'Console:'.
This is accomplished by associating a text file with a special kind of
file known as a device. Instead of being held on a storage media, a
device is actually part of the hardware of the computer. Every Turbo
Pascal program by default associates Pascal's built-in text files Input
and Output with the standard Turbo device known as the console. The
console is used by Turbo to make the Mac work like a standard termi
nal with a keyboard and an 80-column display on the screen (which is,
of course, the console window we have been using all along). When a
program starts to execute, it is as though the following two instructions
were executed:

Reset(Input, •console: 1);

Rewrite(Output, •console:');

These establish the relationship between what is known as the 'Con
sole:' device and the standard files Input and Oµtput. Turbo also as
sumes that every Read and Readln that contains no file variable
parameter by default contains a reference to the built-in text file In
put. So a Readln statement such as

Readln(Num);

directed to the keyboard is the equivalent of

222 'fuRBO PASCAL FOR THE MAC

Readln(lnput, Hum);

Every Write or Writeln that contains no filename parameter con
tains a reference to the built-in text file Output. So a Writeln state
ment such as

Writeln('What•s your name, good-looking•);

is the equivalent of

Writeln(Output, 'What's your name, good-looking•);

In addition to reading or writing to the default 'Console:' device, it is
also desirable to be able to write to devices such as the printer. To
send information to the printer rather than the screen, we work with
the predeclared 'Printer:' device. To send all output to a printer, we
simply redefine the device associated with the Output file to the
printer with a Rewrite statement.

Rewrite(Output, 'Printer:•);

Of course, after this all standard Write and Writeln instructions will
send their output straight to a printer. When doing this, the native
printing font of the printer will be used. None of the fancy printing
normally associated with the Mac is done. In order to print fancy, the
use of the Toolbox and QuickDraw is involved. This technique is cov
ered in the last chapter of the book.

We could almost as easily send some output to the console window
and some to the printer by creating a second text file and associating
that with the printer.

var
Prnt

begin

Text;

Rewrite(Prnt, 'Printer:');
Writeln(Prt, 'This will print on the printer•);

In your programs, you may find it convenient to be able to direct the
output from your program to either the console window or your
printer. This can be done by adding to all your Write and Writeln

FILES 223

statements an output file and then using a procedure to direct this file
to the desired output device.

var
Ch : Char;
Output : Text;

procedure SelectDevice;
begin

Writeln('Where should the output go•);
Writeln('Enter P for the printer or C for the

Console window•);
Read(Ch);
if Ch = 'P' then

Rewrite(Output,'Printer:•);
if Ch = 'CT' then

Rewrite(Output, •console:')
end;

The Writeln statements in the program should then all look like

Writeln(Output, variable list);

Naturally, using the Seek makes no sense when used with a device
or text file. A text file can also be stored on disk. In fact, all programs
written in Pascal are stored as text files on disk. The following pro
gram prompts the user for the name of a text file (perhaps a Turbo
Pascal program file) and reads the file from the disk line by line,
displaying each line in the console window:

program DisplayText;
var

TextFile : Text;
FileLine, Name : string[8D];

begin
Writeln('Enter name of file');
Readln(Name);
Reset(TextFile, Name);
while not Eof(TextFile) do

begin
Readln(TextFile, FileLine);
Writeln(FileLine);

224 'fuRBO PASCAL FOR THE MAC

end.

end;
Writeln;
Writeln('Press <Ret> to continue•);
Readln

FILE PROGRAMMING TECHNIQUES

Seeing If a File Exists

You have just seen about all there is to working with files. However,
to program with files you need to know more than just how files oper
ate; you also need some familiarity with programming techniques. One
of the simplest but most important of these techniques is the ability to
detect whether a file already exists on a disk or whether it must be
created. This becomes important in situations where a program will
read a file if it exists or build it if it doesn't. The Reset procedure will
cause a run-time error if the file being opened does not exist, yet
Pascal contains no way to test if a file exists prior to using Reset.
Fortunately, Turbo has a way to shut off its error checking on input
and output operations. This can be used to test if a file exists or not.
The Turbo compiler switch { $1-} will disable all error checking dur
ing 1/0 operations so that if no file exists while doing a Reset, no run
time error will be triggered. Caution must be exercised when switch
ing off error checking because many error conditions that you would
like to be aware of will not be caught by the compiler. Once the error
checking is disabled, we need some mechanism for checking if an 1/0
operation (such as Reset) was successful. For this purpose, Turbo
maintains a built-in function known as IOResult, which returns a 0 if
the last 1/0 operation was successful and a negative number other
wise.

{1$!-}
Reset (myFile, 1 file. data 1);

Code := IOResult

The preceding code segment switches off 1/0 error checking, per
forms a Reset, and then checks the error code. Depending upon that

FILES 225

value, we can either proceed normally if the file exists or create it with
Rewrite otherwise.

{$1-}
Reset(myFile, 'file.data');
Code := lOResult
if Code < D then

Rewrite(myFile, 'file.data')
{$1+}
{Process file}

At the end of this program segment, the 1/0 error checking was re
stored with the compiler switch { $1 + } .

Never attempt to view the result of IOResult from a Write statement
for debugging purposes such as

Reset (myFile, 'file. data');
Write(lOResult)

What's the problem? This will display the result of the last 1/0 oper
ation, which is the Write and not the Reset. The proper result can be
achieved by first assigning the value returned by IOResult to a vari
able and then displaying it.

Reset(myFile, 'file.data');
Code := lOResult;
Write(Code);

A complete list of all the possible values returned by IOResult is listed
in Appendix D.

Examining a File's Contents

Very often while developing a program it would be helpful to view
the contents of a file being created. Turbo's schizophrenic ability to
edit and run more than one program at a time is quite helpful here. It
gives us the ability to keep a small file exam "utility" in one window
while developing a larger system. Such a utility only needs to treat the
contents of a file as characters and then display them in the console
window.

226 TURBO PASCAL FOR THE MAC

program FileTest;
var

f : file of Char;
Ch : Char;
Name : string[8DJ;

begin
Writeln('Examine which file?');
Readln(Name);
reset(f,Name);
while not eof(f) do
begin
Read(f,ch);
writeln(ch,' ' Ord(ch));

end;
readln;

end.

No matter what data type is stored in the file, each byte of the file is
read by FileTest as a character and displayed on the screen along with
its ASCII code. This will help identify the contents of most files as long
as you understand how the information is organized when it is stored.

Pathnames

A file can be sent to a particular disk drive (floppy or hard) and into
a particular directory on an HFS (hierarchical file system) disk by
specifying them in the physical filename. For instance, to create a file
on the volume known as PaulStuff:

Rewrite('ResumeFile PaulStuff:MyFile 1 ,);

With HFS, to do the same thing but also use the folder "Resume,"
you would use

Rewrite(1ResumeFile PaulStuff:Resume:MyFile',);

A FILE PROCESSING APPLICATION-THE
CHECKING AND SAVINGS PROGRAM

FILES 227

Now that you are familiar with file operations, we are ready to de
velop a full-scale application that utilizes file processing. This is a
good exercise not only in file handling, but also in how to plan and
program a significant project. The particular application we will
tackle is a program that will prove useful in your banking transactions.

Overview

The Checking and Savings program will track transactions for a
checking account and a savings account. These were both included
because many banks now bundle a checking and savings account to
gether. Several types of transactions can be entered for both accounts.
For the checking account, the transactions that can be entered are

1. deposits;

2. checks written;

3. interest paid by the bank (for interest-paying checking ac
counts);

4. fees charged by the bank.

For the savings account, the transactions accepted are

1. deposits;

2. withdrawals;

3. interest paid by the bank.

For either account, a report of all the transactions can be printed
with the current balance.

2~8 TuRBo PASCAL FOR THE MAC

I)ata Structures
I

One of the first things to consider when developing any application
is what data structure will be used. That is, how will the data be organ
ized, handled, and stored? In this program we essentially have two
types of information. The first is a transaction for either checking or
savings. Since the transactions for both types of accounts are similar,
they can both be stored in the same record structure with a field indi
cating which account the transaction is for. The other fields in the
record are needed to keep track of the particulars of the transactions.
The record structure is

1
type
, TransType = (Checking, Savings);

TransRec = record
CheckOrSave Trans Type;
Code l •• s;
Date string[8];
Amount Integer;
TaxDeduct Char;
CheckHumber Integer;
PayTo string[8Dl

end;

The first four fields are needed for any type of transaction. The last
three are used only for a check. After a transaction is entered, it is
written to an external data file named Trans.data. The field Code is
used to specify which type of transaction the record represents. The
codes are shown in Table 9-1.

Code
-1-

2
3
4

Table 9-1. Field Codes

Checking
Deposit
Withdrawal
Interest
Fee

Savings
Deposit
Check
Interest

The second type of information to keep track of is the balance of
both accounts. We could not include that as a field in the transaction

FILES 229

records since the balance changes after each transaction. A separate
record structure is used to hold the balances.

BalanceRec = record
SavBal : Integer;
CheckBal : Integer

end;

A different field in the record is used for the balance in each account.
This record is updated after every transaction. At the end of the pro
gram the record is written to an external disk file named Balance.data.
When the program is run subsequent times, the record is read from
this file. In this way up-to-date balance information is maintained.

Development

This program differs from all others we have seen because several
program options are available to the user, and none of them are done
in any specific order. The options are selected by the user from a series
of menus, and the selection entered controls the execution. The main
menu provides the choices of a savings or checking transaction to be
entered, balances to be displayed, or exiting from the program. The
checking or savings choices lead to submenus that provide the choice
transactions. The balance option displays the balances, and the exit
option does the file housekeeping before returning control of Turbo
Pascal to the user. No pull-down menus are used; chapter 11 covers
that.

A first level of development for the program would produce
pseudocode indicating what action will take place for each of the pos
sible program options.

repeat
Display Main Menu
Get option
Case option of

1 Savings transaction
2 Checking transaction
3 Display balances
4 Exit program

until Exit option is picked

230 TuRBo PASCAL FOR THE MAC

A second level of development will show detailed pseudocode for
how each of the main menu options will be processed.

Listing 9-1. Pseudocodes for the Savings and
Cpecking Programs.

SAVINGS TRANSACTIONS
Deposit

Get information
Add amount to savings balance
Place transaction in file

Withdrawal
Get information
Subtract amount from savings balance
Place transaction in file

Interest credited
Get information
Add amount to savings balance
Place transaction in file

Report
while not (eof(Trans.data))

begin
Read a transaction
If savings transaction then Print transaction information

end {ihilel
Print balance

CHECKING TRANSACTIONS
Deposit

Get information
Add amount to checking balance
Place transaction in file

Check
Get information
Subtract amount from checking balance
Place transaction in file

Interest credited
Get information
Add amount to checking balance
Place transaction in file

Checking fee
Get information
Subtract amount from checking balance
Place transaction in file

Report
while not (eof(Trans.data))

Read a transaction
If checking transaction then Print transaction information

Print balance
DISPLAY BALANCES

Clear screen
Display balances

EXIT
Replace balance record in Balance.data

Close all files

FILES 231

A third level of refinement will include writing the main program
with the variable declarations and the procedures that implement the
menu structure.

Listing 9-2. Main Savings and Checking Program.

program CheckingAndSavings;
type

var

TransType = (Checking, Savings);
TransRec = record

CheckOrSave Trans Type;
Code 1 •• 5;
CheckNumber Integer;
PayTo string[bOJ;
Date string[8J;
Amount Real;
TaxDeduct Char;

end;

BalanceRec
SavBal
CheckBal

end;

Out
Transaction
Balance
FourSet,
FiveSet
Option
Trans File
BalanceFile
Stop
I

record
Real;

: Real

Text;
Trans Rec;
BalanceRec;

set of 1 •• 10;
Integer;
file of TransRec;
file of BalanceRec;
Boolean;
Integer;

begin
Stop := False;
FourSet : = [1, 2, 3, 4 J ;

232 TURBO PASCAL FOR THE MAC

FiveSet := [1, 2, 3, 4, SJ;
{$I-)

Reset(BalanceFile, 1 Balance.Data 1);

i := ioresult;
{$!+)
if i < D then

begin
Balance.savbal := D
Balance.checkbal := D;

end
else

begin
Seek(BalanceFile, D);
Read(BalanceFile, Balance);
close (BalanceFile);

end;
Rewrite(out, 'Printer:');
{OpenTransaction File)
If FileSize(TransFile) = D then

begin
Rewrite(TransFile, 'Trans.data•);
Close (TransFile)

end;
Reset(TransFile, 'Trans.data•);
{Move to last position in file)
Seek(TransFile, FileSize(TransFile));
repeat {Main driver)

DisplayMainMenu;
InitRec;
case option of

1

2

3

begin
Transaction.CheckOrSave := Checking;
CheckingMenu;
CheckingOptions

end;

begin
SavingsMenu;
Transaction.CheckOrSave := Savings;
Savings Options

end;

ShowBalances;
4

Stop := True;
end;{Case}

until Stop = True;
Close(TransFile);
Rewrite(BalanceFile,•Balance.data•);
Write(BalanceFile, Balance);
{Replace Balance record in file}
Close(BalanceFile);

end. {Program}

FILES 233

The main program first initializes the variables used in the program
and opens the files needed. If the balance file does not exist, then the
fields in its record are set to zero. The other function of the main
program is to drive the program by calling a procedure to display the
main menu and then calling the procedures necessary to handle the
transaction to be entered. As you can notice we used that little trick
for determining if a file is present on the disk. The procedures called
from the main program are

DisplayMainMenu-Displays the main menu in the text window.

InitRec-Initializes the transaction record so that no information
is in it from the previous transaction.

CheckingMenu-Displays the menu of checking options.

CheckingOptions-Processes the checking transactions.

SavingsMenu-Displays the menu of savings options.

SavingsOptions-Processes the savings transactions.

ShowBalances-Displays the current account balances.

The next step of the development is to write the procedures called
in the main program. This set of procedures will handle all the various
account transactions.

234 TURBO PASCAL FOR THE MAC

;procedure DisplayMainMenu;
1begin

Writeln('Checking and Savings System');
Writeln;
Writeln(' 1. Checking Transaction•);
Writeln(' 2. Savings Transaction');
Writeln(' 3. Show Balances•);
Writeln(' 4. Exit');
Writeln;
repeat

Write('Selection ');
Readln(Option);

until Option in FourSet;
end; {DisplayMainMenul

This procedure displays the main menu. The user's selection is re
turned to the main program in the global variable Option. Notice the
input verification done in the Repeat loop utilizing sets.

procedure CheckingMenu;
begin
· Writeln('Checking System');

Writeln;
Writeln('1. Enter a Deposit');
Writeln(•2. Enter a Check');
Writeln('3. Enter Interest•);
Writeln('4. Checking Fees•);
Writeln(•S. Checking Report•);
repeat

Writeln;
Write('Selection ');
Read(Option)

. until Option in FiveSet;
~nd; {CheckingMenul

procedure SavingsMenu;
begin

Writeln('Savings System');
Writeln;
Writeln('1. Enter a Deposit');
Writeln('2. Enter a withdrawal');
Writeln('3. Enter Interest');
Writeln('4. Savings Report•);

repeat
Write('Selection '):
Read(Option)

until Option in FourSet:
end: {SavingsMenu}

FILES 235

The procedures CheckingMenu and SavingsMenu are very similar.
They both display the possible account transaction and send the se
lected option back to the main program in the global variable Option.

Listing 9-3. Procedures That Handle Savings and
Checking Transaction.

procedure SavingsOptions;
begin

case Option of
1

2

3

begin
EnterDeposit;
Balance.SavBal :; Balance.SavBal + Transaction.Amount;
iriteTransaction

end;

begin
Enterwithdrawal;
Balance.SavBal :; Balance.savBal - Transaction.Amount;
iriteTransaction

end;

begin
Enterinterest;
Balance.SavBal :; Balance.SavBal + Transaction.Amount;
iriteTransaction

end;

PrintSavingReport;
end (Case)

end; ISavingsOptionsl

procedure CheckingOptions;
begin

case Option of
1 :

2

begin
EnterDeposit;
Balance.CheckBal :; Balance.CheckBal + Transaction.Amount;
iriteTransaction

end;

236 TURBO PASCAL FOR THE MAC

3

begin
EnterCheck;
Balance.CheckBal := Balance.CheckBal - Transaction.Amount;
iriteTransaction

end;

begin
Enterinterest;
Balance.CheckBal := Balance.CheckBal + Transaction.Amount;
iriteTransaction

end;
4 •

5

begin
Enter'Fee;
Balance.CheckBal := Balance.CheckBal - Transaction.Amount;
iriteTransaction

end;

PrintCheckingReport;
end (Case}

end;(CheckingOptions}

The procedures SavingsOptions and CheckingOptions handle the
account transactions. The selection entered to CheckingMenu or Sav
ingsMenu is used as the selector in a Case statement. Several more
procedures are called that accept the transaction data. The balance is
then calculated and the transaction written to the file.

EnterDeposit-Prompts the user for deposit information.

EnterWithdrawal-Prompts the user for withdrawal information.

Enterlnterest-Prompts the user for interest information.

EnterFee-Prompts the user for fee information.

EnterCheck-Prompts the user for check information.

WriteTransaction-Write the transaction record to the file.

PrintCheckingReport-Prints the report for the checking ac
count.

PrintSavingsAccount-Prints the report for the savings account.

FILES 237

The next step in the development is to write this set of procedures.

Listing 9-4. Procedures That Accept the Savings
and Checking Transactions Data.

procedure EnterCheck;
begin

with Transaction do
begin

end

Writeln('Enter a Check');
Writeln;
Write('Check Number:');

Readln(CheckNumber);
Write(1 Paid to: 1);

Readln(PayTo);
GetAmount;
Write(1 Tax Deductible(Y/N): 1);

Read(TaxDeduct);
Writeln;
Code := 2;
Write(1Enter Date !!/DD/YY: 1);

Readln(Date);

end; IEnterCheckl

procedure EnterDeposit;
begin

with Transaction do
begin

Writeln('Enter a Deposit to 1 Transaction.CheckOrSave);
Writeln;
GetAmount;
Write(1Enter Date !!/DD/YY: 1);

Readln(Date);
Code := 1;

end {With}
end; IEnterDepositl

procedure Enterinterest;
begin

Writeln(' Enter Interest to ' Transaction.CheckOrSave);
Writeln;
with Transaction do

begin
GetAmount;
Code := 3;
Write('Enter Date !!/DD/YY: ');

238 'fuRBo PASCAL FOR THE MAC

Readln(Date);
end (With}

end; IEnterinterestl

procedure EnterFee;
begin

with Transaction do
begin

end

Writeln('Enter a Fee•);
Writeln;
GetAmount;
Write('Enter Date !!/DD/YY: 1);

Readln(Date);
Code := If;

end; IEnterFeel

procedure Enterinterest;
begin

Writeln(' Enter Interest to 1 , Transaction.CheckOrSave);
Writeln;
with Transaction do

begin
GetAmount;
Code := 3;
Write('Enter Date !!/DD/YY: ');
Readln(Date);

end I With I
end; IEnterinterestl

procedure EnterFee;
begin

with Transaction do
begin

Writeln('Enter a Fee•);
Writeln;
GetAmount;
Write(1Enter Date !!/DD/YY: 1);

Readln(Date);
Code : = If;

end
end; IEnterFeel

procedure EnterWithdrawal;
begin

with Transaction do
begin

Writeln(•Enter a Withdrawal to •, CheckOrSave);

Writeln;
GetAmount;
Code := 2;
Write(1 Enter Date MM/DD/YY: 1);

Readln(Date)
end !With)

end; IEnterWithdrawalJ

FILES 239

All of these procedures are similar, prompting the user for transac
tion information and assigning it into the Transaction record. Because
of the similarity between the two accounts, the procedures EnterDe
posit and Enterlnterest are used for both checking and savings.

Listing 9-5. Procedures That Print the Savings
and Checking Transaction Reports.

procedure PrintCheckingReport;
begin

Printer!essage;
Writeln(Out, 'Checking Report•);
Seek(TransFile, 0);
Read(TransFile,Transaction) ;
while not (eof(TransFile)) do

begin
if Transaction.CheckorSave Checking then

with Transaction do
begin

Write(Out, Date);
case code of

1

2

3

Write(Out, 'Deposit');

begin
Writeln(Out, 'Check number•,

CheckNumber, ' ' : 10, 'Deductible');
Write(Out, 1Paid to:•, PayTO)

end;

Write(Out, 'Interest ');

Write(Out, 1Fee 1);

end; (Case)

Writeln(Out, Amount : 7 : 2);
end; (With)

Read(TransFile,Transaction)

240 TuRBO PASCAL FOR THE MAC

Read(TransFile,Transaction)
end; I While I
Writeln(Out);
Writeln(Out, 'Balance •, Balance.CheckBal

end; IPrintCheckingReportl

procedure PrintsavingReport:
begin

Printerllessage;
Writeln(Out, •savings Report•);
Seek(TransFile, 0);
Read(TransFile, Transaction);
while not (eof(transfile)) do

begin

7

if Transaction.CheckorSave
with Transaction do

Savings then

begin
Write(Out, Date);
case Code of

1
Write(Out, 'Deposit'):

2
Write(Out, 'Withdrawal');

3
Write(Out, •Interest ')

end; {Case}
Writeln(Out, Amount : 7 : 2);

end; liithl
Read(TransFile, Transaction):

end; _(While}
Writeln(Out):
Writeln(Out, •Balance •, Balance.SavBal 7 2)

end; IPrintSavingsReportl

2)

Both of the report procedures read the transaction file starting at
the first record. A Seek is used to position the file pointer to the zero
record. Subsequent records are read until the end of the file is
reached. The CheckOrSave field in the record is examined; if the rec
ord is the proper type of transaction, then the information is sent to
the printer. A last set of procedures is called by this set.

GetAmount-Prompts the user for the amount of the transaction.
This is needed in enough places to justify making it a procedure
all its own.

procedure GetAmount;
begin

Write(•Amount: $');
Readln(Transaction.Amount)

end; IGetAmountl

procedure PrinterMessage;
begin

Writeln('Set up printer•);
Writeln('Then press the mouse button•);
repeat

!Do nothing loop}
until button

end; IPrinterMessagel

FILES 241

The only lines of interest in these two procedures is the Repeat loop
in PrinterMessage. This loop is used to freeze the menu on the screen
until the user presses the mouse button. This causes the built-in
Boolean function Button to return True and the loop to end. You could
also use the function KeyPress for this.

Here is the entire program together.

Listing 9-b. The Complete Savings and Checking
Program.

program CheckingAndSavings;
uses

Memtypes, QuickDraw, OSintf, Toolintf, PasPrinter;
type

TransType = (Checking, Savings);
TransRec = record

CheckOrSave : TransType;
Code : 1 •• 5;
CheckNumber : Integer;
PayTo : string[bDJ;
Date : string[8J;
Amount : Real;
TaxDeduct : Char;

end;
BalanceRec = record

SavBal : Real;
CheckBal : Real

end;

var
Out Text;

242 Turulo PASCAL FOR THE MA.c

Transaction
Balance
Fourset,
Fiveset
Option
TransFile
BalanceFile
Stop
I

Trans Rec;
BalanceRec;

set of 1 •• 10;
Integer;
file of TransRec;
file of BalanceRec;
Boolean;
Integer;

procedure Display!ain!enu;
,begin

Writeln(1 Checking and Savings System•);
Writeln;
Writeln(' 1. Checking Transaction•);
Writeln(1 2. Savings Transaction•);
Writeln(' 3. Show Balances•);
Writeln(' 4. Exit');
Writeln;
repeat

Write(1 Selection 1);

Readln(Option);
until Option in FourSet

end; !Display!ain!enul

!procedure Checking!enu;
lbegin
1 Writeln('Checking System•);

Writeln;
Writeln('1. Enter a Deposit•);
Writeln('2. Enter a Check');
Writeln(1 3. Enter Interest•);
Writeln('4. Checking Fees');
Writeln(•S. Checking Report•);
repeat

Writeln;
Write(1 Selection 1);

Read(Option)
. until Option in FiveSet
!end; I Checking!enu I

procedure Savings!enu;
begin

Writeln(1 Savings System•);
Writeln;
Writeln('1. Enter a Deposit');
Writeln('2. Enter a Withdrawal');
Writeln('3. Enter Interest');
Writeln(•4. Savings Report•);
repeat

Write(1 Selection 1);

Read(Option)
until Option in FourSet

end; {Savings!enul

procedure InitRec;
begin

with Transaction do
begin

CheckNumber := D;
PayTo := '';
Amount := D;
TaxDeduct := • •;
Date := ''

end
end;!InitRecl

procedure WriteTransaction;
begin

Write(TransFile,Transaction);
end; !WriteTransactionl

procedure GetAmount;
begin

Write(1 Amount: $ 1);

Readln(Transaction.Amount)
end; IGetAmountl

procedure Printer!essage;
begin

Writeln('Set up printer•);
Writeln(1 Then press the mouse button•);
repeat

!Do nothing loop!
until button

end; !Printer!essagel

procedure ShowBalances;
begin

with Balance do
begin

Writeln(1 Checking: •, CheckBal : 7 : 2);
Writeln('Savings: •, SavBal : 7 : 2);
Writeln;

end;
Writeln(1 Hit the mouse button to continue•);
repeat
until button

end;

procedure EnterCheck;
begin

with Transaction do
begin

Writeln('Enter a Check');
Writeln;

FILES 243

244 TuRBO PASCAL FOR THE MAC

end

Write(1 Check Number:•);
Readln(CheckRumber);
Write(1 Paid to:•);
Readln(PayTo);
Getlmount;
Write(•Tax Deductible(Y/R):');
Read(TaxDeduct);
Writeln;
Code := 2;
Write(1 Enter Date !!/DD/YY: 1);

Readln(Date)

end; IEnterCheckl

procedure EnterDeposit;
begin

with Transaction do
begin

Write('Enter a Deposit to ');
if Transaction.CheckOrSave = Checking then

Writeln(1 Checking 1)

else
Writeln(1 Savings 1);

Writeln;
Getlmount;
Write(1Enter Date !!/DD/YY: 1);

Readln(Date);
Code := 1;

end !With}
end; IEnterDepositl

procedure Enterinterest;
begin

Writeln(' Enter Interest to 1);

if Transaction.CheckOrSave = Checking then
Writeln(1 Checking 1)

else
Writeln(1 Savings 1);

Writeln;
with Transaction do

begin
Getlmount;
Code := 3;
Write('Enter Date !!/DD/YY: ');
Readln(Date);

end (With}
end; IEnterinterestl

procedure EnterFee;
begin

with Transaction do
begin

Writeln(1 Enter a Fee•);

Writeln;
GetAmount;
Write('Enter Date !!/DD/YY: 1);

Readln(Date);
Code := 4;

end
end; IEnterFee I

procedure EnterWithdrawal;
begin

with Transaction do
begin

Writeln('Enter a Withdrawal to 1);

if CheckOrSave = Checking then
Writeln('Checking•)

else
Writeln(1 Savings 1);

Writeln;
GetAmount;
Code : = 2;
Write(•Enter Date !!/DD/YY: 1);

Readln(Date)
end (With}

end; IEnterWithdrawall

procedure PrintCheckingReport;
begin

Printer!essage;
Writeln(Out, 'Checking Report•);
Seek(TransFile, D);
Read(TransFile,Transaction) ;
while not (eof(TransFile)) do

begin
if Transaction.CheckorSave

with Transaction do
begin

Write(Out, Date);
case code of

1

Checking then

2
Write(Out, 1 Deposit 1);

begin

Fil.ES 245

iriteln(Out,•Check number 1 ,

CheckNumber, 1 ' :10,
'Deductible ');

irite(Out, 'Paid to:•, PayTO)
end;

3
Write(Out, •Interest ');

irite(Out, 'Fee•);
end; (Case}
iriteln(Out, Amount : 7 : 2);

246 TuRBo PASCAL FOR THE MAC

end; !With}
Read(TransFile,Transaction)

end; I While l
Writeln(Out);
Writeln(Out, •Balance •, Balance.CheckBal

end; {PrintCheckingReportl

procedure PrintSavingReport;
begin

Printer!!essage;
Writeln(Out, •savings Report•);
Seek(TransFile, D);
Read(TransFile, Transaction);
while not (eof(transfile)) do

begin

7

if Transaction.CheckorSave
with Transaction do

Savings then

begin
Write(Out, Date);
case Code of

1

2

3

Write(Out, 'Deposit');

Write(Out, 'Withdrawal');

Write(Out, 'Interest ')
end; {Case)
Writeln(Out, Amount : 7 : 2);

end; I With l
Read(TransFile, Transaction);

end; I While I
Writeln(Out);
Writeln(Out, •Balance •, Balance.SavBal 7 2)

end; IPrintSavingsReportl

procedure SavingsOptions;
begin

case Option of
1

2

3

begin
EnterDeposit;
Balance.SavBal := Balance.SavBal

+ Transaction.Amount;
WriteTransaction

end;

begin
EnterWithdrawal;
Balance.SavBal := Balance.SavBal

- Transaction.Amount;
WriteTransaction

end;

2)

begin
Enterinterest;
Balance.SavBal := Balance.SavBal

+ Transaction.Amount;
WriteTransaction

end;

PrintSavingReport;
end {Case!

end; ISavingsOptionsl

procedure CheckingOptions;
begin

case Option of
L

2

3

If

5

begin
EnterDeposit;
Balance.CheckBal := Balance.CheckBal

+ Transaction.Amount;
WriteTransaction

end;

begin
EnterCheck;
Balance.CheckBal := Balance.CheckBal

- Transaction.Amount;
WriteTransaction

end;

begin
Enterinterest;
Balance.CheckBal := Balance.CheckBal

+ Transaction.Amount;
WriteTransaction

end;

begin
EnterFee;
Balance.CheckBal := Balance.CheckBal

- Transaction.Amount;
WriteTransaction

end;

PrintCheckingReport;
end lease}

end;ICheckingOptionsl

begin
Stop := False;
FourSet := [L, 2, 3, lfl;
Fiveset := [L, 2, 3, If, 51;
{$I-}
Reset(BalanceFile, •Balance.Data•);
i := ioresult;

FILES 247

248 Turulo PASCAL FOR THE MAC

1$I+l
if i < a then

begin
Balance.savbal := D ;
Balance.checkbal := D

end
else

begin
Seek(BalanceFile, D);
Read(BalanceFile, Balance);
close (BalanceFile)

end;
Rewrite(out, •Printer:');

IOpenTransaction File}
If FileSize(TransFile) = D then

begin
Rewrite(TransFile, 'Trans.data•);
Close (TransFile)

end;
Reset(TransFile, 1 Trans.data 1);

Seek(TransFile, FileSize(TransFile)); (Move to last
position in file}

repeat (Main driver}
DisplayMainMenu;
InitRec;
case option of

1

2

3

4

begin
Transaction.CheckOrSave := Checking;
CheckingMenu;
CheckingOptions

end;

begin
SavingsMenu;
Transaction.CheckOrSave := Savings;
SavingsOptions

end;

ShowBalances;

Stop := True;
end;ICasel

until Stop = True;
Close(TransFile);
Rewrite(BalanceFile, 1 Balance.data•);
Write(BalanceFile, Balance);

(Replace Balance record in file}
Close(BalanceFile);

end. I Program l

FILES 249

Do More

The Checking and Savings program provides a strong framework
from which many features can be added by writing new procedures.
Consider some of the following:

1. Adapt the report procedures to print only transactions after a
given date.

2. Add a field to the transaction record to note if a check has
cleared, and then add a procedure to reconcile the checking
account.

3. Adapt the checking report to allow it only to print out tax
deductible expenses.

CHAPTER SUMMARY

This chapter introduced file concepts and then quickly integrated
them with sophisticated programming techniques. Also presented was
the longest application program yet. In the next chapter we will ex
amine the final Pascal topics not yet covered, and then we will have
the background necessary to move into some sophisticated uses of the
Toolbox and QuickDraw.

10
Variant Records, Pointers,

and Handles

INTRODUCTION

In this chapter we will discuss three of the more sophisticated and
useful features in Pascal. Variant records are an extension of the c~
cept of records, as already seen. Pointers are a data type totally differ
ent from any other we have seen so far in Pascal. Handles, which are
based upon pointers, are a data type used extensively in implementing
the Macintosh's User Interface. All three structures play important
roles when using the Toolbox since many of the Toolbox's data struc
tures are defined as records are and accessed via pointers and han
dles. For instance, all access to pull-down menus, as we will see in
Chapter 11, are done through handles.

VARIANT RECORDS

In some situations, records that. differ only slightly in structure are
required. For example, suppose we want to represent information
about all the people who are on a college campus. We would like to
keep each person's name, address, and identification number. But de
pending upon whether the individual was a student or a faculty mem
ber, we would want to maintain different information. For students we
want class standing, but for members of the faculty we would want job

251

252 TuRBo PASCAL FOR THE MAC

title and department worked for. To represent this information using
the record structure with which we are already familiar would require
these two separate records:

type
Person = (Student, Faculty);

Studentlnfo
Name
IDNum
Occupation
Standing

end;

Facultylnfo
Name
IDNum
Occupation
Description
Department

end;

record
string[20J;
string[9J;
Person;
1 •• 4;

record
string[20J;
string[9J;
Person;
string[20J;
string[20J

By using variant records, this different information can be repre
sented in a single record structure. A variant record allows the value
of one field in the record to determine the type of information that can
be stored in other fields.

type
Person = (Student, Faculty);

lnfoRec = record
Name
IDNum
case Occupation

Student
Faculty

end; I lnfoRec I

string[20J;
string[9J;

: Person of
(Standing : 1 •• 4) ;
(Description : string[20J;
Department : string[20J)

The declaration of a variant record differs from the standard record
declaration because a Case clause is included. The Case clause must be
the last part in the declaration, and the fields listed above it are han-

VARIANT RECORDS, POINTERS, AND HANDLES 253

died just like a standard record declaration. The purpose of the Case
clause is to show that this record may hold different kinds of informa
tion at different times. The field after the reserved word "case" (in
this example Occupation: People) is called the tag field; it determines
which of the variants in the Case clause are to be used. When the field
Occupation has the value Student, the record will contain the field
Standing. When the field Occupation has the value Faculty, this record
will hold the Description and Department fields. The tag field Occupa
tion is present in both variations of the record. Notice that there is no
"end" used for the Case statement. Let's now declare two records to be
of type InfoRec and examine them more closely.

var
Person1, Person2 InfoRec;

Person1.Name := 'Marian•;
Person1.IDNum := '12355321';
Person1.0ccupation := Student;
Person1.Standing := 4;

In the record Person! the tag field Occupation is set to Student. The
appropriate variant field to use is Standing.

Person2.Name := 'Alan•;
Person2.IDNum := '12351234';
Person2.0ccupation := Faculty;

Person2.Description := 'Assistant Professor•;
Person2.Department := •computer Science•;

In the record Person2 the tag field is set to Faculty. The variant
fields that should be used are Description and Department.

Which fields in the variant part of a record to access (Standing or
Department and Description) is a decision that should be made dy
namically in the program by testing the tag field (in this case Occupa
tion) and making a decision based on its value. The following example
shows a procedure that can be used to display a record of type In
foRec:

254 TURBO PASCAL FOR THE MAC

procedure Displayinfo(theRec : InfoRec);
begin

{ Display field common to both variants
Writeln(•Name : •, theRec.Name);
Writeln('ID Number: •, theRec.IDNum);
case theRec.Occupation of

end
end;

Faculty : I Display information unique to faculty
begin

Writeln(1 0ccupation : Student•);
Writeln('Standing : •, theRec.Standing);

end
Student : I Display information unique to students

begin

end

Writeln(1 0ccupation : Faculty•);
Writeln(1 Department: •, theRec.Department);
Writeln('Description: •, theRec.Description)

Notice that the number of fields in the different variant parts do not
have to be the same. Variant parts could also be declared containing
no fields at all. It is not uncommon for a Pascal programmer to use a
variant record without a tag field. This is perfectly legal. Instead of
the tag field, just a tag type is used in the Case statement.

TestRec = record case Boolean of
True : (Int : Integer);
False : (Ch : Char)

end; {Record}

This technique can only be used when the programmer knows which
fields to use from the context of the program. An example of this
would be when a programmer knows that all even records in a file will
contain a number and all odd records will contain a character, or any
other similar scheme. In this example, we used the type Boolean in the
tag part of the Case clause to represent two variants; if we wanted to
have more than two variants and still not use a tag field, we could use
the type Char or Integer in the case because they have more than two
possible values.

VARIANT RECORDS, POINTERS, AND HANDLES 255

Why Use Variant Records?

Variant records are a space saver. The previous example about
faculty and students could have been accomplished without variant
records by including all three fields (Standing, Department, and
Description) into our record. Since we know the fields Standing, De
partment, and Description would never be used at the same time, the
variant record allows us to use the same space for both alternatives. If
you were to write a program that stored 50,000 of these records on a
disk, the space saving could be significant. The space taken up by
variant records is the space needed to hold the largest variant (in our
example Department, Description uses more space than Standing). Be
cause of this, all variants of a record are the same size. This means a
single type of file can hold the different kinds of information.

Since different variants occupy the same portion of memory, tricks
can be done to circumvent Pascal's type checking. It is recommended
that you not use this technique unless you are familiar with the way
Turbo Pascal represents data internally.

Variants In The Toolbox

Many of the data structures used by the Toolbox and QuickDraw are
declared as variant records. One example of this is the definition of a
Point. We have already looked at the way a point is defined, but that
definition was slightly simplified for instructional purposes. Now let's
see the actual definition.

Point = record case Integer of
D (v : Integer;

h : Integer);
1 (vh : array[vhSelectl of Integer)

end;

Here, vhSelect is defined as a user-defined type as follows:

vhSelect = (v,h);

256 TURBO PASCAL FOR THE MAC

As you can see, the true declaration of a point is a variant record
that has no tag field. Essentially, a point is represented in memory by
two consecutive integers. The objective is to allow the programmer to
access the same information in whichever way is more convenient.
Because of the variant definition of a point, these two groups of assign
ment statements have the same effect.

Pt.v := 10
Pt.h := 20;

and

Pt.vh[V] := 10;
Pt.vh[hJ := 20;

Use whichever is more convenient in the program-in fact, both
forms can be intermixed.

POINTERS

All the variables we have seen so far have been static variables. This
meant that the variables were declared in the var section of a pro
gram, and memory space for the variable was allocated when the pro
gram started to execute. When we use static variables we must know
in advance how much data we will need to store. For example, if we
use an array to keep track of all the students in a university, we would
have to know the maximum number of students who may register and
then declare that many elements in the array. If half the students
decided to drop out after taking Computer Science 101 last semester,
then half the array would be wasted. On the other hand, if more peo
ple enrolled than anticipated, the array would be smaller than re
quired, and the program would not work.

In Pascal, we have a way of creating new variables dynamically as
they are required during program execution. These dynamic variables
are not accessed the way static variables are, but rather through other
variables known as pointers. To show how pointers work, let's look at a
simple example of a dynamic integer and a pointer to it.

VARIANT RECORDS, POINTERS, AND HANDLES 257

var
P "Integer;

This declares P as a pointer to an integer variable. Notice that a
pointer is declared with an up arrow " (Shift-6 key on Macintosh)
preceding the data type of the variable it will point to. This declara
tion declares only the pointer, not the variable. We create the variable
that P will point to dynamically with the New procedure.

New(P);

This procedure creates an integer variable that is not named but can
be referenced though the pointer P. The variable P points to can be
accessed with P".

p ..

p ~o
Figure 10-1. Pointer P

P The pointer

P" How we reference the variable P points to

When a dynamic variable is created, its value is unitialized. A value
can be placed in the newly created variable with

P" := 2b;

p ..

P--.. 0
Figure 10-2. Assigning a Value

P" refers to the variable and can be used like any other integer vari
able. The statement

2$8 TuRBO PASCAL FOR THE MAC

p := 26;

has no meaning and will cause an error since P is a pointer to an
integer and can't contain a value itself. If a second pointer to an inte
ger Q were declared, we could make it point to the same variable that
P does with

p : = Q:

Figure 10-3. Assigning a Pointer

Q now points to the same variable P does.
An assignment statement with pointers takes on a slightly different

meaning from any other type of variable. The pointer on the left side
of the assignment operator is made to point to the same variable as the
one on the right side. We can access the variable we created with
either of the two pointers that point to it, Q or P.

QA : = 4;
Write(P");

This prints the value of P", which is 4.
When a variable created dynamically is no longer needed, we can

dispose of it and liberate the memory space it occupied with the Dis
pose procedure.

Dispose{P);

This destroys the variable that P pointed to. When a pointer doesn't
point to anything, it is said to point to Nil, a predeclared constant. The
link between a pointer and its variable can be destroyed by assigning
Nil to it.

f : = NIL:

VARIANT RECORDS, POINTERS, AND HANDLES 259

So far, what we have seen as the use of pointers has no advantage
over the use of static variables since we must declare a pointer for
every dynamic variable used. Hence we are in the same boat as before,
having to know the number of variables to be created prior to program
execution. The advantage to using pointers can be seen when a dy
namic variable contains a pointer to another dynamic variable. This
can be done with the help of records.

type
Dynamic

Data
Link

end;

: record
Integer;

"Dynamic

The declared record type has two fields: Data, which will contain an
integer; and Link, which is a pointer to the type Dynamic (the record
type itself). Now let's declare two records of type Dynamic.

var
P, Q : "Dynamic;

P and Qare both pointers to the record type Dynamic. Notice that no
records actually exist at this time, only pointers to records. We can
create a record dynamically with

New(P);

Data Link

P----1 I
Figure 10-4. A Dynamic Record

A record now exists, and P points to it. A second record can be created
with

New(Q);

260 TuRBo PASCAL FOR THE MAc

Data Link

a-----1 I I
Figure 10-5. A Second Record

We now have two dynamic records pointed to by P and Q. These two
records can be linked together by connecting the pointer field
(PA .Link) of the first record to the second record. This is done by
making it point to the same thing Q does.

:P".Link := Q;

Data Link Data Link

P--.. ·I II ... _ _..,t· __ __

Figure 10-6. Connecting the Records

A third record can be added to our chain of records by creating a
new record that Q points to and then linking it to the second record.

:New(Q);
P".Link".Link := Q;

Q

Data Link Data Link Data Link

p____.11 I ._I ,I I I.__..~·,______,.___.
Figure 10-7. A Third Record

We were able to use Q to create a new record even though it already
pointed to something. The link to what it previously pointed to is lost,
and Q will point to a newly created record. The complicated

VARIANT RECORDS, POINTERS, AND HANDLES 261

P" .Link" .Link refers to the field Link of the second record. This is
like an expression evaluating to a field. It is evaluated left to right.

P".Link

P" .Link" .Link

Refers to the Link field of the first record,
the one that P points to.

Refers to what the Link field of the first
record points to, the second record.

Refers to the Link field of the second record.

A chain of records linked together like this is called a linked list. A
linked list is a dynamic data structure that has similar uses to arrays.
The disadvantage of using a link list is that records in the list cannot
be accessed without tracing through the list. It is essentially a sequen
tial access structure. A quicker and more efficient way to create a
linked list uses a For loop and three pointers.

var
p' Q, R

New(P);
R : = p;

"Dynamic;

for I := 1 to 3 do
begin

end
end;

New(Q);
R".Link := Q;
R := Q

In the earlier example, two pointers were used, one to point to the
first record in the list and the second to create new dynamic records.
When using the For loop, we need three pointers, one to point to the
first record (P), one to create new dynamic records (Q), and a third to
point to the last record in the list (R). The use of the third pointer
alleviates the need to spell out the name of the Link field in the last
record, as we had to do in the other example. Instead, since R points to
the last record, R" .Link refers to the pointer we must link to the new
est record.

262 TURBO PASCAL FOR THE MAC

Let us now look at a real application for pointers. Suppose we
wanted to create a program similar to the program DisplayText in
Chapter 9. Unlike DisplayText, which printed a file from beginning to
end, the new program, ReverseText, will display the file backward
from end to beginning. Since the file we wish to print is a text file, it
can only be accessed sequentially. We will have to read the entire file
into memory before we can start printing it out in reverse order. We
do not know the size of the file to be reversed in advance, so we will
use a dynamic variable to hold each line of the file as it is read in.

The variable that holds each line of text to be read in will be the
record LineRec, which contains two fields. The field TextLine is a
string that holds a line of text read, and the other field, Previous, is a
pointer that points to another record of the same type (the record it
points to holds the previous line of text read).

type
LinePtr = ALineRec;
LineRec = record

TextLine : string[80l;
Previous : LinePtr

end;

Hold a line of text I
Pointer to the previous line I

Notice that the type LinePtr is declared to be a pointer to the type
LineRec, which has not yet been declared. This is the only situation in
Pascal where an identifier can be referenced before it has been de
clared.

Listing 10-1. Program That Displays a File from
End to Beginning.

program ReverseText;
l Program to reverse a textfile of arbitrary size

using pointers I
type

LinePtr = ALineRec;
LineRec = record

TextLine : string[80l;
Previous : LinePtr

end;
. var
, TextFile : Text;
, filename : string;
• LineBefore, NewLine LinePtr;
' begin
' Write ('Enter filename : ');

Hold a line of text I
Pointer to the previous line I

Readln(filename);
Reset(TextFileL filename);
LineBefore := nIL;
while not Eof(TextFile) do

begin
New(NewLine);

VARIANT RECORDS, POINTERS, AND HANDLES 263

Readln(TextFile, NewLineA.TextLine);
NewLineA.Previous := LineBefore;
LineBefore := NewLine

end;
I Trace through linked list in reverse order

printing lines I
while LineBefore <> NIL do

begin
Writeln(LineBeforeA.TextLine);
LineBefore := LineBeforeA.Previous

end;
Writeln;
Write(1 Press <Ret> to continue : 1);

Readln
end.

The program works by reading the first line into a newly created
dynamic variable. Since there is no previously read in line for the
previous field to point to, we make it point to Nil. We then continue to
read lines from the file into dynamically created variables, making
each previous pointer point to the previous line read in. When there
are no more lines to be read, we can trace through the linked list
created in the reverse order, by using the pointer to the previous line,
and print out each line.

THE MEMORY MANAGER

In the previous section we saw how memory can be allocated dynam
ically using pointers and the standard Pascal routines New and Dis
pose. There are some programming situations, however, where this
method of memory allocation is inadequate. For these situations we
will use handles and the Macintosh's Memory Manager routines.

Memory in a computer is a valuable resource that is available only
in limited quantities and so must be managed very carefully. The Mac
intosh on which you are running Turbo Pascal has a certain fixed
amount of memory, be it 128K, 512K, a megabyte, or more. Parts of
this memory are allocated for different purposes. Suppose you are
programming on a Macintosh with 1 megabyte of memory (1024k

2 . 4 TURBO PASCAL FOR THE MAC

bytes). For illustrative purposes, let us assume the memory in your
machine is partitioned as follows:

Macintosh's operating system = 200k

Turbo Pascal = 200k

source code of your program = 150k

object code of your program= 100k

stack space used during execution of your program = 7 4k

free memory available for use by the program called the Heap =
300k

Total memory in the system = 1024k

Let's take a closer look at what happens to the 300k bytes of free
memory when you run your program. Suppose we ran the following
program, which allocates memory dynamically using New and Dispose:

1024k

300k

Free Space

~~~~~~~; ~4!< ~~~~~~~~ Stack Space 

}~/;} 1 OOk ;}}} Object Code 

Source Code 

Turbo Pascal 

Macintosh Operating Sy stem 

Figure 10-8. Memory Map 



VARIANT RECORDS, POINTERS, AND HANDLES 265 

program ProveAPoint; 
type 

KiloByte = packed array[1 •• 10241 of char; I 1k of memory I 

var 

SmallChunk = array[1 •• SDl of KiloByte; 
!ediumChunk = array[1 •• 751 of KiloByte; 
LargeChunk = array[1 •• 2DDl of KiloByte; 

SmallPtr 
!ediumPtr 
LargePtr 

11 Smal1Chunk; 
11 !ediumChunk; 
11LargeChunk; 

begin 
Rew(SmallPtr); {Step 1: Allocate SDk bytes of memory I 
Rew(LargePtr); {Step 2: Allocate 2DDk bytes of memory! 
Dispose(SmallPtr);{Step 3: Release the SDk allocated in Step 11 
Rew(!ediumPtr) I Step 4: Allocate 7Sk bytes of memory! 

end. 

The following chart shows the state of memory after each statement 
in the program is executed. 

300k 
free 

Start of Program 

250k 
free 

Step 1 

50k free 

Step 2 

Figure 10-9. Memory Allocation 

50k free 

50k free 

Step 3 

At the time we are going to perform step 4, there are 100k unallo
cated bytes of memory, but they are in two separate 50k-byte sections, 
neither of which is big enough to satisfy our 75k-byte request. The 
New procedure would fail to get the required amount of memory at 
step 4 and would place the predeclared constant Nil into MediumPtr, 
indicating failure to allocate memory. This situation of having enough 
memory but not being able to use it is called fragmentation. It is a 
shame to terminate a program when there really is enough free mem-



266 TURBO PASCAL FOR THE MAC 

ory (100k bytes) to satisfy our request. A possible solution is to com
pact the memory by rearranging it so that all free memory is together. 
The problem with this solution is that any pointers used will then 
point to the wrong location since the data will have been relocated to a 
different area in memory. This situation is known as a dangling 
pointer. The chart that follows illustrates the dangling pointer prob
lem and shows that after compaction the pointer no long points to the 
start of the 200k-byte block of memory. Using a dangling pointer to 
access the memory would then yield unexpected results. For this rea
son the Macintosh will not relocate memory t.fiat has been allocated 
using the New procedure. 

Pointer to 
start of 
200k region 

50k free 

50k free 

100k 
free 

New start 
of200k 

Dangling 
pointer to 
former start 
of 200k region 

......................................... ....,. ___ region 

A ft er Compaction 
Figure 10-10. Compacting Memory 



VARIANT RECORDS, POINTERS, AND HANDLES 267 

Fortunately, the Macintosh has a Memory Manager that is designed 
to allow the most efficient use of memory. How does it do this and 
avoid the infamous dangling pointer problem? If the pointer to a block 
of memory could automatically change to point to the memory's new 
location, then the data would still be accessible after compaction. The 
Memory Manager provides a simple and elegant scheme for accom
plishing this, the handle data structure. 

Handles 

A handle is simply a pointer to a pointer . 

...._____.--.. I.__--=--.. .___I _ 
Handle Pointer 

Figure 10-11. A Handle 

Block of 
Memory 

With this scheme an extra step has been added to the process of ac
cessing memory. The handle leads to a pointer, which in turn leads to a 
certain block of memory. The Macintosh's Memory Manager routines 
allow the handle to point to a special kind of pointer called a Master 
Pointer. The Master Pointer points to the dynamically allocated block 
of memory. If the block of memory is relocated, the Macintosh's Mem
ory Manager automatically updates the Master Pointer to point to the 
block's new location. Now, no matter where in memory our block 
winds up we can still access it through the handle. This concept is 
illustrated in the figure below. 



268 TURBO PASCAL FOR THE MAC 

50k free 

Handle to 
200k block +--111 Master Pointer +---t~'-'-'-'-'-'-"-"I 

Handle to 
200k block 

50k free 

100k 
free 

A ft er Compact 1 on 
Figure 10-12. A Master Pointer 

Since a handle is a pointer to a pointer, we can declare it that way. 
Suppose we wanted to declare a handle to an integer. First we would 
declare the type IntPointer to be a pointer to an integer. Then we 
would declare the type lntHandle to be a pointer to type IntPointer. 
Finally we could create a variable of type IntHandle. 

type 

var 

IntPointer 
IntBandle 

myHandle 

.... Integer; 
AintPointer; 

IntBandle; 



VARIANT RECORDS, POINTERS, AND HANDLES 269 

To use a handle variable, we must make it point to something. This 
is done using the NewHandle function. The declaration for NewHan
dle function is 

function NewHandle(Size : Longint) 

where Handle is defined as follows: 

type 
SignedByte 
Ptr 
Handle 

-128 •• 127; 
"SignedByte; 
"Ptr; 

Handle; 

NewHandle allocates Size bytes of memory on the heap and makes a 
Master Pointer point to the allocated memory. It then returns a 
pointer to that Master Pointer. The returned value can be thought of 
as a handle to the memory that has been allocated. This value should 
then be assigned to a handle variable. If NewHandle cannot immedi
ately find enough memory to satisfy the request, it will compact the 
heap and try again to allocate the memory. If it still is unable to find 
the required memory, it will return Nil. There are two minor complica
tions in using the NewHandle routine. First, how do we know how 
much memory to allocate for a variable? Pascal provides us with a 
built-in function called SizeOf, which returns the number of bytes a 
variable or type occupies in memory. For example: 

SizeOf(Integer) returns 2 

SizeOf (Longint) returns 4 

SizeOf (Char) returns 1 

You can also use an actual variable as an argument to SizeOf. In the 
following example, assume Num is declared as an integer and BigNum 
as a Longlnt. 

SizeOf (num) returns 2 

SizeOf (bignum) returns 4 



270 TuRBo PASCAL FOR THE MAC 

The second problem is that NewHandle returns something of type 
Handle, which is a generic type of handle and is probably different 
from the data type we will be working with. If we are working with 
handles to integers, for example, we must force the handle returned 
by NewHandle to that data type. As you remember, Pascal is very 
strict about not being able to assign values of one type to variables of 
another type (type checking). Fortunately, Turbo Pascal has a method 
around this problem. The solution is called type coercion, or type cast
ing. To cast an expression of one type to another type, simply put the 
expression you wish to cast in parentheses and precede it by the new 
type. For example, if Num is of type Integer and Ch is of type Charac
ter, we could assign Ch to Num by using the following statement: 

Num :=Integer (Ch); 

What we would get in Num is the ASCil value of Ch. 
Putting it all together, we can allocate the block of memory for an 

integer. 

myBandle := IntBandle (NewBandle(sizeof(Integer))); 

If we wish to release the memory allocated with NewHandle, we use 
the procedure DisposHandle: 

DisposBandle(Bandle(myBandle)) 

DisposHandle expects a parameter of type Handle to be passed to it. 
Since we are working with handles to other types of data, we must cast 
myHandle to type Handle, which DisposHandle expects. 

Now that we have dynamically allocated memory, we must be able 
to use it. We access memory through handles in a way that is analo
gous to the method used for pointers. When using a pointer, if we want 
to reference the variable pointed to by myPointer, we would use my
PointerA. Since a handle is a pointer to a pointer, we can reference 
memory associated with myHandle by using myHandleAA. If myHan
dle is a handle to an integer, then myHandleA A could treated exactly 
as any other integer. The result of executing the statement 



VARIANT RECORDS, POINTERS, AND HANDLES 271 

myHandleAA := 23: 

could be presented graphically in the figure below . 

.__ ___ -_:------· _I ___ -_-----·I __ 2_3 __ 

myHandle myHandle" 
Figure 10-13. Using Handles 

Here is a simple program that uses a handle: 

program HandleDemo: 
uses 

MemTypes, QuickDraw, Osintf: 
type 

IntPointer 
IntBandle 

"Integer: 
"IntPointer: 

var 
myHandle IntHandle: 

begin 
myBandle := IntHandle (NewHandle(sizeof(Integer))): 
myBandle"A := 23: 
write('myHandleA" = •,myHandle"A): 
DisposBandle(Handle(myHandle)): 
Writeln: 
Writeln('Press <Ret> to continue : '): 
Readln: 

end. 

This program, as expected, prints out the number 23. There is, how
ever, an additional point worth noting about this program. To use the 
Macintosh Memory Manager routines, we must include the Uses state
ment in the second line of the program. The unit Oslntf contains the 
declaration for Memory Manager routines such as New Handle and Dis
posHandle. We must also use MemTypes and QuickDraw because rou
tines in Oslntf refer to declarations in those units. 



272 TURBO PASCAL FOR THE MAC 

WHY BOTHER, WHO CARES? 

You may ask yourself: Why should I bother learning all this Memory 
Manager and handle stuff? (What is the beautiful house, etc?) The 
answer is a simple one. Nearly every feature that makes the Macintosh 
such a unique computer, such as pull-down menus, windows, Quick
Draw graphics, and so on, uses the Memory Manager's handle routines 
to implement these features. The reason? It takes a significant amount 
of memory to implement a feature such as a window. Why preallocate 
space for a large amount of windows before a program starts? If some 
of those windows are never used, that vital memory space will be 
wasted. Dynamic allocations allow the amount of memory needed to 
be used. 

If you intend to write programs that take advantage of these fea
tures, you should use memory management techniques that can coex
ist peacefully with those used by the system. If you write programs 
that dynamically allocate a lot of memory using pointers rather than 
handles, you will quickly fragment your memory into unusable por
tions and not be able to have applications that fully use the capability 
of your machine. 

Only a small part of the Macintosh's Memory Manager is explored in 
this chapter. A detailed discussion of all memory management tech
niques is beyond the scope of this book. For more detail, read the 
Memory Manager chapter of Inside Macintosh or one of the other books 
on advanced Macintosh programming mentioned in the Bibliography. 



11 
Events and Event Handling 

INTRODUCTION 

Designers of programming languages have a particularly difficult 
task in implementing a language on the Macintosh. This difficulty is 
caused by the need to interact with the Mac's sophisticated operating 
environment. Some programming languages have thrown the program
mers to the wolves, letting them struggle with the difficult Toolbox 
functions by themselves. For instance, to run even a short program, the 
programmer would have to learn how to open a window and how to 
send data to that window; a formidable task even for experienced pro
grammers. On the other end of the spectrum are languages that super
impose a new environment on top of the Mac's. These systems have 
two drawbacks. First, they are implemented via interpreters, which 
run relatively slowly as compared with compiled languages. Second, 
these languages provide no way to create a double-clickable applica
tion, since the interpreter's environment is needed to run a program. 
Turbo Pascal finds a happy medium between these two ends of this 
spectrum. Turbo allows the programmer to easily produce a double
clickable application and provides the convenient console window to 
use with that application. For those developing true Macintosh appli
cations, Turbo provides easy access to the Toolbox routines needed. 

This chapter will lead you on the long road of producing true Macin
tosh applications by covering the fundamentals of producing a Macin
tosh application and by introducing the use of pull-down menus. 

273 



274 TuRBo PASCAL FOR THE MAC 

EVENTS 

Question: What do the following things have in common-the 1984 
Summer Olympics in Los Angeles, the fifth game of the American 
League Playoffs in 1976 between the Yankees and the Kansas City 
Royals, and the last click of the mouse button on your Macintosh? The 
answer: They were all great events. An event is the term used for any 
external stimulus to which a program might wish to respond. Examples 
of events include clicking the mouse button, typing a key, and in
serting a disk into the disk drive. One of the most basic features of a 
Macintosh application is that it is event driven-that is, the program's 
main task is to wait for an event to happen and then respond to it. In a 
sense, this is what programs that run on a brand X computer do also, 
except there are differences. A brand X computer is designed only to 
accept one type of input, typing on a keyboard. Its hardware doesn't 
support a mouse, can't tell if a disk has been placed in a disk drive, and 
certainly doesn't support windowing. However, on the Mac several dif
ferent types of input can be accepted simultaneously. Macintosh pro
grams had to be designed differently from programs on other 
computers, and the way programs would be designed needed to be 
considered before the hardware was built so that the hardware could 
support the software and not the other way around. 

THE TOOLBOX MANAGERS 

The Macintosh's User Interface Toolbox contains the routines neces
sary to implement all the features of the Macintosh you have no doubt 
already become aware of. All that is necessary to implement menus, 
fonts, windows, text editing, dialog boxes, and the like is available for 
the programmer's use. The Toolbox is logically divided into a series of 
managers, with each manager containing a set of routines that work in 
concert to implement a particular feature. Windows are implemented 
with the Window Manager, menus with the Menu Manager, and so on. 
Together, all the managers interact with each other to produce a Mac
intosh application. The key that ties all the User Interface features 
together is the Event Manager, which contains the routines necessary 
for the handling of events. Luckily, all the Toolbox routines were 
designed in Pascal (although they were later rewritten in 68000 assem-



EVENTS AND EVENT HANDLING 275 

bly language), so access to them from Turbo is straightforward. This is 
not the case with both other Pascal systems and the C programming 
language. 

To help understand what events are and what their significance is to 
Macintosh programming, consider the following transcript of a lesson 
overheard between a master Macintosh teacher and his neophyte stu
dent. 

Teacher: Now, my student, you have read the Event Manager sec
tion of Inside Macintosh, have you not? 

Student : Yes, I have. 
Teacher : Good, now we can proceed with this most important les

son. What is an event? 
Student: An event is a certain type of external happening that the 

Macintosh responds to. 
Teacher: What type of happening do you mean? 
Student : Most anything that a user might do. 
Teacher : Most anything? 
Student : Most anything at the Macintosh, depressing the mouse 

button, releasing the mouse button, inserting a disk, clicking on a win
dow. 

Teacher : How about the keyboard? 
Student : Yes, I was just getting to that, hitting a key on the key

board and releasing that, too. 
Teacher: How does a program know that an event has happened? 
Student : The Mac maintains a long chain of events that have oc-

curred. 
Teacher : Then let's start at the beginning of that chain. 
Student : This is a very hard lesson, my teacher. 
Teacher : The most important lessons are the hardest to learn, my 

son. Go on. 
Student : When the event happens, the Macintosh's hardware is the 

first to know about it. It senses it electronically and then sends a mes
sage to the operating system, which then responds. 

Teacher : I see, go on. 
Student : The operating system then collects all the important infor

mation about the state of the machine at the time of the event and 
prepares that in a form the program that is running can use. 

Teacher : So you are saying that when the program is running, the 
operating system is also running? 



276 TuRBo PASCAL FOR THE MAC 

Student : I think so, I think that it is hanging out in a waiting state 
until an event happens, and then it suspends the program that is run
ning for a very small fraction of a second to handle the event. I'm not 
sure, but I think that this is what is called an interrupt on other com
puters. 

Teacher : Yes, you are correct, this is what is called an interrupt, 
and the process you described is what is known as interrupt handling. 
Now, what is it that is done with this information collected about the 
event; how is the program notified about the occurrence of the event? 

Student : I'm not quite sure that I understand that correctly, I just 
read it last night, and Inside Macintosh is a hard book to understand. 

Teacher: Well, my student, where are we right now? 
Student : We are sitting under a tree here on the Queens College 

campus. 
Teacher : And what time is it? 
Student: I don't know. I will have to check my watch. 
(The student, knowing the ways of the master teacher, does not 

check his watch until he is told to, for he already knows that's where 
the lesson will lie.) 

Teacher : Have things happened in the world since we have been 
sitting under this old oak? 

Student : They surely have. 
Teacher : Have wars continued to be fought, have politicians made 

great speeches, have the Mets scored runs? 
Student: I don't know, I would have to look at a newspaper or turn 

on the radio. 
Teacher : So although these events have occurred, we cannot know 

about them until we inquire about them. 
Student : This is correct. 
(The student now realizes his watch had nothing to do with this 

lesson, and he feels badly that once again he did not fully understand 
the ways of the master. Still, he has come very far.) 

Teacher: Now, what does this remind you of? 
Student : Of course, the events continue to happen and the operat

ing system continues to line up the information about them until the 
program requests that information. 

Teacher: Very good, my student, you have learned this lesson well. 
This dialogue might help to provide some of the conceptual frame

work for events and event handling. Let's run through the chain of 
events that occurs when an event happens. 



EVENTS AND EVENT HANDLING 277 

The Macintosh actually contains two different Event Managers, the 
low-level Operating System Event Manager, which handles the inter
action with the hardware and posts the event on an event queue, and 
the Toolbox Event Manager, which interfaces with programs. 

Let's follow the sequence of event handling. 

1. The user causes an event to occur by depressing the mouse 
button. 

2. The Operating System (low-level) Event Manager learns of the 
event through the hardware and springs into action. It collects 
the pertinent information associated with the event, such as 
the position of the mouse, the time the event happened, and 
other event-specific information, and posts this on a list of 
events that have already occurred, called the event queue. 

3. The program, via the Toolbox Event Manager, requests infor
mation about events that have occurred and then processes 
those events. 

EVENT TYPES 

There are several categories of events that can occur on the Macin
tosh. 

Mouse-There are separate events generated when the mouse 
button is depressed and when the button is released. Just moving 
the mouse around does not generate an event. 

Keyboard-There are separate events generated when a key is 
pressed, when it is released, and when a key is held down for a 
period of time, indicating an auto repeat is desired for that key. 

Disk-An event is generated when a disk is inserted into a disk 
drive. 

Network-A network event can be generated via AppleTalk. 



278 TURBO PASCAL FOR THE MAC 

Window-There are events generated when a window is made 
active and when it needs to be updated. 

Application-There are four event types reserved for program
mers to define their own categories of events, although the Tool
box does little to help with the management of these events. 

Each type of event has its own event code (Table 11-1). 

Table 11-1. Event Codes 

Event Type 
nullEvent 
mouseDown 
mouse Up 
key Down 
key Up 
autoKey 
updateEvt 
diskEvt 
activateEvt 
networkEvt 
driverEvt 
applEvt 
app3Evt 
app3Evt 
app4Evt 

Event Code 
0 
1 
2 
3 
4 
5 
6 
7 
8 

10 
11 
12 
13 
14 
15 

These values are used so often that they have been predefined as 
constants and can be used in your program as though you included the 
following Const definition in your program: · 

con st 
null:E!vent = a; 
mouseDown = 1; 
mouseUp 2; 
keyDown 3; 
keyUp = 4; 
autoKey 5; 
updateEvt = b; 
diskEvt = 7; 
activateEvt = 8; 
networkEvt = 10; 



driverEvt 
app1Evt 
app3Evt 
app3Evt 
app4Evt 

= 11; 
12; 
13; 
14; 
15; 

The Event Queue 

EVENTS AND EVENT HANDLING 279 

The event queue is a list of events maintained by the Operating 
System Event Manager. When an event occurs the event record is 
posted on the event queue. Programs can then use the routines pro
vided by the Toolbox Event Manager to check the queue and remove 
certain events. 

Event 1 l.L Event 2 l.L Event 3 ~ ~ 

Figure 11-1. The Event Queue 

Event Records 

For each event that occurs, a record is posted to the event queue 
containing information on the event. The type of the event records is 
predefined as: 

type 
EventRecord = record 

What : Integer; 
Message : Longint; 
When : Longint; 
Where : Point; 
Modifiers : Integer 

end; 

Each field of an event record has the following meaning: 

What-The What field contains the event code for the event as 
defined above. 



2S0 TURBO PASCAL FOR THE MAC 

Message-The Message field contains an event-specific event 
message, which differs for each type of event (Table 11-2). 

Table 11-2. Event-Specific Messages 

Event Type 
Keyboard 
Activate, update 
Mouse-up, 
Mouse-down and 
null 
Application 

Event Message 
The character code and key code of the key 
Pointer to the window 

No meaning 
Whatever you desire 

The event codes will be looked at in more detail when we analyze 
keyboard events. 

When-The When field contains a Longlnt representing the time 
the event occurred, expressed in ticks since system start-up. 

Where-The Where field contains the mouse position at the time 
of the event, expressed as a point in global coordinates. 

Modifiers-The Modifiers field contains information regarding 
the state of the Options, Caps Lock, Shift, and Command keys at 
the time of the event, as well as whether the mouse button was up 
or down. This will be looked at further when we analyze keyboard 
events in detail. 

Af ouse Events and an Event Loop 

Now we are finally ready to develop a short event-driven program. 
As was noted before, there are two type of mouse events: buttonDown 
and buttonUp. Each time the mouse button is clicked, two events are 
generated and their event records placed on the event queue. Events 
are removed from the event queue with the GetNextEvent function 
from the Toolbox Event Manager. GetNextEvent is defined as follows: 

function GetNextEvent(eventMask : Integer; var 
theEvent : EventRecord) : Boolean; 



EVENTS AND EVENT HANDLING 281 

GetNextEvent searches the event queue for any events matching the 
event mask passed as a parameter; if one exists, it returns that event 
record as a variable parameter. The value of the function itself is a 
Boolean, True if an event of the type desired is found, False otherwise. 
Han event is found, it is removed from the event queue. 

Event Masks 

Each type of event has a specific mask assigned to it for use in 
GetNextEvent. The event masks are shown in Table 11-3. 

Table 11·3. Event Masks 

Event Type 
mouseDown 
mouse Up 
key Down 
key Up 
autoKey 
updateEvt 
diskEvt 
activateEvt 
networkEvt 
driverEvt 
applEvt 
app3Evt 
app3Evt 
app4Evt 

Event Mask 
2 
4 
8 

16 
32 
64 

128 
256 

1024 
2048 
4096 
8192 

16384 
-32768 

The masks have also been predefined as constants and can be used 
in your program as though they were defined as 

con st 
MDownMask = 2; 
mouseUp 4; 
keyDown 8; 
keyUp = 16; 
autoKey 32; 
updateEvt = 64; 
diskEvt = 128; 
activateEvt = 256; 
networkEvt = 1024; 
driverEvt = 2048; 



282 TURBO PASCAL FOR THE MAC 

app1Evt 
app2Evt 
app3Evt 
app4Evt 

4096; 
8192; 
16384; 
-32768; 

There is also a constant declared for all events: 

con st 
everyEvent = -1; 

Notice that all the constants are a power of two, arranged so that two 
of the constant values can be added together to produce a unique 
mask. To find the proper mask, you can add together the masks for the 
desired event types. For example, to trap all the keyboard events, you 
can use 

keyDownMask+keyUpMask+autoKeyMask 

To trap all events except mouse events, you could use 

everyEvent - mDownMask - mUpMask 

To trap the mouseDown and mouseUp events, we need to add both 
of these mask values together. This can be represented in decimal as 
6, or as the sum of the two constants mDownMask + mUpMask. We are 
now ready to build our first event loop. An event loop, which in this 
case will be built with a While, continually calls GetNextEvent until a 
mouse event is detected. 

program MouseEventDemo1; 
uses MemTypes, QuickDraw,OSintF,ToolintF: 
var 

myEvent : EventRecord; 
begin 

while not(GetNextEvent(mDownMask+mUpMask,myEvent)) do 
Wri teln ('Wai ting for a mouse event ••• '): 

Readln 
end. 

MouseDemol is probably the simplest event-driven program you can 
write, yet conceptually it may be the most sophisticated program pre
sented in this book so far. The only variable declared in the program is 
myEvent, an EventRecord. Note that there is no need to define the 
type EventRecord; this is included in the ToollntF unit. The While 



EVENTS AND EVENT IIANDIJNG 283 

loop will continually print the 'Waiting for a mouse event ... ' message 
until the button is either pressed or released. At that point, the 
GetNextEvent will find the mouse event posted in the event queue 
and return it in myEvent. The program ends with our standard Readln. 

We can develop this program slightly by adding a procedure that 
will analyze the type of mouse event that occurred. 

program MouseEventDemo2; 
uses MemTypes, QuickDraw,OSintF,ToolintF; 
var 

myEvent : EventRecord; 
procedure DoMouseEvent; 
begin 
case myEvent.What of 
1: Writeln('A mouse down•); 
2 : Writeln('A mouse up•) 

end 
end; 
begin {Main program} 

while not(GetNextEvent(mDownMask+mOpMask,myEvent)) do 
Wri teln ( 'Wai ting for a mouse event ••• 1 ) ; 

DoKouseEvent; 
Readln 

end. 

Now, when the mouse event happens, a call is made to 
DoMouseEvent, which uses a Case statement to determine which of 
the two types of mouse events has taken place. Notice that the labels 
used in the Case statement are event types, not the event mask. We 
could replace these with constants to make the program more self
explanatory. 

program KouseEventDemo3; 
uses MemTypes, QuickDraw,OSintF,ToolintF; 
var 

myEvent : EventRecord; 
procedure DoMouseEvent; 
begin 
case myEvent.What of 

mouseDown: Writeln('A mouse down•); 
mouseOp : Writeln('A mouse up•) 

end 



284 TURBO PASCAL FOR THE MAC 

end; 
begin {Main program! 

while not(GetNextEvent(mDownMask+mUpMask,myEvent)) do 
Writeln( 'Waiting for a mouse event ••• 1 ); 

DoMouseEvent; 
Readln 

end. 

One last version of the program can be used to display the 
information in the event record by printing it in the DoMouseEvent 
procedure. 

program MouseEventDemo4; 
uses MemTypes, QuickDraw,OSintF,ToolintF; 
var 

myEvent : EventRecord; 
procedure DoMouseEvent; 
begin 
case myEvent.What of 

mouseDown: Writeln('A mouse down•); 
mouseUp: Writeln( 1 A mouse up') 

end; 
with myEvent do 
begin 

writeln(What); 
writeln(Where.h:4, where.v:4); 
writeln(When) 

end; 
end; 
begin 

while not(GetNextEvent(mDownMask+MUpMask,myEvent)) do 
Wri teln ('Wai ting for a mouse event ••• 1 ); 

DoMouseEvent; 
Readln 
end. 

Keyboard Events 

The next set of events to examine in detail are the keyboard events. 
As you can recall, there are three different keyboard events: keyUp, 
keyDown, and autoKey. The keyboard events are slightly more com-



EVENTS AND EVENT HANDLING 285 

plex to process since there are so many keys on the keyboard com
pared to the one lonely mouse button. The information regarding 
which key has been pressed is in the Message field of the event record. 
We may also be interested in the Modifier field, which will tell us 
about the state of the modifier keys at the time of the event. 

The Message field of the event record is a Longlnt that encodes two 
separate pieces of information regarding which key caused the event. 

31 16 15 87 0 

Not used 

l 
Key 
code 

Figure 11-2. Event Messages for Keyboard Events 

Character 
code 

As you can see from Figure 11-2, the leftmost 16-bit word of the 
Longlnt contains no information at all. The rightmost word holds both 
the key code for the key and the character code for the key. The key 
code is an integer representing the key on the keyboard that was 
pressed or released. The key code for each of the keys on the keyboard 
and the numeric key pad are as follows: 

Figure 11-3. Key Codes 



28~ TURBO PASCAL FOR THE MAC 

The key Codes for a key remain the same even if a modifier key such 
as the Shift key is used. This is designed for use in programs where the 
keyboard is logically redefined for such use as a muscial keyboard, 
video game controls, or Dvorak keyboard. 

The character code is the Extended ASCII code for the character. 
The ASCII codes for all the characters are listed in Appendix J. 

If the key code and character code are held in two bytes of the same 
word, how do you differentiate them? The easiest way to accomplish 
this is to use Turbo's built-in functions Hi, Lo, HiWord, and LoWord. 
The Hi function returns the value of the rightmost byte of an integer, 
and the Lo function returns the value of the leftmost byte. All we have 
to do is isolate the leftmost word of the Longlnt and then apply the Hi 
and Lo function to it. The Hi Word and Lo Word functions are analo-

' gous to Hi and Lo, except that they operate on a Longlnt and return 
the value of the leftmost and rightmost word. Table 11-4 is a summary: 

Table 11-4. Summary of Built-In Key Code Functions 

Function 
Hi Word 
Lo Word 
Hi 
Lo 

Argument 
Longlnt 
Longlnt 
Integer 
Integer 

Returns 
The leftmost word of the Longlnt 
The rightmost word of the Longlnt 
The leftmost byte of the integer 
The rightmost byte of the integer 

To find the key code, we isolate the rightmost word and then the 
leftmost byte of that word. 

Hi(LoWord(myEvent.Message)) 
' 

i The character code can be found in a similar fashion. 
I 

Lo(HiWord(myEvent.Message)) 

Now that we know how to trap key events and how to determine 
what key has been used, we can adapt the event-driven program to 
find and remove key events from the event queue, as well as the 
mouse events. 

Listing 11-1. Program That Finds Key Events. 

program EventDemo5; 
~ses MemTypes, QuickDraw,OSintF,ToolintF; 
var 



myEvent : EventRecord; 
Mask : Integer; 

procedure DoEvent; 
begin 
case myEvent.What of 

EVENTS AND EVENT HANDLING 287 

mouseDown: Writeln('A mouse down•); 
mouseUp : Writeln( 1 A mouse up 1 ); 

keyDown: Writeln('A key down'); 
keyUp : Writeln( 1 A key up 1 ); 

autoKey : Writeln('An auto key') 
end; 
with myEvent do 
begin 

writeln(What); 
writeln(Where.h:4, where.v:4); 
writeln(When); 
writeln(LoWord(Hi(Message)):4,LoWord(Lo(Message)):4) 

end; 
end; 
begin 

Mask := mDownMask+mUpMask+keyDownMask+keyUpMask 
+autoKeyMask; 

while not(GetNextEvent(Mask,myEvent)) do 
Writeln( 'Waiting for a mouse event ••• '); 

DoEvent; 
Readln 
end. 

This program is essentially the same as the earlier versions except 
that the Message field information is also displayed. 

Listing 11-2. Program That Displays Message 
Events 

program EventDemoS; 
uses MemTypes, QuickDraw,OSintF,ToolintF; 
var 

myEvent : EventRecord; 
Mask : Integer; 
StopRect : Rect; 
StopFlag : Boolean; 

procedure DoEvent; 
begin 

case myEvent.What of 
mouseDown: 
begin 

GlobaltoLocal(myEvent.Where); 
if ptinRect(myEvent.Where,StopRect) 



288 TURBO PASCAL FOR THE MAC 

then StopFlag := True 
end; 

mouseUp : Writeln('A mouse up'); 
keyDown : Writeln('A key down'); 
keyUp : Writeln('A key up'); 
autoKey : Writeln( 1 An auto key•); 

end; 
with myEvent do 
begin 

writeln(What); 
writeln(Where.h:4, where.v:4); 
writeln(When); 
writeln(LoWord(Hi(Message)):4,LoWord(Lo(Message)):4) 

end; 
end; 
begin 

StopFlag := False; 
SetRect(StopRect, 4D,4D,7D,7D); 
FrameRect(StopRect); 
Mask := mDownMask+mUpMask+keyDownMask+keyUpMask 

+autoKeyMask; 
repeat 
if GetNextEvent(Mask,myEvent) then DoEvent; 

until StopFlag; 
end. 

Our new version of the program has some major structural changes 
in it. First, the While loop has been replaced by a Repeat loop termi
nating when a Boolean, StopFlag, becomes True. The Boolean is set 
when the mouse is clicked inside a rectangle, StopRect, displayed on 
the screen. All events returned by GetNextEvent are sent to the proce
dure DoEvent for processing. When a mouseDown is uncovered, the 
procedure checks the location of the mouse to see if it is in the rectan
gle. 

case myEvent.What of 
mouseDown: 
begin 

GlobaltoLocal(myEvent.Where); 
if ptinRect(myEvent.Where,StopRect) 
then StopFlag := True 

end; 

Note that the ptinRect function needs a point specified in local coor
dinates so that the call to GlobaltoLocal is necessitated. 



EVENTS AND EVENT HANDLING 289 

Listing 11-3. New Version of the Program in 
Listing 11-1. 

program EventDemo7; 
uses !emTypes, QuickDraw,OSintF,ToolintF; 
var 

myEvent : EventRecord; 
!ask : Integer; 
StopRect : Rect; 
StopFlag : Boolean; 
Str : string; 
Ch : Char; 

procedure DoEvent; 
begin 

case myEvent.What of 
mouseDown: 
begin 
GlobaltoLocal(myEvent.Where); 
if ptinRect(myEvent.Where,StopRect) 
then StopFlag := True 

end; 
keyDown : 
begin 

Ch := Chr(Lo(LoWord(myEvent.!essage))); 
Str := Str + Ch; 

end 
end 

end; 
{---------------------} 
begin 

StopFlag := False; 
SetRect(StopRect, 40,40,70,70); 
FrameRect(StopRect); 
!ask := mDown!ask+mUp!ask+keyDown!ask+keyUp!ask 

+autoKey!ask; 
repeat 
if GetNextEvent(!ask,myEvent) then DoEvent; 

until StopFlag; 
Write( 1 The string is •,str); 
Readln 

end. 

Keyboard Modifiers 

The Modifier field of the event record indicates the state of the 
keyboard's modifier keys (Shift, Option, Command) at the time of the 



290 TURBO PASCAL FOR THE MAC 

event. This can be used, for instance, to check if the Shift key is held 
down during a mouse click. Figure 11-4 diagrams the modifier flags. 

bit 1 5 1 2 1 1 10 9 8 0 

1 if Option key down J 
1 if Caps Loe k key down 

1 if Shift key down 

1 if Command key down 

1 if mouse up 

tiva ed O if 1 1 f window being ac t , de twed ac 

Figure 11-4. Modifier Keys 

The following predefined constants can be helpful for determining 
the state of the modifier flags. 

con st 
activeFlag = -1 ; {Set if window is active} 
btnState 128; {Set if mouse button is up} 
cmdKey = 256; {Set if Command key down} 
shiftKey = 512; {Set if Shift key down} 
alphaLock 1024; {Set if Caps Lock key down} 
optionKey = 2048; {Set if Option key down} 

These masks can be used with the And operator to determine the 
state of the keys you are interested in and the way event masks where 
checked. 



EVENTS AND EVENT HANDLING 291 

PULL-DOWN MENUS 

Now that we have some sense of how events operate, we can turn to 
the Menu Manager to implement a program using pull-down menus. 
The Menu Manager contains around 30 procedures and functions used 
to initialize, display, alter menus, and handle menu selection by the 
user. But before we can start implementing a program using menus, 
we must first examine the basic components of menus. 

,.. s File Edit Goodies Windows Font 
@ [j)IDUm!J 
nm 

v"fl~ 
14 
18 
24 
36 
48 
72 

60 

Figure 11-5. The Menu Bar and a Menu 

Style 

Each menu title indicates a separate menu, and a program will usu
ally have several menus simultaneously. These are grouped together 
in the menu bar, which is displayed across the top 20 pixels of the 
screen. This is a reserved area of the screen, and nothing but the cur
sor can appear in it. The menu titles are always displayed in the stan
dard systems font and size (Chicago 12). In case you have ever 
wondered, the maximum number of menu titles that can be displayed 
at any one time is 16. When a menu is pulled down, the menu items are 
revealed. These items can be shown as either active or inactive, indi
cated by a "dimming" of the item. 

Each of the menus in the menu bar is represented by a record con
taining the pertinent information about that menu. Fortunately, the 
Menu Manager creates and maintains these records so that there is no 
need to worry about them. All the menu records of a menu bar are 
held in a linked list called the menu list. 



292 Turulo PASCAL FOR THE MAC 

When a Turbo program starts, there is no active menu bar, just a 
blank area over the console window. A program can easily create its 
own menu lists and work with them. When a program run from mem
ory is terminated, it branches back to the Turbo Pascal environment, 
which restores its familiar menu list. 

Creating Menus 

The initialization and display of a menu list is done with several 
Menu Manager routines. 

•procedure InitMenus: 

This procedure initializes the Menu Manager and frees space in 
memory for the Menu Manager to maintain the menu list. A call to this 
routine does not appear to be necessary if a program is run from mem
ory (probably because Turbo previously called it), but it should be 
called by a program saved to disk. After a call to InitMenu, the menu 
list is empty. 

: function NewMenu (menuID:Integer: menuTitle:string): 
MenuBandle: 

The NewMenu function allocates space for a new menu and returns 
a handle to it. All access to a menu is done through its handle; it 
should never be done directly even if you could figure out how. The 
type MenuHandle is predefined and can be used in your program as 
though you have included the following type definition. 

·type 
MenuPtr = AMenuinfo 

, MenuBandle = AMenuPtr: 

The type Menulnfo is the record holding the information about a 
menu referred to before. 

The parameters used with a call to NewMenu are the ID number of 
that menu and the name of the menu. The ID number used for a menu 
can only be a positive number greater than zero. Negative numbers 
are reserved for desk accessories, which sometimes have their own 



EVENTS AND EVENT HANDLING 293 

menus. The menu's title is declared in a string. A typical declaration 
of a menu might look like this: 

var 
Menu1 MenuHandle; 

Menu1 := NewMenu(1D, •Options•); 

We have declared a variable Menul as a MenuHandle and then cre
ated a menu that would be titled Options. The menu Options is both 
empty and not yet displayed in the menu bar. 

procedure AppendMenu (theMenu:Menuhandle; data:String); 

The AppendMenu procedure is used to place menu items in a menu. 
The theMenu parameter is the handle to the menu being worked with. 
The data parameter contains the menu item or items to be added to 
the menu. To add a single item to a menu, that item is placed in a 
string. 

AppendMenu(Menu2,•End'); 

Several items can be added to a menu by separating them with a semi
colon in the string. 

AppendMenu(Menu1, 1 0ption1;0ption2 1 ); 

A dotted line can be added to separate the two items by using one of 
the special metacharacters available for this purpose. To create the 
dotted line, a single hypen ( - ) is used. Any text after the hypen will be 
ignored. 

AppendMenu(Menu1,'0ption1;-;0ption2 1 ); 

The other metacharacters used to control the appearance of the 
menu items are shown in Table 11-5. 



294 1'uRBO PASCAL FOR THE MAC 

Table 11-5. Metacharacters Used to Control Menu Items 

Me ta character Meaning 

< 
I 
( 

This item has a checkmark 
This item has a special style 
This item has a keyboard equivalent 
This item is diplayed disabled 

Generally, menu items are displayed in the system font. This cannot 
be changed. However, you can vary the style the item is displayed in 
by using the < metacharacter along with a second code as follows: 

<B Bold 
<I Italic 
<U Underline 
<O Outline 
<S Shadow 

A good example of the attributes is the Mac Write Style menu, which 
displays the items representing the style attributes in those attributes. 

v"'Plain 88P 
Bold 888 
1111/ic 881 
Underline 88U 
mrnnanm@ 88 o 
'1[iJCDllJtDl!D 88 s 
Superscript 88H 
Subscript 88 L 

Figure 11-6. MacWrite Style Menu 

procedure Insertmenu( theMenu : menuHandle; beforeID 
Integer); 



EVENTS AND EVENT HANDLING 295 

The InsertMenu procedure takes the menu record and moves it into 
the menu list. All this is done by the Menu Manager; all the program
mer needs to do is call the routine. The parameters are the menu to be 
added to the list (of course) and the menu ID of the menu in the list 
that this menu will be placed in front of. A menu ID value of zero will 
place the menu at the rightmost position in the menu list. The menu 
added is not shown on the screen until the menu bar is updated. 

procedure DrawMenuBar; 

The DrawMenuBar procedure redraws the menu bar on the screen 
according to the current contents of the menu list. 

As an example, let's start by creating two small menus and display
ing them. 

program MenuDemo; 
uses MemTypes,QuickDraw,OSintF,ToolintF; 
var 

Menu1, Menu2 : MenuHandle; 
begin 

InitMenus; 
Menu1 := NewMenu(1D, 1 0ptions 1 ); 

Menu2 := NewMenu(2D, •stop'); 
AppendMenu(Menu1, 1 0ption1;-;0ption2 1 ); 

AppendMenu(Menu2, 1 End 1 ); 

InsertMenu(Menu1, D); 
InsertMenu(Menu2, D); 
DrawMenuBar; 
Readln 

end. 

This short program declares two menus pointed to by the handles 
Menul and Menu2. Items are appended to them, they are inserted into 
the blank menu list (which Turbo has left empty for you), and then the 
program draws the menu bar. 

Option 1 Option2 

Figure 11-7. Menu Bar Displayed by MenuDemo 



296 TURBO PASCAL FOR THE MAC 

If you run this program, you will see the menus we defined, but you 
will be disappointed. The menus will not respond to the mouse clicks. 
This is because we have not included in the program the mechanism to 
identify a mouse click in the menu bar and then respond to it. This is 
the next enhancement to our program. 

We now need to do several tasks. First, we must be able to identify 
when a mouseDown event occurs in the menu bar. Once we know that 
a mouseDown has occurred, the Menu Manager contains a mechanism 
for tracking the mouse and returning a code indicating which menu 
item has been selected by the user. 

In order to help process a mouse down event and determine whether 
it was in the menu bar, the Toolbox contains a function that deter
mines in relative terms where the cursor was located at the time of the 
event. 

function FindWindow(thePt:Point; Var whichWindow: 
WindowPtr):Integer; 

The FindWindow function takes one parameter, thePt, which is the 
location of the cursor at the time of the event (taken from the event 
record). It then returns a code based upon the location of the cursor. 
For instance, it returns 1 if the location was in the menu bar, 2 if it was 
in a system window (desk accessory), and so on. If the cursor was in a 
window, the pointer to that window will be passed in the 
which Window parameter, which as you can see is a variable parameter 
used in a function (a rarity in Pascal). 

We need not have used FindWindow for this task. We could also 
have defined a rectangle that coincides with the menu bar and then 
used ptinRect to check the location of the mouse click. 

If the mouseDown event occurred in the menu bar, it must then be 
tracked with the MenuSelect function. 

function MenuSelect (startPt : Point) : Longint; 

The MenuSelect function does most of the work of handling menus. 
Once the function is called with the position of the mouse down event, 
it keeps control of the program until the mouse button is released. This 
means that the function pulls down the menu and highlights the op
tions as the mouse is moved. When the mouse button is released, 
MenuSelect returns a Longlnt holding both the menu ID and the item 



EVENTS AND EVENT HANDLING 297 

number of the menu item selected. The menu ID is in the high order of 
the Longlnt and the item number is in the low-order word. If the mouse 
button was not released over an enables menu item, zero is returned. 

To implement our new features to the MenuDemo program, we need 
to change the program to use an event loop. For clarity's sake, the 
menu initialization routines have been moved into a procedure. When 
a menu item is selected, the program returns the menu ID and the 
menu item's number. 

Listing 11-4. Menu Demo Program That Uses an 
Event Loop. 

program MenuDemo2; 
uses MemTypes, QuickDraw,OSintF,ToolintF; 
var 

Menu1, Menu2 : MenuHandle; 
myEvent : EventRecord; 
WhereClick : Integer; 
whichWindow : windowPtr; 
doneFlag : Boolean; 
Choosen : Longint; 

procedure InitMyMenus; 
begin 

InitMenus; 
Menu1 := NewMenu(10, 'Options'); 
Menu2 : = NewMenu ( 20, 1 Stop'); 
AppendMenu(Menu1, 1 0ption1;-;0ption2 1 ); 

AppendMenu(Menu2, 1 End 1 ); 

InsertMenu(Menu1, 0); 
InsertMenu(Menu2, 0); 
DrawMenuBar 

end; 
begin 

InitMyMenus; 
doneFlag := False; 
repeat 
if GetNextEvent(everyEvent,myEvent) then 
case myEvent.what of 
mouseDown : 
begin 

WhereClick := FindWindow(myEvent.where, 
whichWindow); 

if WhereClick = 1 then 
begin 

Choosen := MenuSelect(myEvent.where); 



298 TURBO PASCAL FOR THE MAC 

writeln('Menu ID 1 ,HiWord(Choosen):4, 
'Item number' 

LoWord(Choosen):4); 
doneFlag := True; 

end; 
end 

end; 
until doneFlag; 

Readln 
end. 

We can now jazz up our program a bit by adding some functionality 
behind the menu option. The following program works as a calculator 
with two functions, addition and subtraction, listed as items on one 
menu and the "end" option in the second menu. The program is struc
tured in a way more similar to most Macintosh applications. When an 
event occurs, it is checked to see if it is a mouse down. FindWindow is 
then called to see if the event is in the menu bar, and then, finally, 
MenuSelect is called to track the event. The value returned by 
MenuSelect is passed as a parameter to a procedure that processes the 
particular menu options. As you can see, the size of a program using 
any of the User Interface features grows very quickly. 

Listing 11-5. Program That Works As a Calculator. 

program MenuCalculator; 
uses MemTypes, QuickDraw,OSintF,ToolintF; 
var 

Menu1, Menu2 : Menueandle; 
myEvent : EventRecord; 
WhereClick, Sum, Hum : Integer; 
whichWindow : windowPtr; 
doneFlag : Boolean; 
Choosen : Longint; 

procedure InitMyMenus; 
begin 

InitMenus; 
Menu1 : = NewMenu ( 10, 'Options'); 
Menu2 := NewMenu(2D, •stop•); 
AppendMenu(Menu1, 1 Add;-;Subtract 1 ); 

AppendMenu(Menu2, 1 End 1 ); 

InsertMenu(Menu1, D); 
InsertMenu(Menu2, D); 
DrawMenuBar 

'end; 



EVENTS AND EVENT HANDLING 299 

procedure DoCommand(Command Longint); 
var 

Menu, Item : Integer; 
begin 

Menu := Hiword(Command); 
Item := Loword(Command); 
case Menu of 

10 : begin 
if Item = 1 then 
begin 

Write( 1Enter value --> 1 ); 

Readln(Num); 
Sum := Sum + Num; 
Writeln('The current sum is•, Sum:4) 

end; 
if Item = 3 then 
begin 
Write('Enter value --> 1 ); 

Readln(Num); 
Sum := Sum - Num; 
Writeln( 1 The current sum is', Sum:4) 

end; 
end; 

20 :begin 
Write( 1 The sum is', sum:b); 
doneFlag := True 

end 
end 

end ; 
begin 

InitMyMenus; 
FlushEvents(everyEvent,O); 
doneFlag := False; 
Sum := 0; 
Writeln( 1 Macintosh Calculator'); 
Writeln; 
Write( 1Enter value --> 1 ); 

Readln(Num); 
sum := Num; 
repeat 
if GetNextEvent(everyEvent,myEvent) then 
case myEvent.what of 
mouseDown : 
begin 

WhereClick := FindWindow(myEvent.where, 
whichiindow); 

if WhereClick = 1 then 
begin 



300 Turu!O PASCAL FOR THE MAC 

end 
end; 

Choosen := MenuSelect(myEvent.where); 
DoCommand(Choosen); 

end 

until doneFlag; 
Readln 
end. 

After running this program, you may notice that the title of the 
menu selected stays highlighted until another menu is selected. It is 
up to the programmer to cancel the highlighting with the HiLiteMenu 
procedure. 

procedure HiLiteMenu (menuID : Integer); 

The HiLiteMenu procedure highlights the title of the menu whose 
ID is passed as a parameter. If a menu ID of 0 is used, HiLiteMenu 
unhighlights any currently highlighted menu. 

SWAPPING MENU BARS 

Occasionally you will create programs that will use two or more dif
ferent menu bars. This can be easily accomplished with the help of a 
few of the Menu Manager's routines. 

function GetMenuBar : Handle; 

The GetMenuBar function creates a copy of the current menu bar 
and then returns a handle to it. 

procedure SetMenuBar (menuList : Handle); 

The SetMenuBar procedure copies the menu list pointed to by the 
handle given to the current menu list. 

procedure ClearMenuBar; 

The ClearMenuBar procedure removes all menus from the menu list 
so that a new menu can be started. 



EVENTS AND EVENT HANDLING 301 

These three routines, along with DrawMenuBar, are used to swap 
the menu displayed. The program SwapMenus presented next starts 
by initializing two menu lists. This is a tricky technique because only 
one menu list can be built at any one time. Once the first menu list is 
built with NewMenu, AppendMenu, and InsertMenu, a handle to a 
copy of that menu list is created with GetMenuBar. The menu list is 
then cleared and the second list created and saved in the same way. 
The menu list is then cleared once more and the original list rein
stated with SetMenuBar. 

The program itself is very simple. Each menu list contains two 
menus. The first is used to swap to the other menu list and the second 
to terminate the program. The program keeps track of which menu list 
is displayed with the variable Which, which has a value of 1 if the first 
menu list is displayed and 2 if the second menu list is displayed. 

Listing 11-b. Program That Swaps Menus. 

program SwapMenus; 
uses MemTypes, QuickDraw,OSintF,ToolintF; 
var 

MenHand1, MenHand2 : Handle; 
Menu1, Menu2,Menu3, Menu4 : MenuHandle; 
myEvent : EventRecord; 
WhereClick, Which : Integer; 
whichWindow : windowPtr; 
doneFlag : Boolean; 
Choosen : Longint; 

procedure InitMyMenus; 
begin 
Init!enus; {First menu list! 
Menu1 := New!enu(10, 'Menus•); 
Menu2 := NewMenu(20, •stop•); 
AppendMenu(Menu1,'Menu2'); 
AppendMenu(Menu2, 1 End'); 
InsertMenu(Menu1, 0); 
InsertMenu(Menu2, 0); 
MenHand1 := GetMenuBar; {Save reference to it} 
ClearMenuBar; 
Menu3 := NewMenu(10, 'Different Menus•); {Second 

menu list} 
Menu4 := New!enu(20, •stop•); 
AppendMenu(Menu3, 1 Menu1•); 
AppendMenu(Menu4, 1 End 1 ); 

InsertMenu(Menu3, 0); 



302 Turulo PASCAL FOR THE MAC 

InsertMenu(Menu4, 0); 
MenBand2 := GetMenuBar; !Save reference to it} 
ClearMenuBar; 
SetMenuBar(MenBand1); {Restore first menu list} 
DrawMenuBar 

end; 
procedure DoCommand(Command : Longint); 
var 

Menu, Item : Integer; 
begin 

Menu := Biword(Command); 
Item := Loword(Command); 
case Menu of 
10 : begin 

if Which = 1 then 
begin 

SetMenuBar(MenBand2); 
Which := 2 

end 
else 
begin 

SetMenuBar(MenBand1); 
Which := 1 

end; 
DrawMenuBar 

end; 
20 :begin 

doneFlag := True; 
end 

end; 
BiLiteMenu(D); 

end ; 
begin 

InitMyMenus; 
FlushEvents(everyEvent,0); 
doneFlag := False; 
Which := 1; 
repeat 
if GetNextEvent(everyEvent,myEvent) then 
case myEvent.what of 

mouseDown : 
begin 

WhereClick := FindWindow(myEvent.where, 
whichWindow); 

if WhereClick = 1 then 
begin 

Choosen := MenuSelect(myEvent.where); 
DoCommand(Choosen); 



end 
end 

end; 
until doneFlag; 
end. 

EVENTS AND EVENT HANDLING 303 

DISPLAYING THE APPLE MENU 

If you run the menu programs we have been developing, one thing 
might strike you as missing-that is, the apple (p) menu that lists the 
desk accessories. It is quite simple to interface with desk accessories 
so that they are available for use in any program you are developing. 
There are two steps to displaying the apple (p) menu. The first is the 
creation of a menu with the apple symbol as its title. This is quite 
simple. The ASCII code for the apple symbol is 14, although we can 
used the predefined constant appleMark instead. This code must be 
placed in a string. One might think that the following would work 
correctly, but it won't: 

Menu1 := RewMenu(1D, Chr(appleMark)); 

This won't work because it passes a single character instead of a 
string of length one. What's the difference? Remember that a string is 
stored as a record with the number of characters in the string in its 
first byte. The NewMenu function is looking for the string in that posi
tion, so a character will just not do. The simplest way to accomplish 
this is to declare a string of size 1. 

AppTitle : string[1J; 

Assign a single blank to it and then place the appleMark in the first 
(and only) position of the following string: 

AppTitle := ' '; 
AppTitle[1J := chr(appleMark); 

Finally, declare the following menu. 

Menu1 := RewMenu(1D, AppTitle); 



304 TURBO PASCAL FOR THE MAC 

Now that the menu title is set up, the more interesting question is, 
how do you get the names of the available desk accessories into the 
menu? Where do they come from? Although it might sound difficult to 
do this, it is really quite easily performed. As you probably know from 
using the FontMover utility, desk accessories are stored as resources 
in the System File. A Menu Manager routine is used to look in the 
System File, find the available desk accessories, and insert them in the 
menu. 

procedure AddResMenu (theMenu : MenuHandle; theType 
ResType); 

The AddResMenu procedure searches the System File (and other 
open resource files) for resources of type theType and appends any 
found to the given menu. Desk accessories are stored with a ResType 
of 'DRVR.' The following procedure call sets up the apple menu: 

AddResMenu(Menu1, 1 DRVR 1 ); 

The following program displays the DA menu along with our Stop 
menu: 

Listing 11-7. Program That Displays DA Menu and 
Stop Menu. 

program DADemo1; 
uses MemTypes, QuickDraw,OSintF,ToolintF; 
var 

Menu1,Menu2 : MenuHandle; 
myEvent : EventRecord; 
WhereClick: Integer; 
whichWindow : windowPtr; 
doneFlag : Boolean; 
Choosen : Longint; 

procedure InitMyMenus; 
var 
AppTitle : string[1J; 
begin 

InitMenus; 
AppTitle := ' 1 ; 

AppTitle[1J := chr(appleMark); 
Menu1 := NewMenu(10, AppTitle); 
Menu2 := NewMenu(2D, •stop•); 



AddResMenu(Menu1, 'DRVR'): 
AppendMenu(Menu2,'End'): 
InsertMenu(Menu1, O): 
InsertMenu(Menu2, 0): 
DrawMenuBar 

end: 
procedure DoCommand(Command 
var 

Menu, Item : Integer: 
begin 

Menu := Biword(Command): 
Item := Loword(Command): 
case Menu of 

10 begin 
end: 

20 begin 

end: 

doneFlag := True: 
end 

HiLiteMenu(O): 
end : 

begin 
InitMyMenus: 
FlushEvents(everyEvent,O): 
doneFlag := False: 
repeat 

EVENTS AND EVENT HANDLING 305 

Longint): 

if GetNextEvent(everyEvent,myEvent) then 
case myEvent.what of 

mouseDown : 
begin 

WhereClick := FindWindow(myEvent.where, 
whichWindow): 

if WhereClick = 1 then 
begin 

Choosen := MenuSelect(myEvent.where): 
DoCommand(Choosen): 

end 
end 

end: 
until doneFlag: 
end. 

If you run this program, you can see the list of desk accessories up 
on the apple menu but can't use them. It will take some more effort to 
be able to do this. We must be able to identify which desk accessory 
has been called, invoking the desk accessory, and passing mouse clicks 
to the DA. 



306 TuRBO PASCAL FOR THE MAC 

When a DA has been selected from the apple menu, the program can 
easily find the menu and item number but needs the actual text of the 
item name to call the DA. This is not a problem when a program sets 
up the menu, but the program does not know which DAs are in the 
System File. Fortunately, the Toolbox contains a routine for this task. 

procedure Getitem (theMenu : MenuHandle; item 
Integer; v itemString); 

The Getltem procedure returns as a variable parameter the text of 
the menu item described by theMenu and item. 

Once the text of the item has been found, it can be used to call the 
desk accessory. 

function OpenDeskAcc (theAcc : string) : Integer; 

The OpenDeskAcc function reads the desk accessory having the 
name given in theAcc and displays it as the active window. 

Once the DA is opened, mouse clicks must be passed down to it. 
When a mouse down occurs in a window belonging to a DA (called the 
system window), the FindWindow function will return the appropriate 
code. At that point a call should be made to SystemClick. 

procedure SystemClick (theEvent : EventRecord; 
theWindow : WindowPtr); 

The SystemClick procedure is part of the Desk Manager, which is 
responsible for handling desk accessories. SystemClick sends the 
mouse down event to the DA if the system window is active or makes it 
the active window if it isn't. 

THE SYSTEM TASK PROCEDURE 

,procedure SystemTask; 

The SystemTask procedure causes each open desk accessory to per
form any periodic action it was designed to do, such as update a clock. 
The SystemTask procedure needs to be called at least every 1/60 of a 



EVENTS AND EVENT HANDLING 307 

second. This is best done by placing it in the main event loop of the 
program. 

Here is the DADemo program fully able to activate desk accessories. 
It still has some shortcomings, however. For instance, it doesn't sup
port cut and paste operations. The structure of the program is substan
tially similar to the earlier version except that a second Case 
statement has been added to work with the results of FindWindow. 

Listing 11-8. Program That Activates Desk 
Accessories. 

program DADemo2: 
uses MemTypes, QuickDraw,OSintF,ToolintF: 

var 
Menu1,Menu2 : MenuHandle: 
myEvent : EventRecord: 
WhereClick: Integer: 
whichWindow : windowPtr: 
doneFlag : Boolean: 
Choosen : Longint: 
DAName : string: 

procedure InitMyMenus: 
var 
AppTitle : string[1J: 
begin 

InitMenus: 
AppTitle := ' ': 
AppTitle[1l := chr(appleMark): 
Menu1 := NewMenu(1D, AppTitle): 
Menu2 := NewMenu(2D, •stop•): 
AddresMenu(Menu1, 'DRVR'): 
AppendMenu(Menu2,'End 1 ): 

InsertMenu(Menu1, D): 
InsertMenu(Menu2, D): 
DrawMenuBar 

end: 
procedure DoCommand(Command Longint): 
var 

Menu, Item, Temp : Integer: 
begin 

Menu := Biword(Command): 
Item := Loword(Command): 
case Menu of 

10 : begin 
Getitem(Menu1,Item,DAName); 



308 'fuRBo PASCAL FOR THE MAC 

Temp := OpenDeskAcc(DAName); 
end; 

20 : doneFlag := True; 
end; {Case} 

HiLiteMenu(D); 
, end ; 
begin 

InitMyMenus; 
FlushEvents(everyEvent,D); 
doneFlag := False; 
repeat 

SystemTask; 
if GetNextEvent(everyEvent,myEvent) then 
case myEvent.what of 

mouseDown : 
begin 

WhereClick := FindWindow(myEvent.where, 
whichWindow); 

case WhereClick of 
inMenuBar: 
begin 

Choosen := MenuSelect(myEvent.where); 
DoCommand(Chosen); 

end; 
inSysWindow : 

SystemClick(myEvent, whichWindow); 
end {Case} 

end {Case} 
end; {If} 

until doneFlag; 
end. 

MISCELLANEOUS MENU ROUTINES 

Following are a number of additional Menu Manager routines that 
can be used to embellish your programs. Each is relatively straightfor
ward if you have followed the previous examples. 

procedure DisposeMenu (theMenu : MenuHandle); 

The DisposeMenu procedure is used to release the memory allo
cated by a call to NewMenu. It should be used to discard temporary 
menus not being used since the memory allocated is being wasted. 



EVENTS AND EVENT HANDLING 309 

procedure DeleteMenu (menuID : Integer); 

The DeleteMenu procedure deletes a menu from the menu list but 
does not release the memory it occupied. If there is no menu with the 
given menu ID, DeleteMenu has no effect. 

procedure Setltem (the!enu : MenuBandle; item 
itemString : string); 

Integer; 

The Setltem procedure changes the text of the given menu item to 
itemString. The procedure does not recognize the metacharacters used 
in AppendMenu. This procedure is useful to swap between two alter
native menu choices such as Show Window and Hide Window. 

procedure Disableitem (theMenu : MenuBandle; item 
Integer); 

The Disableltem procedure dims the given menu item so that it can
not be selected by the user. To disable an entire menu, pass a value of 
zero for the item. 

procedure Enableitem (the!enu : MenuBandle; item 
Integer); 

The Enableltem procedure performs the opposite function to Di
ableltem, enabling the given menu item. To enable an entire diabled 
menu, pass a value of 0 for the item. 

procedure Checkltem (theMenu : MenuBandle; item : 
Integer; checked : Boolean); 

The Checkltem procedure places or removes a checkmark at the left 
of the given menu. After a call to Checkltem with checked =True, a 
checkmark will appear each subsequent time the menu is pulled 
down. A value of False removes the checkmark. 

procedure SetitemMark (theMenu : MenuBandle; item 
Integer; markChar : Char); 

The SetltemMark procedure works with Checkltem by describing 
what to display left of the menu item. Any character in the system font 



310 Turulo PASCAL FOR THE MAC 

can be used. The following predefined values are useful as parameters 
to SetltemMark: 

con st 
noMark = 0 ; INUL character, to remove a mark} 
commandMark = $11; {Command key symbol} 
checkMark = $12; {The checkmark} 
diamondMark = $13; {Diamond symbol} 
appleMark = $14; !Apple symbol} 

procedure GetitemMark (theMenu : MenuHandle; item : 
Integer; var markChar : Char); 

The GetltemMark procedure is the reciprocal of SetltemMark, re
turning the current checkmark in the variable parameter markChar. 

procedure SetitemStyle (theMenu : MenuHandle; item 
Integer; chStyle : Style); 

The SetltemStyle procedure changes the character style of the given 
menu item to chStyle. The character style is passed as a set of mem
bers of the set Style. For example, the [bold, outline] procedure has a 
similar effect to the use of metacharacters in AppendMenu. 

procedure GetitemStyle (theMenu : Menueandle; item 
Integer; var chStyle : Style); 

The GetltemStyle procedure is the complement of SetltemStyle, re
turning the style of the menu item as a variable parameter. 

function CountMitems (theMenu : MenuHandle) : Integer; 

The CountMltems function returns the number of menu items in the 
given menu. 

function GetMHandle (menuID : Integer) : MenuHandle; 

The GetMHandle function returns a handle to the menu whose 
menu ID is given. 

procedure FlashMenuBar (menuID Integer); 



EVENTS AND EVENT HANDLING 311 

The FlashMenuBar procedure inverts the title of the given menu or, 
if a menu ID of zero is given, the entire menu bar. Many programs use 
this as a visual warning to the users should the sound be turned down. 



12 
A Complete Macintosh 

Application-The TurboDraw 
Program 

INTRODUCTION 

We have reached the final chapter of the book and now are ready to 
drive at full speed. As a graduation present we present not a diploma, 
but the design and implemention of an entire Macintosh-style applica
tion. The program, monikered "TurboDraw," is an object-oriented 
drawing program. In order to develop it we will introduce some new 
Macintosh Toolbox routines and explore some new programming tech
niques. 

In order to develop TurboDraw we will need to combine many of the 
topics covered in the book. Since this will present a Macintosh-style 
User Intjrface, the program will implement event handling with an 
event loop in the main program. We will need most of our knowledge 
of QuickDraw to draw the various shapes and lines used by the pro
gram and will need a sophisticated data structure such as a linked list 
to represent the data used. The program will need to save and load 
data from a disk file, a concept already covered, and print graphics, a 
concept presented. 

313 



314 TURBO PASCAL FOR THE MAC 

DRAWING PROGRAMS 

There are two basic types of drawing programs, object-oriented and 
bit-mapped. You have probably already encountered both. To illus
trate the difference between the two, think about the task of arrang
ing furniture in a room. It is obviously easier and less tiring to move 
furniture around on paper than to actually carry the furniture. One 
possible way to model a room on paper is to draw a picture of the room 
and each piece of furniture in it. With this approach, if you wanted to 
move a desk from one wall to another, you would have to erase the 
desk and then redraw it someplace else on the paper. Another ap
proach is to cut out pieces of paper the size and shape of each piece of 
furniture and place them into a box that models the shape of the room. 
Now if you wanted to move a desk from one place to another, you 
simply move the piece of paper representing the desk. 

The first method corresponds to the bit-mapped approach to draw
ing. The information contained in the picture is stored in the pixels 
(bits) of the drawing surface. The user creates or modifies the picture 
by turning each pixel either on or off (black or white). The program 
presented in chapter 8 used this approach, as does MacPaint. Bit
mapped drawing is best used for drawing pictures and artwork. 

The second method corresponds to the object-oriented approach to 
drawing. The information is separate from the drawing surface. The 
user manipulates objects such as lines, rectangles, circles, or pieces of 
furniture as units rather than manipulating the pixels that make up 
the object. This approach is used by MacDraw and is best for modeling 
things in the real world and representing abstract concepts graphi
cally. 

TURBODRAW 

The TurboDraw program can be used for creating many different 
kinds of charts, including syntax diagrams, flow charts, data flow dia
grams, structure charts, organizational charts, and many others. Let's 
start the design process by listing what we want it to do. 



A COMPLETE MACINTOSH APPLICATION-THE TURBODRAW PROGRAM 315 

1. The program will be able to represent three kind of objects, 
rectangles, ovals, and round-cornered rectangles, to be called 
nodes. 

2. The user will be able to determine the size and shape of the 
nodes when they are created. 

3. The user will be able to create any number of nodes. 

4. The user will be able to move nodes around on the screen. 

5. Relationships between two nodes can be represented by a 
straight line connecting the two objects, called an edge. 

6. Graphics created by the program can be printed on the 
printer. 

7. A diagram created by the program can be saved to and loaded 
from disk. 

The following figure shows what a chart created by the program 
might look like: 

File 

D 

• 0 
/ 

Figure 12-1. The TurboDraw User Interface 



316 TURBO PASCAL FOR THE MAC 

The User Interface 

Now that we know what the program is going to accomplish, we must 
determine how the user will control the program and tell it what to do. 

The program will be modeled on a metaphor of a painter's palette. 
On the left side of the screen there will be a palette containing the 
tools for drawing, each tool represented by a picture of the tool inside 
a rectangle. The rest of the screen will be used as the drawing surface. 

The program will have eight different actions the user can take. The 
rules for each are as follows: 

1. Select a tool. 

a. A tool can be selected by clicking in its box. 

b. When a tool is selected it will be inverted. 

c. Only one tool may be selected at any time. 

d. When a tool is selected, all other tools are unselected. 

e. When a tool is unselected its box is uninverted. 

f. Clicking on a tool that is selected unselects it. 

2. Draw a node. 

a. A node can be drawn when the box, oval, or round-cornered 
box tools are selected. 

b. To draw a node, click on the drawing surface and hold the 
button down while moving the mouse until the node is the 
desired size. Then release the button. 

3. Connect nodes. 

a. Nodes can be connected if the line tool is selected. 



A COMPLETE MACINTOSH APPLICATION-THE TURBODRAW PROGRAM 317 

b. To connect two nodes, click in the first node and hold the 
button down while moving the mouse until the cursor is in 
the second node. Then release the button. 

c. When two nodes are connected there will be a line drawn 
between them. 

4. Move nodes. 

a. A node can be moved when no tools are currently selected. 

b. To move a node, click inside the node, then drag the node to 
the desired position and release the button. 

c. After a node has been moved, the node and all connections 
at the node's previous location are erased, and the connec
tions are redrawn at the new position. 

d. If the new position of the node overlaps another node, then 
the node will be put back in its original position. 

5. Save diagram. 

a. Choose "Save" from the File menu. 

b. Enter the name of the file in the standard Macintosh save 
dialog box. 

6. Load diagram. 

a. Choose "Load" from the File menu. 

b. Select the name of the file to load from the standard Macin
tosh load dialog box. 

7. Print diagram. 

a. Choose "Print" from the File menu. 

b. Fill out the standard Macintosh print dialog box. 



318 TuRBo PASCAL FOR THE MAC 

8. Quit program. 

a. Choose "Quit" from the File menu. 

The Data Structure 

Perhaps the most important decision in program design is what data 
structure will be used to represent the information manipulated by 
the program. The choice of a data structure will impact upon every 
other stage of the program, and an improper selection might send you 
back to the drawing board. Several different kinds of objects must be 
represented by TurboDraw, including nodes (rectangle, oval, round
cornered rect) and edges. The program should allow any number of 
nodes to be drawn. This suggests the use of dynamic memory alloca
tion and linked lists. [Since we are going to use Macintosh-like inter
face features (menu bar), we will also use Macintosh-like memory 
management, that is, handles.] 

NODES 

We will represent a node by storing a rectangle and a user-defined 
scalar type. The rectangle will specify the size and position of the node 
and the user-defined type will specify the shape of the node. To make 
each node part of a linked list, each node must also contain a link to 
the next node. The following is the data structure of a node : 

ToolType = ( NoTool, RectTool, OvalTool, RndRectTool, LineTool): 
NodePtr = ANode: 
NodeHndl = ANodePtr: 
Node = record 

Shape Rect: 
kind Integer: 
link NodeHndl 

end: 

This linked list data structure will be used extensively throughout 
the program. The list will contain a handle that always points to the 
first node in the list (NodeList in the next example). The list's final 



A COMPLETE MACINTOSH APPLICATION-THE TURBODRAW PROGRAM 319 

node will always have NIL in the link field of the last node. If the list is 
empty, the handle to the first node will contain NIL. Let us examine a 
code fragment that is used to examine each node in a linked list. 

var 
CurrNode : NodeHdnl; 

begin 
CurrNode := NodeList; 
while CurrNode <> NIL do 
begin 

Handle to the current node 

Make first node current } 
Do as long as there 

are more nodes I 

CurrNode 
end 

{ Do what must be done to the node } 
:= CurrNodeAA.link { Move to next node 

end; 

Note how this link list program using handles has almost the exact 
same structure as the one used in Chapter 10 using pointers. 

EDGES 

Like nodes, there can be an arbitrary number of edges. This also 
suggests a data structure using a dynamically allocated link list. Each 
edge connects two nodes, therefore each edge will contain links to two 
nodes and a link to the next edge : 

EdgePtr 
EdgeHndl 

Edge = record 

AEdge; 
"EdgePtr; 

node1 NodeHndl; 
node2 NodeHndl; 
link EdgeHndl 

end; 

The code for traversing the edge linked list structure is analogous to 
that for traversing the node linked list. 

The following two figures show a labeled diagram drawn by 
TurboDraw and a conceptual picture of how the two data structures 
would be represented internally. 



320 TuRBo PASCAL FOR THE MAC 

File 

D 
0 y 

0 
/ 

Figure 12-2. A Flow Chart 

Note the letter used to label the nodes and edges above are not part 
of the diagram and are just used to label different components. 

B .....--......--....-...., c .....---.--....--. 
-1-----91 Sh.ape Kind -i----- Sh.ape Kind Nil 

X.---+--.--t--....--. 

Node1 Node2 Node1 Node2 Nil 

Figure 12-3. The Data Structure 



A COMPLETE MACINTOSH APPLICATION-THE TURBODRAW PROGRAM 321 

Designing TurboDraw 

The program will be designed in a top-down fashion using 
pseudocode. Details will be refined as we proceed. Let's start by look
ing at the main program, which like all Macintosh-style applications 
will use an event loop. 

program TurboDraw 
begin 

end 

Initialize everything 
repeat 

if there is an event 
BandleEvent 

until done 

The initialization routine will set all the various data structures to 
their initial state. 

procedure Initialize 
begin 

end 

Initialize the menus 
Start with empty NodeList and EdgeList 
Draw the Tool Palette 
Set to not done program 
Set default name of file 

The heart of the program is the HandleEvent procedure; it will pro
cess all events received. The following pseudocode shows some of the 
structure of that procedure. 

procedure BandleEvent 
begin 

if click outside of any window 
Let the system take care of it 

else if click in menu bar 
if save file selected then 

DoSave 
if load file selected then 

DoLoad 



322 TuRBo PASCAL FOR THE MAC 

end 

if print file selected then 
DoSave 

if quit then 
set done to true 

else if click on drawing surface 
if there is a current tool 

if tool is a line 
DrawEdge 

else 
DrawNode 

else 
if click was in a node 

MoveNode 

We could continue decomposing the program into smaller pieces to 
expose further detail. For example, let's look at the MoveNode proce
dure described above: 

procedure MoveNode 
begin 

end 

get starting mouse position 
while the button is still being pressed do 

get mouse position 
draw temporary node at new position 
undraw temporary node 

if node doesn't overlap another node then 
erase edges connecting to node at old location 
erase node at old location 
draw node at new location 
draw edges connecting to node at new location 

When decomposing a program with pseudocode, you should con
tinue breaking it down until you can easily translate each pseudocode 
statement into Pascal. If a statement cannot be easily translated, it 
should be decomposed further. 

Because of the size and complexity of TurboDraw, we will only ex
amine in detail those parts of the program that introduce new con
cepts, new features of the Macintosh not already covered or that 
require more explanation than the comments can provide. 



A COMPLETE MACINTOSH APPLICATION-THE TURBODRAW PROGRAM 323 

CONNECTING THE NODES WITH EDGES 

One of the most interesting problems posed in the program is how to 
draw an edge between two nodes without having the line go inside the 
nodes. Let's say we want to connect two nodes that are oval in shape. It 
is simple to find the center point of the rectangle that defines the oval 
nodes and draw a line connecting them, as figure 12-4 shows. 

Figure 12-4. Connecting Nodes 

The dotted lines indicate the edge drawn from the center of one 
node's rectangle to the center of the other nodes rectangle. 

However, we would prefer it if the diagram looked like figure 12-5, 
with the edges stopping at the circumference of the node. 

Figure 12-5. Eliminating Lines 



324 TURBO PASCAL FOR THE MAC 

In order to accomplish this we will use some of the more advanced 
graphics capabilities of the Macintosh. QuickDraw allows the defini
tion of a region where anything drawn inside it will be displayed, but 
anything drawn outside it will not. It is called a clipRgn. Normally, the 
area defined by the clipRgn will be the entire drawing surface, and 
everything drawn will be displayed. By excluding from this the area 
taken up by the two nodes, anything drawn inside the node will not be 
displayed. We will simply create a new region that will temporarily 
replace the default clipRgn. There are several additional procedures 
we need to carry out this plan. 

procedure GetClip(theRgn : RgnBandle) 

The GetClip procedure changes the given region to one equivalent 
to the current clipping region. In a sense, it returns in theRgn a handle 
to the current clipRgn. 

procedure SetClip(theRgn : RgnBandle) 

The SetClip procedure changes the clipping region to the region 
pointed to by the handle theRgn. 

Now let's look at the pseudocode for drawing the edge: 

Save the current clipping region 
Construct a new clipping region the same as the old 
excluding the two nodes 
Make the new clip region the current clip region 
Draw a line connecting the two nodes 
Restore the original clip region 

The following procedure shows how it is implemented in the pro
gram: 

{--------------------------} 
{ Draw the edge specified by theEdge l 
{--------------------------} 
procedure DrawEdge(theEdge EdgeHndl); 
var 

p1, p2 Point; 
tempRgn, 
holdRgn : RgnHandle; 

{----------------------------} 



A COMPLETE MACINTOSH APPLICATION-THE TURBODRAW PROGRAM 325 

{ Returns the point that is the center of the region 
{ specified by theRgn I 
{----------------------------) 
procedure centerRect(theRect : Rect; var p : Point); 
begin 

with theRect do 
begin 

p.v := (top + bottom) div 2; 
p.h := (left + right) div 2 

end 
end; 

begin 
tempRgn := NewRgn; Allocate new clip region I 
holdRgn := NewRgn; Space to hold old clip region 
GetClip(holdRgn); Get the current clip region I 
OpenRgn; I Create new clip region that I 

FrameRect(holdRgnAA.rgnBBox);lentire drawing window) 
DrawNode(theEdgeAA.node1); !excluding the nodes) 
DrawNode(theEdgeAA.node2); {that make up the) 

CloseRgn(tempRgn); lend points of the edge) 
SetClip(tempRgn); !Make the new clip region current) 
I Draw the edge from the center of one node to I 
I the center of the other I 
centerRect(theEdgeAA.node1AA.Shape, p1); 
centerRect(theEdgeAA.node2AA.Shape, p2); 
Line(p1, p2); 
SetClip(holdRgn); I Restore the original clip region 
DisposeRgn(tempRgn);I Get rid of the temporary regions 
DisposeRgn(holdRgn) 

end; 

PRINTING PICTURES 

While Turbo Pascal can easily print text to a printer, it has no facil
ity to print graphics, and at first glance this seems like a mighty formi
dable task. However, printing graphics on the Macintosh is simpler 
than you might think. It requires working with the Toolbox's Print 
Manager, which contains all the routines necessary. Here are the steps 
involved: 

Open and initialize the Print Manager 

Set the print record to default values 



326 TuRBo PASCAL FOR THE MAC 

Show dialog allowing user to change default values 

If the user didn't cancel the job 

open the printing document 

open the page 

draw whatever is going to be printed 

close the page 

close the printing document 

print the document 

Release memory for Print Manager 

The Print Manager is designed for great flexibility so that it can be 
used with a wide variety of printers now and in the future. For in
stance, the LaserWriter did not exist when the Mac was created, but 
the Print Manager handles it just fine. To do this it uses several com
plex data structures, which will be discussed only in limited detail. For 
more information see "Printing from Macintosh Applications," in In
side Macintosh. 

Printing from a Macintosh application is conceptually simple. When 
the user selects the Print option from a menu, the Print Manager is 
initialized. The program then displays a dialog box to get some infor
mation about the printing. From here on, printing is a two-stage pro
cess. First, the program creates a "port" to print with. The printing 
port is analogous to QuickDraw's Graf Port, and the program simply 
draws all the QuickDraw structures on the screen to the printing port. 
Of course, the program must be able to re-create what is on the screen, 
but with an object-oriented program such as TurboDraw this is simple. 
We just move through the data structures, redrawing all the objects to 
the port as we go. Next, what has been drawn to the port is saved by 
the Print Manager to a temporary file and then sent to the printer in a 
technique called spooling. Once everything is printed, close up the 
Print Manager. 



A COMPLETE MACINTOSH APPLICATION-Tm: TuRl!oDRAW PROGRAM 327 

The Print Manager maintains three data structures we are con
cerned with, the record types TPrint, TPrPort and TPrStatus. These 
three records have complex definitions that are not important at this 
point. Simply put, however, the TPrint record holds information such 
as the size and shape of the paper, number of copies, and type of 
printer. The TPrPort record defines the graphics environment in which 
we are drawing. TPrStatus is used to hold status information about 
how the print job is progressing. In the code that follows you will see a 
type THPrint. The "H" means that THPrint is a handle to TPrint. Simi
larly, TPPrPort is a pointer to TPrPort because of the extra "P." 

To use the Print Manager routines, the Uses statement at the begin
ning of the program must list the MacPrint unit. Once that is done, all 
the Print Manager's routines and data structures are available for use. 
In order to use the Print Manager it must be opened, and after we are 
finished using it, it must be closed. The procedures that do this are 

procedure PrOpen 
procedure PrClose 

Neither of these procedures takes any parameters, so both are quite 
easy to use. PrOpen loads the printer resources from the disk, which 
may take a second or two to complete. PrClose terminates all interac
tion with the Print Manager. These procedures can be called each time 
they are needed. However if you are going to print frequently during 
your application and wish to avoid the slight pause, call PrOpen just 
once at the start of the program. In our case, they can be called imme
diately before and after printing. 

After the Print Manager has been initialized, we must allow the user 
to make some choices about how the print job should continue. If they 
are using an Image Writer, they can decide on the quality (draft, stan
dard or high), the number of copies to be printed, and the type of 
paper. This information is kept in a record of type TPrint, which we 
must create and set with some default values. The record is created 
using the NewHandle routine. The Print Manager has a procedure 
(called PrintDefault) for setting the TPrint record to standard default 
values. 

procedure PrintDefault (hPrint THPrint); 



328 TuRBo PASCAL FOR THE MAc 

The PrintDefault procedure fills the fields of a print record with 
default values; hPrint is a handle to the print record. 

var 
hPrint THPrint; 

hPrint := THPrint(NewHandle(sizeof(TPrint))); 
PrintDefault(hPrint) 

Now we can show the user a dialog box of printing options by using 
the PrJobDialog function. 

function PrJobDialog (hPrint : THPrint) : Boolean; 

The PrJobDialog displays the familiar dialog box used whenever you 
print from any Macintosh application. The dialog box for the 
ImageWriter is shown in Figure 12-6. The dialog box the user sees is 
dependent upon the print driver installed and selected by the user 
with the Chooser desk accessory. This makes the printer transparent 
to the program creating the output. PrJobDialog takes a parameter of 
type THPrint and returns True if the user responds QK and False 
otherwise (Cancel). 

lmageWriter v2.5 ' OK J) 
Quality: O Best ®Faster O Draft 

Page Range: @ Rll O From: D To: D (Cancel ) 

Copies: D 
Paper Feed: ®Automatic O Hand Feed 

Figure 12-6. The ImageWriter Dialog Box 

The next step is to create a port to draw in. To do this we use the 
PrOpenDoc function. 

function PrOpenDoc (hPrint TBPrint; pPrPort TPPrPort; pIOBuf 
: Ptr) : TPPrPort; 



A COMPLETE MACINTOSH APPLICATION-THE TURBODRAW PROGRAM 329 

The PrOpenDoc function creates a printing port and returns a 
pointer to it as the value of the function. The parameter hPrint is the 
current print record with the values entered by the user into the dia
log box. We will pass NIL for the other parameters to indicate that we 
will accept the Print Manager's default values for these. 

thePPort := PrOpenDoc(hPrint, NIL, NIL); 

Next we open a page for drawing, draw to the port, close the page, 
and close the document. 

procedure PrOpenPage (pPrPort 
:TpRect); 

TpPrPort; pPageFrame 

The PrOpenPage procedure initializes one "page" of output for the 
printer. The parameters are the printer port we are using and Nil to 
represent that no scaling is to be performed. 

procedure PrClosePage (pPrPort : TpPrPort) 

The PrClosePage procedure finishes up the current page of printing 
and ejects the page if necessary. 

procedure PrCloseDoc (pPrPort : TpPrPort) ; 

The PrCloseDoc procedure finishes up the printing of the document 
associated with the printer port specified. 

PrOpenPage(thePPort, NIL); 
DrawAll; 
PrClosePage(thePPort); 
PrCloseDoc(thePPort); 

{ Routine that draws everything) 

DrawAll is a procedure in the program that draws all the objects to 
the part as discussed. 

Finally, we call a Print Manager procedure to do the printing. 

PrPicFile(hPrint, NIL, NIL, NIL, prStatus); 

The PrPicFile procedure performs the spooling and printing pro
cess. The only two parameters to worry about are hPrint, which is the 



330 TuRBo PASCAL FOR THE MAC 

print record, and prStatus, which is a record passed as a variable pa
rameter containing information on the printer status. 

To end we simply clean up any dynamically allocated memory and 
close the Print Manager. The whole procedure follows. 

procedure DoPrint; 
var 
hPrint 
thePPort: 
prStatus: 

THPrint; 
TPPrPort; 
TPrStatus; 

begin 
PrOpen; 
hPrint := THPrint(NewHandle(sizeof(TPrint))); 
PrintDefault(hPrint); 
if PrJobDialog(hPrint) then 

begin 
thePPort := PrOpenDoc(hPrint, NIL, NIL); 
PrOpenPage(thePPort,NIL); 
Draw All; 
PrClosePage(thePPort); 
PrCloseDoc(thePPort); 
PrPicFile(hPrint, NIL, NIL, NIL, prStatus) 

end; 
DisposHandle(Handle(hPrint)); 
PrClose 

end; 

LOADING AND SAVING THE DATA 
STRUCTURES 

To be useful, a Tubro Draw program must be able to save a diagram 
to disk and be able to recall it later. As we have seen, for some types of 
programs this is quite easy; all that has to be done is write a file of all 
the information being stored in memory. However, in an object-ori
ented drawing program, it's not quite so simple. We must find some 
suitable way to organize and store the information we are working 
with. The first problem is that we have two different types of objects 
represented, nodes and edges. The second problem is that each of our 
objects has a relationship with one or more other objects. Saving han
dles in a disk file is useless because the memory location it holds will 
be meaningless when the program is reloaded into a different area of 



A COMPLETE MACINTOSH APPLICATION-THE TURBODRAW PROGRAM 331 

memory. We can get around this problem by numbering the nodes in 
the order in which they are stored in the linear linked list. We will 
assign the first node in the list number 0, the second node number 1, 
and so on. If we use figure 12-2 as an example, node A is numbered 0, 
node B is numbered 1, and node C is 2. It is easy to save the nodes and 
preserve their number; simply go through the linked list and write the 
nodes to disk. The first node in the disk file will be record 0, the next 
node is record 1, and so forth. The order in which they are written will 
be the same order they are read back later. The only information we 
need to record in the file for nodes is the rectangle that defines them 
and the shape of the node. It is not necessary to store the link handle 
to the next node because that information is preserved in the order in 
which the nodes are stored. 

Saving the edges is only slightly more complicated. An edge can be 
defined by the nodes that it connects. Using our numbering scheme, in 
Figure 12-2 edge x connect nodes 0 and 1, and edge y connects nodes 0 
and 2. We must traverse the list translating the handles to nodes into 
node numbers before the edges can be stored to disk. We will write a 
function Hdnl2Num, which translates the node handle into the node 
number. This function simply traces through the node list looking for a 
matching handle and keeping track of the number of the node exam
ined. When it finds a match it returns the number of the node. 

Two in One 

It is much simpler to work with files having a single kind of record 
rather than two different types. We will therefore use a variant record 
to place the representation of both nodes and edges into the same type 
of record. The declaration for this record is 

SaveRec = record 
case tag Boolean of 

TRUE : (Shape 
kind 

FALSE: ( node1 
node2 

end; 

Rect; 
Integer); 
Integer; 
Integer); 

Node 

Edge 



332 TuRBo PASCAL FOR THE MAc 

There is a tag field of type Boolean that determines if a particular 
record holds a node or an edge. If the tag is True, the record uses the 
variables Shape and Kind to represent a node. If tag is False, the 
record uses the variables Node! and Node2 to hold an edge. The file 
we use to save our diagram will be of type SaveRec. To save, we will 
traverse through the nodes, transferring from the node structure into 
the file. The same kind of operation will be done to save the edges. 

FILENAMES 

In order to comply with the standard Macintosh User Interface, we 
must when saving a file display a dialog box for entering the file
name. This dialog box is displayed by the Toolbox's SFPutFile proce
dure. 

procedure SFPutFile (where : Point; prompt : string; origName 
string; dlgHook: ProcPtr; var Reply : 
SFReply); 

The SFPutFile procedure displays the standard Save File dialog box 
as shown in figure 12-7. The parameters designate where on the screen 
to display the dialog box, a prompt for the user, the name of the last 
file used by the program (to do a check), a hook to an additional dialog 
box (for our use it's Nil), and the information entered by the user in a 
record in which the name entered is held in the name field. Other 
fields that indicate whether the user clicked on Save or Cancel are 
also contained in this record, but we will ignore them here and assume 
a click in the Save button for simplicity. We will use a procedure 
called NewFileName to handle the SFPutFile procedure. SFPutFile is 
part of the Toolbox's Package Manager and requires the unit Packlntf 
to be in the Uses statement at the beginning of the program. 

procedure NewFileName(var fname : STring); 
var 

reply : SFReply; 
where: Point; 

begin 
where.h := bO; where.v := SO; 
SFPutFile(where, •save Document 

as:•,fname, NIL, reply); 



A COMPLETE MACINTOSH APPLICATION-THE Turu!oDRAW PROGRAM 333 

fname := reply.fname 
end; 

In this example, Where is a point that determines the location of the 
top left-hand corner of the dialog box that appears on the screen. The 
string 'Save Document as:' is the message displayed in the dialog box. 
The string fname contains a default name to present to the user. For 
more detail on all the available features of SFPutFile, see the Package 
Manager chapter of Inside Macintosh. 

I (g} RamDisk I 
[) FhHh~r [Q (g} RamDisk 
t°) S~.~S1 (Hn 

( ) ~ rmtw [j~~c1 

( Brh~(~ ) 

f01 
Saue teHt as: ( S<W(~ ) 

I I ( Cancel ) 

Figure 12-7. The Save Dialog Box 

There is also a comparable procedure called SFGetFile that displays 
a dialog box for opening a file that already exists on disk, as shown in 
figure 12-8. We use this in our function OldFileN ame when loading our 
diagram back into memory. 



::$34 TURBO PASCAL FOR THE MAC 

I (g] RamDisk I 
D test :'B (g] RamDisk 

( !: j(~( t ) 
( Hrh~e ) 

............................................ 

( Open ) 
( Cancel ) 

Figure 12-8. The Open Dialog Box 

The code that creates this dialog box is analogous to that of 
NewFileName and can be found in the source code for TurboDraw at 
the end of the chapter. 

Here is the code for the entire TurboDraw program: 

listing 12-1. The Complete TurboDraw Program. 

program TurboDraw; 
uses 

!emtypes,QuickDraw,OSintf,Toolintf,Packintf,!acPrint; 
con st 

file! 
printitem 
loaditem 
save Item 
quititem 
!axEdges 

type 

1; 
1; 
2; 
3; 
5; 
10; 

Number of File menu) 
{ Print choice in File menu I 

I Quit choice in File menu 
I Maximum number of edges on a node I 

Tool Type 
NodePtr 
NodeBndl 

= ( NoTool, RectTool, OvalTool, RndRectTool, LineTool); 
"Node; 

Node = record 
Shape 
kind 

"NodePtr; 

Rect; 
Tool Type; 

Bandle to structure holding shape 
I Type of shape for this node I 



A COMPLETE MACINTOSH APPLICATION-THE TURBODRAW PROGRAM 335 

link 
end; 
EdgePtr 
EdgeHndl 
Edge = record 

node1 
node2 
link 

end; 

SaveRec = record 

NodeHndl 

AEdge; 
AEdgePtr; 

NodeHndl; 
NodeHndl; 
EdgeHndl 

case tag : Boolean of 
TRUE : (Shape 

kind 
FALSE: ( node1 

end; 

var 
filellenu 
doneFlag 
theEvent 
currTool 
NodeList 
EdgeList 
fname 

diagram I 

node2 

llenuBandle; 
Boolean; 
EventRecord; 
ToolType; 
NodeBndl; 
EdgeBndl; 
String; 

I Handle to next node in node list} 

Handle to node on one side of edge} 
I Handle to node on other side} 
I Handle to next edge in edge list} 

Rect; 
ToolType); 
Integer; 
Integer); 

Node 

Edge 

Becomes true when Quit is chosen 

Type of tool that is current 
Handle to list of nodes I 
Handle to list of edges I 
Hold filename on disk of current 

EdgeSet array [1 •• llaxEdges l of EdgeHndl; 
Tools array [ RectTool •• LineTool l of Re ct; 

(-----------------------} 
I Draws a line from point p1 to point p21 
(-----------------------} 
procedure Line(p1, p2 : Point); 
begin 

lloveTo(p1.h, p1.v); 
LineTo(p2.h, p2.v); 

end; 
}-----------------------} 
I Erases a line from point p1 to point p21 
(-----------------------} 
procedure EraseLine(p1, p2 : Point); 
begin 

Penllode(patXor); 
Line(p1, p2); 
Line(p1,p1); 

end; 

(-----------------------} 
I Wait for screen to do vertical refresh in 
I order to minimize flicker during animation 
(-----------------------} 
procedure WaitRefresh; 
var 



336 TURBO PASCAL FOR THE MAC 

tickValue 
begin 

tickValue 

Longint: 

:= TickCount: 
_repeat until (tickValue <> TickCount) 

end: 
(---------------------------) 
I Draw the shape specified by tempRect and kind) 
(---------------------------) 
~rocedure DrawShape(tempRect : Rect: kind : ToolType): 
l>egin 

iaitRefresh: 
case kind of 

FrameRect(tempRect): 
FrameOval(tempRect): 

RectTool 
Oval Tool 
RndRectTool 
Line Tool 

FrameRoundRect(tempRect,15,15): 
Line(tempRect.topLeft, tempRect.botRight) 

end 
end: 

(---------------------------) 
I Draw the node specified by theNodel 
(---------------------------) 
procedure DrawNode( theNode : NodeBndl): 
begin 

DrawShape(theNodeAA.Shape, theNodeAA.kind): 
end; 

(---------------------------) 
I Returns a handle to region corresponding to theNodel 
(---------------------------) 
function Node2Rgn(theNode : NodeBndl) : RgnHandle: 
var 

tempRgn RgnBandle: 
begin 

tempRgn := NewRgn: 
OpenRgn: 

DrawNode(theNode): 
CloseRgn(tempRgn): 
Node2Rgn := tempRgn 

end: 
(-------------------------) 
I If the point loc is inside a node then ihichNodeJ 
I returns the address of the node otherwise itl 
I returns NILi 
(-------------------------) 
function ihichNode(var loc : Point) 
var 

CurrNode 
tempRgn 

begin 

NodeBndl: 
RgnBandle: 

CurrNode := NodeList: 
WhichNode := NIL: 
while CurrNode <> NIL do 

NodeHndl: 



A COMPLETE MACINTOSH APPLICATION-THE TURBODRAW PROGRAM 337 

end; 

begin 
tempRgn := Rode2Rgn(CurrRode); 
if PtinRect(loc, CurrRodeAA.Shape) then 

begin 
ihichRode := CurrRode; 
CurrRode := BIL 

end 
else 

end 

CurrRode := CurrRodeAA.link; 
DisposeRgn(tempRgn) 

{--------------------------) 
I Draw the edge specified by theEdgel 
{--------------------------) 
procedure DrawEdge(theEdge EdgeHndl); 
var 

p1, p2 Point; 
tempRgn, 
holdRgn : RgnHandle; 
{----------------------------) 
I Returns the point that is the center of the region) 
I specified by theRgnl 
{----------------------------) 
procedure centerRect(theRect 
begin 

with theRect do 
begin 

Rect; var p Point); 

p.v := (top + bottom) div 2; 
p.h := (left + right) div 2 

end 
end; 

begin 
tempRgn := RewRgn; 
holdRgn := RewRgn; 
GetClip(holdRgn); 

OpenRgn; 
FrameRect(holdRgnAA.rgnBBox); 
DrawRode(theEdgeAA.node1); 
DrawRode(theEdgeAA.node2); 

CloseRgn(tempRgn); 

Allocate new clip region) 
Space to hold old clip region 
Get the current clip region) 
I Create new clip region that) 

!entire drawing window excluding) 
I the nodes that make up the end I 
I points of the edge) 

SetClip(tempRgn); !ake the new clip region current) 
I Draw the edge from the center of one node to the center of the 
other I 

centerRect(theEdgeAA.node1AA.Shape, p1); 
centerRect(theEdgeAA.node2AA.Shape, p2); 
Line(p1, p2); 
SetClip(holdRgn); 
DisposeRgn(tempRgn); 
DisposeRgn(holdRgn) 

end; 
{--------------------------) 

Restore the original clip region 
I Get rid of the temporary regions 

I Erase the edge specified by theEdgel 



3~8 TURBO PASCAL FOR THE MAC 

{--------------------------) 
procedure EraseEdge(theEdge EdgeHndl); 
var 

p1, p2 Point; 
begin 

Pen!ode(patXor); 
DrawEdge(theEdge) 

end; 
{--------------------------) 
I Allows user to create a node or edge byl 
I dragging the mouse. When the user releases the) 
I button the node or edge is added to the node) 
I or edge list) 
{--------------------------) 
procedure CreateNode; 
var 

tempRect Rect; 
startP, 
currP Point; 
{--------------------------) 
I Add a new node to the node list) 
{--------------------------) 
procedure AddNewNode; 
var 

NewNode RodeHndl; 
begin 

I Create a new node and make it first node in NodeList I 
NewNode := NodeHndl(NewHandle(sizeof(Node))); 
NewNodeAA.link := NodeList; 
NodeList := NewNode; 
NewNodeAA.kind := currTool; 
NewNodeAA.Shape := tempRect 

end; 
{--------------------------) 
I Add a new edge to the edge list) 
{--------------------------) 
procedure AddNewEdge; 
var 

NewEdge EdgeHndl; 
begin 

NewEdge := EdgeHndl(NewHandle(sizeof(Edge))); 
NewEdgeAA.node1 := WhichNode(startP); 
NewEdgeAA.node2 := WhichNode(currP); 
if (NewEdgeAA.node1 <> NIL) and (NewEdgeAA.node2 <> NIL) then 

begin 
EraseLine(startP, currP); 
NewEdgeAA.link := EdgeList; 
EdgeList := NewEdge; 
DrawEdge(NewEdge) 

end 
else 

begin 
DisposHandle(Handle(NewEdge)); 



A COMPLETE MACINTOSH APPLICATION-THE TuruloDRAW PROGRAM 339 

EraseLine(startP, currP) 
end 

end; 
begin !--------- CreateNode ------------1 

Penllode(patlor); 
Getllouse(startP); 
currP := startP; 
Pt2Rect(startP, startP, tempRect); 
while Button do 

begin 
DrawShape(tempRect, currTool); 
Getllouse(currP); 
if currTool = LineTool then 

SetRect( tempRect, startP.h, startP.v, currP.h, currP.v) 
else 

Pt2Rect(startP, currP, tempRect); 
DrawShape(tempRect, currTool) 

end; 
if (currTool >= RectTool) and (currTool <=RndRectTool) then 

AddNewNode 
else if currTool = LineTool then 

AddNewEdge 
end;!---------- CreateNode ------------} 
{---------------------} 
I Draw all edges in the edge setl 
{---------------------} 
procedure DrawEdgeSet; 
var 

count Integer; 
begin 

count := D; 
while Edgeset[countl <> NIL do 

begin 
DrawEdge(EdgeSet)[countl; 
count := count + 1 

end 
end; 
(---------------------} 
I Erase all the edges in the edge set} 
(---------------------} 
procedure EraseEdgeSet; 
var 

count Integer; 
begin 

count := D; 
while EdgeSet[countl <> NIL do 

begin 
EraseEdge(EdgeSet[countl); 
count := count + 1 

end 
end; 
(--------------------------} 
I Returns True if theNode overlaps another node} 



340 TURBO PASCAL FOR THE MAC 

{--------------------------} 
function Collision(theNode : NodeBndl) Boolean; 
var 

CurrNode 
tempRgn 
function 
var 

NodeBndl; 
RgnBandle; 

Overlap(node1, node2 

rl, r2, tempRgn : RgnBandle; 
begin 

rl := Node2Rgn(node1); 
r2 := Node2Rgn(node2); 
tempRgn := NewRgn; 
SectRgn(rl, r2, tempRgn); 

NodeBndl) 

Overlap := not EmptyRgn(tempRgn); 
DisposeRgn(rl); 
DisposeRgn(r2); 
DisposeRgn(tempRgn) 

end; 
begin 

CurrNode := NodeList; 
Collision := FALSE; 
while CurrNode <> NIL do 

end; 

begin 
if CurrNode = theNode then 

CurrNode := CurrNodeAA.link 
else 

end 

if Overlap(CurrRode, theNode) then 
begin 

Collision := TRUE; 
CurrNode := NIL 

end 
else 

CurrRode := CurrNodeAA.link 

{--------------------------} 

Boolean; 

I Allows the user to move the node around the screen. If the user 
moves I 
1 the node on top of another node then put it back into its old J 
{location. After the node has been moved erase the edges that J 
{connected to the node at its old location and redraw at the new J 
I location} 
~-------------------------------} 
procedure !oveNode(var theRode : NodeBndl); 
var 

oldLoc, 
newLoc 
tempRect 
temp 

begin 

Point; 
Rect; 
Rect; 

tempRect := theNodeAA.Shape; 
Pen!ode(PatXor); 
Get!ouse(oldLoc); 



A COMPLETE MACINTOSH APPLICATION-Tm: TURBODRAW PROGRAM 341 

while Button do 
begin 

GetKouse(newLoc): 
DrawNode(theNode): 
DrawNode(theNode): 
OffsetRect(theNodeAA.Shape, newLoc.B - oldLoc.B, newLoc.V 

oldLoc. V): 
oldLoc := newLoc 

end: 
if Collision(theNode) then 

theNodeAA.Shape := tempRect 
else 

begin 
CollectEdges(theNode): 
temp := theNode.AA.Shape: 
theNodeAA.Shape := tempRect: 
EraseEdgeSet: 
DrawNode(theNode): 
theNodeAA.Shape := temp: 

end: 

DrawEdgeSet: 
DrawNode(theNode) 

end 

(---------------------) 
( Create the menu barl 
(---------------------) 
procedure SetUpKenus: 
var 

i 
appleTitle 

begin 

Integer: 
String[Ll: 

InitKenus: I Initialize the Kenu Kanager 
fileKenu := NewKenu(fileK,'File'): 
AppendKenu(FileKenu,•Print:Load:Save:(-:Quit•): 
InsertKenu(FileKenu,D): 
DrawKenuBar: 

end: 
(---------------------) 
I Kake rect opposite color) 
(---------------------) 
procedure flipRect(theRect 
begin 

InsetRect(theRect,2,2): 
InvertRect(theRect) 

end: 
(---------------------) 
I Kake no tool current) 
(---------------------) 
procedure UnSelectTool: 
begin 

Rect): 

if currTool <> NoTool then 
flipRect(Tools[currTooll): 

currTool := NoTool 



342 TURBO PASCAL FOR THE MAC 

end; 
{---------------------) 
I Make theTool the current tool) 
!---------------------) 
procedure SelectTool(theTool : ToolType); 
begin 

UnSelectTool; 
currTool := theTool; 
flipRect(Tools[currToolJ) 

end; 
(---------------------} 
I Print the diagram on the 
(---------------------) 
procedure DoPrint; 
var 

hPrint 
thePPort: 
prstatus: 

begin 
PrOpen; 

THPrint; 
TPPrPort; 
TPrStatus; 

printer I 

hPrint := THPrint(NewHandle(sizeof(TPrint))); 
PrintDefault(hPrint); 
if PrJobDialog(hPrint) then 

pptions I 
begin 

I Allow the user to choose printer 

thePPort := PrOpenDoc(hPrint, NIL, NIL); 
PrOpenPage(thePPort,NIL); 
Draw All; 
PrClosePage(thePPort); 
PrCloseDoc(thePPort); 
PrPicFile(hPrint, NIL, NIL, NIL, prStatus) 

end; 
DisposHandle(Handle(hPrint)); 
PrClose 

end; 
{-----------------) 
I Save the diagram to a disk file I 
{-----------------) 
~rocedure DoSave; 
var 

Save File of SaveRec; 
SaveBuf saveRec; 
CurrEdge EdgeHndl; 
CurrNode NodeHndl; 
{-------------------) 
I Allows the user to choose a filename 
I for the file. Presents fname as al 
I default choice) 
{-------------------} 
procedure NewFileName(var fname 
var 

reply 
where 

SFReply; 
Point; 

String); 



A COMPLETE MACINTOSH APPLICATION-THE TURBODRAW PROGRAM 343 

typeList SFTypeList; 
begin 

where.h := bD; where.v := SD; 
SFPutFile(where,•save Document as:•,fname,NIL,reply); 

fname := reply.fname 
end; 
{---------------------) 
I Returns the node number of the node) 
I pointed to by theBandlel 
{---------------------) 
function Bndl2Num(theBandle 
var 

NodeCount Integer; 
begin 

NodeCount := D; 
CurrNode := NodeList; 
while currNode <> NIL do 

begin 

RodeBndl) 

if CurrNode = theBandle then 
currNode := NIL 

else 
begin 

end; 

CurrRode := CurrNodeAA.link; 
NodeCount := RodeCount + 1 

end 

Bndl2Rum := NodeCount 
end; 

begin 
NewFileRame(fname); 
rewrite(Save, fname); 
CurrRode := RodeList; 
while CurrRode <> NIL do 

begin 
SaveBuf.tag := TRUE; 
SaveBuf.Shape := CurrNodeAA.Shape; 
SaveBuf.kind := CurrNodeAA.kind; 
Write(Save, saveBuf); 
CurrNode := CurrRodeAA.link 

end; 
CurrEdge := EdgeList; 
while currEdge <> NIL do 

begin 
SaveBuf.tag := FALSE; 

Integer; 

SaveBuf.node1 := Bndl2Num(CurrEdgeAA.node1); 
SaveBuf.node2 := Bndl2Num(CurrEdgeAA.node2); 
Write(Save, SaveBuf); 
CurrEdge := CurrEdgeAA.link 

end; 
close(Save) 

end; 
{-----------------) 
I Save the diagram to a disk file.I 



344 'fuRBO PASCAL FOR THE MAC 

{-----------------) 
procedure DoLoad; 
var 

Save File of SaveRec; 
SaveBuf SaveRec; 
CurrHode HodeBndl; 
Rewlode HodeBndl; 
HewEdge EdgeBndl; 
{----------------------) 
I Allows the user to choose a filename from I 
I the files that are on a disk) 
{----------------------) 
procedure OldFileHame(var fname 
var 

reply 
where 
typeList 

begin 

SFReply; 
Point; 
SFTypeList; 

String); 

where.h := 60; where.v := 50; 
SFGetFile(where,••,HIL,-1,typeList,RIL,reply); 
fname := reply.fname 

end; 
{----------------------) 
I Returns a handle to the node that has the I 
I number specified by theluml 
{----------------------) 
function Hum2Bandle(theHum : Integer) 
var 

RodeCount Integer; 
begin 

Hum2Bandle := NIL; 
HodeCount := O; 
CurrHode := RodeList; 
while CurrHode <> RIL do 

begin 
if HodeCount = thelum then 

begin 
Rum2Bandle := Currlode; 
CurrHode := RIL 

end 
else 

begin 

HodeBndl; 

CurrHode :CrrHoe\.link Hodecount := RodeCount + 1 
end 

end 
end; 

begin 
OldFilelame(fname); 
HodeList := RIL; 
CurrHode := RIL; 
EdgeList := RIL; 
1$I-I 
reset(Save, fname); 



A COMPLETE MACINTOSH APPLICATION-THE TURBODRAW PROGRAM 345 

while not eof(Save) do 
begin 

read(Save, SaveBuf); 
if SaveBuf.tag then 

begin 
RewRode := RodeBndl(RewBandle(sizeof(Rode))); 
RewRodeAA.link := NIL: 
RewRodeAA.kind := SaveBuf.kind: 
RewRodeAA.Shape := SaveBuf .Shape; 
if RodeList = RIL then 

RodeList := RewRode 
else 

CurrRodeAA.link := RewRode: 
CurrRode := RewRode 

end 
else 

begin 
RewEdge := EdgeBndl(NewBandle(sizeof(Edge))); 
RewEdgeAA.nodeL := Rum2Bandle(SaveBuf.nodeL); 
RewEdgeAA.node2 := Num2Bandle(SaveBuf.node2); 
RewEdgeAA.link := EdgeList; 
EdgeList := RewEdge: 

end 
end; 

close(Save) 
1$I+I 

end; 
{----------------------------} 
I Do the action specified by theitem from the file menu I 
{----------------------------} 
procedure DoFileMenu(theitem : Integer); 
var 

myPort GrafPtr; 
begin 

case theitem of 
quititem: 
loaditem: 
saveitem: 
printitem: 

doneFlag := 
DoLoad; 
DoSave; 

begin 
UnSelectTool; 
GetPort(myPort); 
DoPrint; 
SetPort(myPort) 

end; 
end; 

Draw All; 
DrawPallete 

end; 
{--------------------------} 

TRUE; 

I User click in the menu Bar take appropriate action I 
{--------------------------} 
procedure DoCommand(mResult: LORGIRT); 



346 'fuRBO PASCAL FOR THE MAC 

var 
theitem: 
the!enu: 

begin 

Integer; 
Integer; 

theitem := LoWord(mResult); 
the!enu := BiWord(mResult); 
case the!enu of 

file!: 
DoFile!enu(theitem); 

Which item in the menu l 
Which menu l 

end; 
Bilite!enu(D) Turn off highlighting in the !enu Bar l 

end; 
(---------------------} 
I Check to see if user clicked in one of 
I of Toolboxes. If so, set currTool. 
I Returns True if user click in Toolbox 
(---------------------} 
function WhichTool(location : Point) : Boolean; 
var 

i 
begin 

TooHype; 

WhichTool := FALSE; 
for i := RectTool to LineTool do 

if PtinRect(location, ToolsCiJ) 
begin 

then 
I For every tool l 
(check if it is selected} 

end; 

WhichTool := TRUE; 
if currTool <> i then 

SelectTool(i) I 
else I 

UnSelectTool; I 
end 

(---------------------------} 

I A tool was selected l 
I If click not in current tool 
select the tool l 
Click in tool already selected} 
then unselect it l 

I Click in the drawing window and take appropriate action I 
(---------------------------} 
procedure BandleClick(whichWindow : WindowPtr; location : Point); 
var 

tempRode : RodeBndl; 
begin 

GlobalToLocal(location); 
if not WhichTool(location) then 

if currTool <> RoTool then 

I If clicked in the palette set 
the tool l 

CreateRode I Tool selected create node or edge l 
else 

end; 

begin 
tempRode := WhichRode(location); Check if click in node l 
if tempRode <> NIL then 

!oveRode(tempRode) !ove the node l 
end 

(---------------------} 
I Do the appropriate thing for each event l 



A COMPLETE MACINTOSH APPLICATION-THE TURBODRAW PROGRAM 347 

{---------------------) 
procedure BandleEvent(theEvent 
var 

whichWindow : WindowPtr; 
begin 

EventRecord); 

if theEvent.what = mouseDown then 
case FindWindow(theEvent.where, whichWindow) of 

inSysWindow I Click outside window I 
SystemClick(theEvent, whichWindow); 

inKenuBar I Click in menu bar 
DoCommand(KenuSelect(theEvent.where)); 

inContent I Click in the window 
BandleClick(whichWindow, theEvent.where) 

end 
end; 
{-----------------------) 
I Initialize location of tools in the palette I 
{-----------------------) 
procedure InitTools; 
var 

i 
tempRect: 

begin 

Tool Type; 
Rect; 

SetRect(tempRect, 2,5,38,40); 
for i := RectTool to LineTool do 

begin 
Tools[il := tempRect; 
OffsetRect(tempRect,D,34); 

end; 
currTool := RoTool 

end; 
{--------------------------------) 
I Do all initialization for program including Toolbox stuff 
{--------------------------------) 
procedure Initialize; 
begin 

SetUpKenus; 
InitTools; 
EdgeList : = RIL; 
RodeList := RIL; 
DrawPallete; 
doneFlag := false; 
fname := 11 ; 

end; 

Set up the menu structure I 
Set up tool palette I 
Ro nodes or edges to start 

I Rot done with program yeti 

begin 1--- Kain program ---1 
Initialize; 
repeat 

if GetHextEvent(everyEvent, theEvent) then 
BandleEvent(theEvent); 

until done?lag 
end. {--- Kain program ---1 



348 'fuRBO PASCAL FOR THE MAC 

Da More 

TurboDraw is a very complete and functional application, but like 
all programs more can always be added. Here are some suggestions for 
additions to TurboDraw: 

1. Add the ability of writing text to the TurboDraw screen. 

2. Add the ability to delete nodes and edges from a diagram. 

3. Add the ability to do free-style drawing as well as structured 
drawing. 

4. Add the ability to resize nodes after they are drawn. 

5. Add the ability to connect nodes using arcs as well as lines. 

6. Add the ability to add multisegment lines to connect nodes. 



APPENDIX A 
Table A-1. Turbo Pascal Reserved Words 

and goto record 
array if repeat 
begin in set 
case label string 
con st mod then 
div nil to 
do nout type 
down to of until 
else or uses 
end otherwise var 
file procedure while 
for program with 
function 

SINGLE CHARACTER SPECIAL SYMBOLS 

$ + I < > @ A 

CHARACTER PAIR SPECIAL SYMBOLS 

< > <= >= := . ) ( . . ) 

349 



APPENDIX B 
Turbo Pascal Menu Summary 

FILE MENU 

New 

The file menu contains options to save programs to the disk, restore 
programs from the disk, and print programs. 

Opens a new window to allow you to start entering a new program. 

Open 

Displays a dialog box that allows you to recall a program already 
stored on the disk. A program residing on a different disk can be re
called by ejecting the current disk and inserting the new disk into the 
drive. A program is opened by double clicking on its name or by select
ing the name and then clicking on the Open button. This is disabled if 
eight windows are already open. 

Close 

Closes the current editing window and erases its contents. H you 

350 



Save 

APPENDIX B 351 

haven't saved the program, you will be given a chance to do so. Dis
abled if no windows are open. 

Saves your program on the disk under the name it has been previ
ously given ( the name that appears on the top of the program win
dow). If a program is new (named Untitled), a dialog box first asks for 
a name. 

Save As ... 

Saves a new program with a name or saves an already named pro
gram with a new name. It also allows you to eject the disk in the disk 
drive or look at another drive so that you can save the program on a 
different disk. 

Page Setup 

Lets you select the size paper you are going to use in the printer 
with the standard page-setup dialog box. All settings are erased upon 
exiting Turbo. 

Print ... 

Displays the standard print dialog box for the printer you are using. 

Edit Transfer 

Allows you to edit the list of programs found in the Tran sf er menu. 



352 Turbo Pascal for the Mac 

Quit 

Closes all open editing windows and returns you to the Macintosh 
Desktop. 

EDIT MENU 

The Edit menu contains options that allow you to make changes to 
the text of your program. 

Undo 

Cut 

Undoes the last editing changes you have made. You can also redo 
an undo. A handy little menu item! 

Cuts any selected text out of your program and places it into the 
Clipboard. The Clipboard is a temporary storage area that allows you 
to pass information between programs. 

Copy 

Does the same thing as Cut, except it does not remove the selected 
text from the current program. 

Paste 

Inserts a copy of the Clipboard at the insertion point in your pro
gram or replaces the selected text with it. 



APPENDIX B 353 

Clear 

Erases any selected text. 

Shift Left 

Shifts all the currently selected text one space to the left. Helpful in 
realigning text. 

Shift Right 

Shifts all the currently selected text one space to the right. Helpful 
in realigning text. 

Options 

Presents three options to customize your Turbo work environment. 
Tab Width sets the tabulator width between 1 and 8. The Auto Indent 
check box is used to set whether the auto indent is used while editing. 
The Startup Window check box is used to set whether an Untitled 
window comes up at the start of each session. None of the settings are 
saved upon exiting Turbo unless "Save Defaults" from the File menu 
is used. 

SEARCH MENU 

The Search menu contains options to easily locate and change text 
in the program window. 

Find (Command-F) 

Opens a dialog box that lets you enter a string to be searched for 
through the text of the active editing window. Searching starts at the 
current cursor position and proceeds downward. 



354 Turbo Pascal for the Mac 

Find Next (Command-DJ 

Starts to search for the next occurrence of the string entered via the 
Find or Change options. 

Change (Command-A) 

Similar to Find except that a string to replace the one found can also 
be entered. Each replacement of the string is verified with a dialog 
box. 

Hpme Cursor (Command-HJ 

Moves the cursor to the top of the editing window currently active. 
This is the quickest way to jump back to the top of your program. 

W:indow (Command-W) 

Cycles through all the open editing windows. 

Format Menu 

The Format menu is used to customize the appearance of the text in 
the editing windows. It is broken into two main sections dealing with 
window layout and text size. 

Stack Windows 

Used to stack all open windows one behind the other with only the 
title bar of the inactive windows showing. 



APPENDIX B 355 

Tile Windows 

Organizes all open windows into tiles so that all can show on the 
screen at once. 

Zoom Window 

Expands the active window so that it takes up most of the screen. If 
the window is already full size, it is shrunk back down. Also the name 
of a moderately successful band in the 1960s. 

Text Size 9,10,12,14,18, and 24 Points 

Used to set the text character size in the active window. All charac
ters in a window must be the same size, but different windows can 
have different text sizes. 

THE FONT MENU 

Used to select the font of the text in the active window. Different 
windows can use different fonts, but all the text of a window must be 
the same font. The font names displayed will be dependent upon 
which are installed in the system folder you are using. 

The Run Menu 

The Run menu allows you to select different options for executing 
your program. 

THE COMPILE MENU 

The Compile Menu contains options to compile and run your pro
grams 



356 Turbo Pascal for the Mac 

Run 

Executes the program in the active window, compiling it to memory 
if necessary. 

To Memory 

Compiles the program in the active window to a file held in the 
Mac's memory. The file is erased if any editing is performed on the 
program. 

To Disk 

Compiles the program in the active window to a file on disk, produc
ing a double-clickable application with the same name as the window. 

Check Syntax 

Parses a program checking its syntax. It is a good idea while writing 
a long program to use this option from time to time to remove syntax 
errors as you go. 

Find Error 

Positions the cursor at the statement in a program that caused the 
last run-time error. 



APPENDIX B 357 

Get Info 

Displays some information about the size of the current program. 

Options 

Allows the programmer to set certain options for the compiler. 



APPENDIX C 
Compiler Error Messages 

01 ';' expected 
02 ':' expected 
03 ',' expected 
04 '(' expected 
05 ')' expected 
06 '='expected 
07 ':='expected 
08 ' [ ' expected 
09 ' ] ' expected 
10 '.' expected 
11 '. .'expected 
12 Begin expected 
13 Do expected 
14 End expected 
15 Of expected 
16 Interface expected 
17 Then expected 
18 To or downto expected 
19 Implementation expected 
20 Boolean expression expected 
21 File variable expected 
22 Integer constant expected 
23 Integer expression expected 
24 Integer variable expected 
25 Integer or real constant expected 
26 Integer or real expression expected 
27 Integer or real variable expected 

358 



28 Pointer variable expected 
29 Record variable expected 
30 Ordinal type expected 
31 Ordinal expression expected 
32 String constant expected 
33 String expression expected 
34 String variable expected 
35 Identifier expected 
36 Type identifier expected 
37 Field identifier expected 
38 Constant expected 
39 Variable expected 
40 Undefined label 
41 Unknown identifier 
42 Undefined type in pointer definition 
43 Duplicate identifier 
44 Type mismatch 
45 Constant out of range 
46 Constant and case types do not match 
47 Operand types do not match operator 
48 Invalid result type 
49 Invalid string length 
51 Invalid subrange base type 
52 Lower bound greater than upper bound 
53 Invalid for control variable 
54 illegal assignment 
55 String constant exceeds line 
56 Error in integer constant 
57 Error in real constant 
58 Division by zero 
59 Structure too large 
60 Constants are not allowed here 
62 Invalid type cast argument 
63 Invalid 'ii)' argument 
64 Label defined already 
65 Invalid file type 
66 Cannot read or write variable of this type 
67 Files must be var parameters 
68 File components may not be files 
70 Set base type out of range 

APPENDIX C 359 



360 Turbo Pascal for the Mac 

71 Invalid goto 
72 Label not within current block 
73 Undefined forward procedure(s) 
7 4 Program or unit expected 
75 Error in type 
76 Error in statement 
77 Error in expression 
78 Invalid external definition 
79 Invalid external reference 
80 Too many symbols 
81 Too many nested scopes 
82 Driver header not found 
83 Too many variables 
84 Expression too complicated 
85 Segment too large 
86 Unit not found 
87 Duplicate or invalid unit number 
88 Unit missing 
89 Incomplete unit versions 
90 Syntax error 
91 Unexpected end of text 
92 Line too long 
93 Invalid compiler directive 
94 Target address found in unit 
95 Undefined external procedue(s) 
96 Object file format error 
97 Run-time support unit missing 
98 Target address not found 
99 Not enough memory 



APPENDIX D 
IOResult Codes 

The following are the codes that will be returned by a call to the 
IOResult function when an error occurs: 

-33 Directory file full 
-34 All allocation blocks on the volume are full 
-35 Specified volume doesn't exist 
- 36 Disk II 0 error 
- 37 Bad filename or volume name (perhaps zero length) 
- 38 File not open 
- 39 Logical end of file reached during read operation 
-40 Attempt to position before start of file 
-41 System heap full 
-42 Too many files open 
-43 Volume not found 
-44 Volume is locked by a hardware setting 
-45 File is locked 
-46 Volume is locked by a software flag 
-47 One or more file open 
-48 A file with the specified name already exists 
-49 Only one access path to a file can allow writing 
-50 No default volume 
-51 Bad file reference number 
-53 Volume not online 
-54 Read/write permission doesn't allow writing 
-55 Specified volume number is already mounted and online 
-56 No such drive number 
-57 Volume lacks Macintosh-format directory 

361 



3~2 Turbo Pascal for the Mac 

-58 External file system error 
-59 Problems during Rename 
-60 Master directory block is bad; must reinitialize volume 
-61 Read/write permission doesn't allow writing 
-108 Not enough room in heap zone 
-120 Directory not found 
-121 Too many working directories open 
-122 Attempted to move into offspring 
-123 Attempt to do HFS operation on non-HFS file 
-127 Internal file system error 
-128 Text file not open for input 
-129 Text file not open for output 
-130 Error in numeric value during read from text file 



APPENDIX E 
Documenting a Program 

The following program is presented for the purpose of providing a 
model for documenting a program. This particular program is only an 
example and should not be taken as the only way to document a pro
gram. The amount and detail of documentation that you should use in 
your program will depend on your application, its length, and its com
plexity. 

Listing E-1. Program That Documents Programs. 

program GradeBook; 
{••·····················································} 
I• Created 1/7/67 
{. 

Programmer: !. Alan Zeldin . } 
<} . } {. 

{. Functional Description: •l 
I• GradeBook maintains a file containing student •l 
I• names and grades. Weighted averages are computed •I 
I• when student information is displayed. Students •l 
I• can be added or deleted from the file and student •l 

grade information can be modified. •l 

I• Implementation Description: 
I• Information is maintained in a file of records 
I• that contain data about each student. To find any 
I• specific record, a sequential search of the file 
I• is performed. 
{. 
{. 
{. 
{. 
{. 

Implementation Restrictions (bugs): 
Only the first student iu the file with a given 
name is accessible to the user. 

{•······················································} 
uses 

363 

. } . } . } . } . } . } 

•I . } . } . } . } 



364 Turbo Pascal for the Mac 

lemTypes, QuickDrav, Toolintr, OSintr 
const 
FileRame = 'STUDENTS'; I Bame of file students are stored in I 
FileSize = SD; 
RumberExams = b; 
Empty= 11 ; I Rull string in LastRame marks free record I 

type 
Grades = array[J. •• RumberExamsl of integer; 
RameType = string[J.Sl; 
StudentType = record 

LastRame : RameType; 
FirstRame : RameType; 
Exam : Grades; 

end; 
var 
Choice : char; 
Weight of each exam in average I 
Weight : array[], •• RumberExamsl of real; 
Student : file of StudentType; 
First, Last : RameType; I Bame of current student I 
Location : integer; I Current location in student file I 

procedure lenu; 
{••·························································••} 
I• Displays all the program's functions and prompts the •I 
I• user to choose the desired function. If an invalid •I 
I• choice is made the computer beeps and waits for a •I 
I• a valid choice •I 
{••···························································} 
begin I lenu I 
ClearScreen; 
Writeln( 1 J.. !odify a Student•); 
Writeln(•2. Add a Student•); 
Writeln( 1 3. Delete a Student•); 
Writeln(•D. Quit•); 
Writeln; 
Write( 1 Please Choose > 1 ); 

Read(Choice); 
while not (Choice in [•a• •• • 4 • l) do 
begin I Rot a valid choice I 

SysBeep(S); 
Read(Choice) 

end 
end; I !enu I 

procedure InitPile; 
{•••························································} 
I• Open student file if it exists else create the file •I 
{•••························································} 

var 
Count, Index : integer; 

begin I InitPile I 
Open(Student, PileRame); 



if EOF(Student) then I File doesn't exist I 
begin 

Write FileSize empty records into the file I 
for Count := 0 to FileSize do 
begin 

Seek(Student, count); 
Read(Student,StudentRec) 

Initialize all records in file to be empty I 
with StudentRec do 
begin 

FirstHame := Empty; 
LastHame := Empty; 
for Index := 1 to HumberExams do 
Exam[IndexJ := 0 

end; 
irite(Student,StudentRec) 

end; 
Close(Student); 
Reset(Student, FileHame) 

end 
end; I InitFile I 

procedure Setieights; 
begin 
ieight[1J := 0.15; 15\ of grade 
Weight[2J := 0.15; 15\ of grade 
ieight[3J := 0.20; 20\ of grade 
ieight[LfJ := 0.15; 15\ Of grade 
Weight[5J := 0.15; 15\ of grade 
Weight[bJ := 0.20 20\ of grade 

end; I Seti eights } 

procedure GetHame; 
{••············································ •) 
I• Prompt user to enter name of a student •I 
(••············································ •) 
begin I GetHame I 
irite( 1Enter Last Kame>•); 
Readln(Last); 
Write( 1Enter First Name >1 ); 

Readln(First) 
end; I GetHame I 

function FindStudent (First, Last : HameType; 
var Count : integer) : Boolean; 

{··························································••} 
I• Returns True if the name is found in the file •I 
!• Returns False if the name is not found. If the name •I 
I• was found Count contains its position in the file •I 

{••························································••} 
var 
Found : Boolean; 

begin I FindStudent 

APPENDIX E 365 



366 Turbo Pascal for the Mac 

Count := D; 
Found := false; 
Seek(Student, Count); 
Read(Student, StudentRec); 

I Sequential search of file for matching name 
while (not eof(Student)) and (not Found) do 

begin 
with StudentRec do 
if (FirstName = First) and (LastName Last) then 
Found := True 

else 
begin 

Count := count + 1; 
Seek(Student, Count); 
Read(Student,StudentRec); 

end 
end; 

if not found then 
begin 
Writeln(First, ' 1 , Last, ' was not found. '); 
iriteln('Press <Return> to continue.'); 
Readln 

end; 
FindStudent := Found 

end; I FindStudent I 

procedure DisplayStudentinfo; 
{•••···························································} 
I• Display the contents of the current student record •I 
I• which is contained in Student~. Calculate the average•} 
{····························································••} 

var 
Index : integer; 
Average : real; 

begin I Displaystudentinfo 
with StudentRec do 
begin 
Clearscreen; 
Writeln(' Last Name : 1 LastName); 
Writeln(' First Name 1 , FirstName); 
iriteln; 
Writeln( 11. Exam1 1 , Exam[1l); 
Writeln('2. Exam2 1 , Exam[2l); 
Writeln( 1 3. Final 1 , Exam[3l); 
Writeln('4. Project1: 1 , Exam[4l); 
Writeln( 1 5. Project2: 1 , Exam[Sl); 
Writeln( 1 b. Project3: 1 , Exam[bl); 
Average := D; 
for Index := 1 to NumberExams do 

Average := Average+ (ieight[Indexl • Exam[Indexl); 
iriteln(' Average : 1 , round(Average)) 

end 
end; I DisplayStudentinfo 



procedure Modify (Location : integer); 
{••••·····················································} 
(• Allows user to modify exam grades of the current •I 
I• student •I 
{••·····················································••} 

var 
Choice : char; 
Value : integer; 

begin I Modify I 
seek(Student, Location); 
Read(Student, StudentRec); 
repeat 
DisplayStudentinfo; 
Writeln; 
Write('Enter Line to Change or o to Quit> '); 
Read(Choice); 
while not (Choice in ['0' •• 'b'J) do 
begin I Hot a valid Choice 

sysBeep(S); 
Read(Choice) 

end; 
Writeln; 
if Choice <> 1 0 1 then 
begin 

Write( 1Enter value> 1 ); 

Readln(Value); 
Convert choice into equiv integer for use as index I 

StudentRec.Exam[ord(Choice) - ord( 1 0 1 )J :; Value; 
end; 

until Choice; '0'; 
Write(Student,StudentRec) 

end; I Modify I 

procedure AddStudent (First, Last : HameType); 
{••···························································} 
I• Adds the student whose name is passed in to the file •I 
{•····························································} 

var 
Added : Boolean; 
Count : integer; 

begin I AddStudent 
I Look for a record with no last name I 

Added :; false; 
Count :; O; 
Seek(Student, Count); 
Read(Student, StudentRec); 
Sequential search of file for free record I 

while (not eof(Student)) and (not Added) do 
if StudentRec.LastHame ; Empty then 
begin I Found an empty spot I 

Seek(Student, Count); 
StudentRec.LastHame :; Last; 
StudentRec.FirstHame :; First; 

APPENDIX E 367 



368 Turbo Pascal for the Mac 

Write(Student, StudentRec); 
Added := True 

end 
else 
begin I Look at next spot 

Count := Count + 1; 
Seek(Student, Count); 
Read(Student, StudentRec) 

end; 
if not Added then 
Writeln( 1File is full, Press <Return> to continue•) 

end; I AddStudent I 

procedure Delete (Location : integer); 
{••·····························································} 
I• Deletes the student at the place in the file specified •I 
I• by Location by putting an empty string into that •I 
I• record. The user is asked to verify the deletion •I 
{••·····························································} 

var 
Which : char; 

begin I Delete I 
Seek(Student, Location); 
Read(Student, StudentRec); 
with StudentRec do 
Writeln(FirstRame, ' •, LastRame); 

Write(' Delete (YIN) > •); 
Read(Which); 
if (Which = 1 Y1 ) or (Which 'Y') then 
begin 
Seek(Student, Location); 
Read(Student, StudentRec); 
StudentRec.LastRame := Empty; 
StudentRec.FirstRame := Empty; 
Write(Student, StudentRec); 

end 
end; I Delete I 

begin GradeBook 
InitFile; I File doesn't already exist, create it I 
SetWeights; 
repeat 
!enu; I Show the choices I 
case Choice of 

ID I : 

; I Do nothing 
11 • : I !odify a student I 
begin 

ClearScreen; 
GetRame; 
if FindStudent(First, Last, Location) then 
!odify(Location) 

end; 



• 2 • : Ad,d a student J 
begin 

Clearscreeni 
GetNamei 
AddStudent(First, Last) 

endi 
131 : Delete a student l 
begin 

ClearScreeni 
GetNamei 
if FindStudent(First, Last, Location) then 
Delete(Location) 

end 
end I case I 

until Choice= 10 1 1 
Close(Student) 

end. I GradeBook I 

APPENDIX E 369 



APPENDIX F 
Differences Between Turbo 
Pascal and Macintosh Pascal 

Many programmers may switch from Macintosh Pascal to Turbo Pas
cal. This appendix notes their differences. 

lMPLEMENTATION 

The major difference between the two Pascals is in the way they are 
implemented. Macintosh Pascal is implemented via an interpreter 
reminiscent of interpreted BASIC. All program editing and execution 
is performed by the MacPascal interpreter. Once interpreted, a pro
gram written in Macintosh Pascal needs to be run in the Macintosh 
Pascal environment or with the aid of a run-time application. The ma
jor drawback of this is that Macintosh Pascal programs execute slowly, 
and it is not possible to develop a double-clickable application or a 
desk accessory, as is possible in Turbo. There is one advantage to 
working with Macintosh Pascal, and that is the superior debugging 
tools available in that language. Although Turbo is a compiler lan
guage, its environment provides many of the advantages of an inter
preted system by presenting a unified environment where it is easy to 
jump from editor to compiler to application and back. 

DATA TYPES 

Both Pascals implement data types via the Mac's SANE package and 
thus are the same. 

370 



APPENDIX F 371 

STRINGS 

String handling is virtually the same in both systems. All the stan
dard functions and procedures are the same. Macintosh Pascal has 
added two string procedures, Include and Omit. Macintosh Pascal does 
not support turning off range checking or any other Turbo compiler 
switch. 

USER-DEFINED TYPES 

Macintosh Pascal allows the reading and writing of the values of a 
user-defined type. Turbo Pascal permits only the Ords of user-defined 
values to be read or written. 

FILES 

There are significant differences in file handling between the two 
systems. Macintosh Pascal tries to implement file handling more con
sistent with the original Pascal definition, while Turbo varies from this 
standard in order to make file handling more consistent with other 
input/ output operations. In Macintosh Pascal, there is a sharp distinc
tion between sequential and random files. A sequential file can be 
open only to read or write, and no mixed operations are allowed. 
Turbo allows for mixed operations on either sequential or random 
files. Additionally, Turbo does away with the confusing and anti
quated Get and Put procedures and the use of the file pointer. Instead, 
Turbo extends Read and Write to include all files. Here is a rundown 
on the differences in the file handling procedures. 

Reset-Used in Macintosh Pascal to open a sequential file for 
read only. In Turbo it opens an existing file or rewinds an open 
file. 

Rewrite-Used in MacPascal to open a sequential file for write 
only. In Turbo it creates and opens an existing file or erases an 
open file. 



372 Turbo Pascal for the Mac 

Open-Used in Macintosh Pascal to open a random file. Does not 
exist in Turbo. 

Close-Same in both. 

Seek-In Macintosh Pascal, Seek can only be used with a file 
opened for random access and automatically performs a Get. In 
Turbo, Seek only positions the file. 

Get-Replaced by Read in Turbo. 

Put-Replaced by Write in Turbo. 

ADDITIONAL ROUTINES 

Turbo implements additional functions and procedures not avail
able in Macintosh Pascal (Table F-1). 

Table F-1. Functions and Procedures Not Available in Macintosh 
Pascal 

Exit Int ClearScreen Lo Halt 
ClearEOL MoveLeft Swap MemAvail DeleteLine 
MoveRight HiWord MaxAvail lnsertLine Fill Char 
Lo Word Ord4 GoToXY ScanEQ Swap Word 
Float Pointer Key Pressed ScanNE Read Char 
Hi 



APPENDIX G 
Turbo Pascal Syntax 

Diagrams 
ARGUMENT LIST 

--/' ' 
.... 

.. --
I\.. ....... --
' .. 

'-

ARRAY TYPE 

array 

expression 

variable 

function 
identifier 

procedure 
identifier 

' 

simple 
type 

373 

.... ..... 

' 
~ 

"I 

' "I 

./ 

type 



374 Turbo Pascal for the Mac 

ASSIGNMENT STATEMENT 

variable 

function 
identifier 

CASE STATEMENT 

case 

constant 

COMPOUND STATEMENT 

begin 

expression 

expression 

statement end 

statement end 



CONSTANT 

NIL 

CONSTANT DECLARATION 

constant 
identifier 

unsigned 
number 

---·•~I ;''"u""' ~ '""~'"' 

APPENDIX G 375 



376 Turbo Pascal for the Mac 

DECLARATIONS 

label 
statement 

label* 

const _____ ,, constant 
~....,.--.~ declaration 

type 

var 

function 
declaration 

procedure 
declaration 

type 
declarations 

variable 
declarations 

*statement label is one-to-four-digit unsigned integer 



EXPRESSION 

simple 
expression 

FACTOR 

function 
identifier 

unsigned 
constant* 

variable 

factor 

set 
expression 

argument 
list 

APPENDIX G 377 

simple 
expression 

*An unsigned constant is a constant without a leading sign. 



378 Turbo Pascal for the Mac 

FIELD LIST 

FILE TYPE 

FOR STATEMENT 

for 

file of 

identifier 
list· 

variable 
1dent1f1er 

identifier 

type 
identifier 

type 

expression 

expression 

type 

variant 
list 

to 

down to 

statement 



FUNCTION DECLARATION 

function identifier 

parameter 
list 

GOTO STATEMENT 

•( goto ) 

IDENTIFIER LIST 

( ·I identifier 

o--

, 

type 
identifier 

APPENDIX G 379 

compound 
statement 

statement ... label 

) • 



3~0 Turbo Pascal for the Mac 

IF STATEMENT 

expression 

IF THEN STATEMENT 

expression 

IF THEN ELSE STATEMENT 

expression 

PARAMETER LIST var 

function 

procedure 

then 

else 

then 

then 

else 

statement 

statement 

statement 

statement 

statement 

identifier 
list 

type 



POINTER TYPE 

PROCEDURE DECLARATION 

procedure 

PROCEDURE STATEMENT 

PROGRAM 

procedure 
identifier 

RECORD TYPE 

identifier 
parameter 

list 

APPENDIX G 381 

declarations compound 
statement 

forward 

argument 
list 

identifier 
list 

compound 
statement 

--....... •~( record )~--••HI ... __ f_:~_~_:_ ...... ---..,-C end 
)i.-----llJJ 



382 Turbo Pascal for the Mac 

REPEAT STATEMENT 

repeat until expression 

SCALAR TYPE 

SET EXPRESSION 

expression 

SET TYPE 



APPENDIX G 383 

SIMPLE EXPRESSION 

term 

term 

SIMPLE TYPE 

_.... type 

' .... identifier ' 
I\. _.. subrange 

.... type 

' .. scalar -- type 'j 

' .. pointer ' .. .... type .... 



384 Turbo Pascal for the Mac 

STATEMENT 

statement 
label assignment 

statement 

while 
statement 

for 
statement 

if 
statement 

procedure 
statement 

repeat 
statement 

goto 
statement 

case 
statement 

with 
statement 

STATEMENT LABEL one-to-four-digit unsigned integer 

SUBRANGE TYPE 

-----i••·M· I ""'""' ~ ""'""' 



TERM 

factor 

factor 

TYPE 

packed 

simple 
type 

array 
type 

record 
type 

set 
type 

file 
type 

APPENDIX G 385 

TYPE DECLARATION 

~~~~~--~1~id_e_n_t-if-ie_r.....,~-~~ty_p_e~ ..... ~~~~-lll-... 


386 Turbo Pascal for the Mac

UNSIGNED NUMBER

VARIABLE

unsigned
integer

variable
identifier

field
identifier

VARIABLE DECLARATION

unsigned
integer

unsigned
integer

I identifier o I ~~~----~~~~lis_t~--'t----'li.~ : ~~----~..._~ty_p_e~_:~~~49Jll•

VARIANT LIST

constant

WHILE STATEMENT

while

WITH STATEMENT

With

expression

variable do

field
list

APPENDIX G 387

statement

statement

APPENDIX H
Units

One of the power features of Turbo Pascal is the use of units. A unit
is a collection of constants, data types, functions, and procedures that
is compiled separately from a program it is used in. There are two
principal reasons why this is done. First, once a unit is written and
compiled, the programmer need not worry about working with this
code to include those functions into a program. Also, being compiled
separately allows for speed-up of compile times (not a big problem in
Turbo), since part of a program is already compiled and allows for the
same code to be used in several programs. The second reason for using
units is that they allow a very large program to be broken down into
more manageable pieces, much like breaking down a program into
procedures. Once it has been compiled, using a unit is similar to using
any of the Toolbox routines or data types.

A unit is like a program, with some significant differences. A unit
consists of two parts, the Interface and Implementation sections. Here
is a generic unit:

unit identifier (unit)
interface

uses (optional)
{Public declarations}

implementation
{Private declarations}
{Procedures and functions}

begin
{Initialization code}

end.

388

APPENDIX H 389

Three new reserved words are used with units, "unit," "interface,"
and "implementation." The unit starts with the reserved word "unit,"
followed by an identifier and a unit number, a positive number unique
from other units. The reserved word "interface" marks the start of the
unit. The interface section lists what will be seen by any program that
is using the unit. Basically, this consists of procedure and function
headings and declarations for variables and data types that can be
used by the program calling the unit. The implementation section con
tains any declarations local to the unit (unavailable to a calling pro
gram) and the body of the functions and procedures.

For example, let's look at a unit that contains three routines for
statistical work.

unit StatWorks (1);
Interface

type
ArrayType array[1 •• 100] of Integer;

function Average(A : ArrayType; var) : Integer;
function Max (Num1, Num2 Integer):Integer;
function Min (Num1, Num2 : Integer):Integer;

Implementation
procedure Average;
var

Ct, Sum : Integer;
begin

Ct : = 0 ;
Sum := 0;
repeat

Ct := Ct + 1;
Sum := A[CtJ + Sum

until A[CtJ <> -999; {Sentinal value}
Average := Sum/Ct

end; {of Average}
function Max (Num1, Num2 Integer):Integer;
begin
if Num1 > Num2 then

Max := Num1
else

Max := Num2
end;

function Min (Num1, Num2
begin

Integer):Integer;

390 Turbo Pascal for the Mac

if Num1 = Max(Num1, Num2) then
Min := Num2

else
Min := Num1

end;
end. {Of Unit StatWorksl

By compiling this unit to disk, it will be saved with a suitcaselike
icon. It can then be used in a program by including the unit name in a
Uses statement and by using a compiler directive (U} to identify
where the unit is, in this case ($U StatWorks}. Your program can
now use these three functions, Average, Min, and Max, and the data
type ArrayType freely as though they had been declared in the pro
gram.

App en di x I
The Macintosh Character s et

0

2

3

4

5

6

7

8

9

A

8

c

D

E

F

0 2 3 4 5 6 7 8 9 A 8 c D E

NUL OLE SP 0 @ p p A e t 00 l - ::1[: ::[:[
SDH DCI A Q a q A e 0 ± - :::::i::: :i:::::::
STX DC2 ,, 2 B R b ~ (!: < " ::[][It:::: ,
ETX DC3

3 c s E f > J " /If :::::::::I Enter c s
EDT DC4 $ 4 D T N § y f '

II:::::: ::irn: d
ENO NAK % 5 E u e u ti • µ = ' :::::::1:: :::it
ACK SYN & 6 F v f v 0 ii ~ a A ::1::1 Jt::::
BEL ETB 7 G w g w a 0 /3 ~ ((0 JI[If I
BS CAN 8 H x h x a 0 ® II)) y It::: ::::11:
HT EM 9 I y y a 0 © TT

l'J ::::::::::::::: LF SUB
* J z j z a 0 TM f :t:t:::

VT ESC + A
·:·:·:·:·:·:·

:t::i 11:::: K k a 0 a :::::::::::::
Clear :::::::::::::

FF FS < L \ a u A ::::::::::::: :~:l:l:l:~:l: :::i:r ~ . 0 ?rt~ :::::::::::::
CR GS M =I= n 0

::::::::::::: :::::::::::::
1::1:: CE m ~ u ::::::::::::: :::::::::::::

::::::::::::: :::::::::::::

so RS > N n e u /lf. ae CI ::::::1:: :::1::::: ::i::t [!]
SI us I ? 0 DEL e </J </> :t::i :it:: ~I~~~~t [U 0 u oe

Row and column headings are hexadecimal digits.
(Row1 6) +Column gives you the numeric code for the character.
The first 32 characters (DO-IF) and DEL (7F) are nonprinting control codes.
The shaded area is reserved for future use.

391

Bibliography

Aho, A., Hopcroft, J., and J. Ullman Data Structures and Algorithms. Reading,
Mass.: Addison-Wesley Publishing Co., 1983.

American National Standard Pascal Computer Programming Language.
ANSl/IEEE770X3.97-1983, IEEE/Wiley-Interscience, 1983.

Inside Macintosh. Apple Computer Inc., 1984.

Koffman, B. Pascal, a Problem Solving Approach. Reading Mass.: Addison-Wes
ley Publishing Co., 1982.

C~ernicoff, Macintosh Revealed. Vols. I and II. Hayden Book Company, 1986.

Cooper, D. Standard Pascal User Reference Manual. New York: W.W. Norton &
Co., 1983.

Gear, C. Programming in Pascal. Science Research Associates. Inc., 1983.

Goodman, P ., and A. Zeldin The MacPascal Book. New York: Brady Books, 1984.

Goodman, P. Advanced Macintosh Pascal. Hayden Book Company, 1986.

Hamacher, C., Zvonko, V., and Z. Safwat Computer Organization. New York:
McGraw-Hill Book Co., 1978.

Horowitz, E., and S, Sahni. Fundamentals of Data Structures. Computer Science
Press Inc., 1976.

Jensen, K., and N. Wirth. Pascal User Manual and Report. New York: Springer
Verlag, 1975.

392

393 Turbo Pascal for the Mac

Kane, G., Hawkins, D., and L. Leventhal. 68000 Assembly Language Program
ming. Berkley, Cal.: Osborne/ McGraw-Hill, 1981.

Kernighan, B., and P. Plauger. Software Tools in Pascal. Reading, Mass.: Addi
son-Wesley, Publishing Co., 1981.

Knaster, S. How to Write Macintosh Programming. Hayden Book Company,
1986.

Newman, W., and R. Sproull. Principles of Interactive Computer Graphics. 2nd
ed. New York: McGraw-Hill Book Co., 1979.

Tiberghien, J. The Pascal Handbook. Sybex Inc. , 1981.

Wirth, N. Algorithms + Data Structures = Programs. Englewood Cliffs, N.J.:
Prentice-Hall, 1976.

ABS function, 90-91
Active window, printing, 13
Actual parameters, 117
AddResMenu procedure, 304
AppendMenu procedure, 293
Application, 278
ArcTan function, 92
Argument, 80
Arithmetic expressions, 32-34
Arithmetic operations (or operators), 34-37

built-in, 90-92
Arrays, 129-48

of characters, 147-48
declaring, 130
, elements in, 130
files distinguised from, 211
For loops and, 131
of records, 163-66
two-dimensional, 133-43

ASCil codes
CHR function and, 82-83
ORD function and, 81-83

Assignment operator, 31
Assignment statement, 31-32

Bank interest, program to calculate, 64-65
Boolean data type, 55-58
Boolean expressions, 57-58
Boolean operators, 56
Bubble sort, 158-59
Bhgs, 8
Built-in functions, 80-94. See also specific

functions
ABS, 90-91
arithmetic, 90-92
CHR,82-83
console, 93-94
EOF (End of File), 220
FindWindow, 296
Float, 91
Hi, Lo, HiWord, and LoWord, 286
Int, 92
IOResult, 224-25

Index

394

logarithmic, 92
ODD, 91
ORD, 81-83
ORD4, 91
PRED, 83
Roundfunction,83-84
SQR, 90
SQRT, 90
for strings, 151-52
succ, 83
trigonometric, 92
Trunc, 83-84
as user-defined functions, 102

Button, 6~7, 69

Case statement, 98-99
Characters, 28
Char data type, 79-80, 147-48
Checking and Savings program, 227-49
Checkltem procedure, 309-10
CHRfunction,82-83
Circles, drawing, 103-5
ClearEOL procedure, 93
ClearMenuBar procedure, 300
ClearScreenprocedure, 93
Close procedure, 217
Colon expected error, 43-44
Comma expected error, 47-48
Comments, 21, 22
Compile menu, Turbo Pascal, 355-57
Compiler, 1, 2

error messages, 358
Compiling, 7-10

To Disk option, 9-10
speed of, 9

Compound statements, 52
Comp real type, 86-87
Concat function, 151-52
Conditional tests, 49-51
Console, 221
Console functions, 93-94
Constants, 37-38
Conversion functions, 83-84

Copy function, 152
Copying text, 12
Cos function, 92
CountMltems procedure, 311
Cursor, 5, 194

Dangling pointer, 266
Data types, 26-28, 370

arrays. See Arrays
Boolean, 55-58
Char, 79-80
Longlnt, 84-85
mixing, 35-36
ordinal, 80
real. See Reals (real numbers)
records. See Records
Rect, 70-71
sets, 170-74
user-defined, 96-98, 371

Date operations, 169-70
DateTimeRec record type, 169-70
DeleteLine procedure, 93
DeleteMenu procedure, 309
Delete procedure, 152-53
Deleting text, 11
Desk accessories

displaying the apple (p) menu that lists, 303-6
program that activates, 307-8

Desk Manager, 306
Device, 221
Disableltem procedure, 309
Disk, 277
Displaying text, 196-97
DisposeMenu procedure, 308-9
Dispose procedure, 258
Documentation, 21-22

program for, 363-69
Double clicking to select a word, 13
Double real type, 85-86
Downto loops, 63-64
DrawAll procedure, 329
DrawChar procedure, 197
Drawing programs. See also TurboDraw program

types of, 314
DrawMenuBar procedure, 295
DrawString procedure, 197
Duplicate identifier error, 47

Edges, in TurboDraw program, 315, 319-20,
323-25

Editing, 10-13
Edit menu, Turbo Pascal, 352
Editor, Turbo Pascal, 4-5
Elements

in arrays, 130
of records, 160

Ellipses, drawing, 103-5
Empty set, 171
Enableltem procedure, 309
End (of a program)

period expected error, 44
unexpected end of text error, 45

End of File function, 220

INDEX 395

Entering programs, 5-7
Enumerated data types, 96-97
Enumerated values, comparing, 100
EOF (End of File), 220
EraseOval command, 103
EraseRect command, 72-73
EraseRect procedure, 186
Error in expression error, 45
Error messages. See also Syntax errors compiler,

358
EventManager,274-77
Event masks, 281-84
Event queue, 279
Event records, 279-80
Events

273-290, 271
keyboard,284-89
mouse, 280-81
types of, 277-79

EXP function, 92
Expressions, 32-34
Extended real type, 85-86

Fields
in event records, 279-80
of records, 160
tag, 253

File menu, Turbo Pascal, 350
Filenames

logical and physical, 214, 216
in TurboDraw program, 332-34

Files,211-49,371-72
access to, 212-13, 216-17

random, 218-29
sequential, 217

arrays distinguished from, 211
in Checking and Savings program, 227-49
closing, 217
declaration of, 213-14
definition of, 211
detecting whether a file already exists, 224-25
examining contents of, 225-26
finding the end of, 219
names of, 214
opening,214-15
pathnames for, 226
programming techniques, 224-25
random, 212-13
sequential, 212
text, 220-24
using, 214

FileTitle, 214, 215
FillRect procedure, 187
Finder, 3
FindWindow function, 296, 298, 306
FlashMenuBar procedure, 311
Float function, 91

396 TuRBo PASCAL FOR THE MAC

Font menu, Turbo Pascal, 355
Fonts, 197-99
For loops, 58--65

arrays and, 131
downto, 63-64
nested, 61-63
in program to calculate bank interest, 64-65

Formal parameters, 117
Fragmentation, 265--66
FrameOval procedure, 103
PrameRect procedure, 71-72, 186
Functions. See also Built-in functions

user-defined, 101-2

GetClip procedure, 324
GetDateTime procedure, 169
GetltemMark procedure, 310
Getltem procedure, 306
GetltemStyle procedure, 310
GetMenuBar procedure, 300
GetMHandle procedure, 311
GetMouse,69-70, 74
GetNextEvent function, 280-81
Global variables, 114-17, 122-23
GotoXY procedure, 94
Graphics. See also QuickDraw; TurboDraw

program
coordinate system, Macintosh's, 14

Handles, 267-71
HideCursor procedure, 194
Hi function, 286
HiLite menu procedure, 300
HiWord function, 286

Icon, Turbo Pascal, 4, 4-7
Identifiers, 22

basic requirements for, 18
duplicate identifier error, 47
syntax diagram of, 20-21
unknown identifier error, 43

• valid and invalid, 20
If-then-else statement, 53
~-then statements, 49-55

' Case statement used to replace, 98-99
compound statements and, 52
conditional tests and, 49-51
nested, 53-55

Infinite series, summation of, 87-90
lnitMenus procedure, 292
Inserting text, 11
lnsertLineprocedure, 93
lnsertMenu procedure, 295
Insert procedure, 153
Inside Macintosh, 3
Integers, 26-27

Longlnt data type and, 84-85
Ii:it function, 92
~vertOval command, 105--6
1*vertRect procedure, 186-87

IOResult codes, 361-62
IOResult function, 224-25

Keyboard, 277
Keyboard events, 284-89
Keyboard modifiers, 289
KeyPressed function, 94

Length function, 151
Lines, 182-190

drawing, 111-14
LN function, 92
Local variables, 114-17, 122-23
Lo function, 286
Logarithmic functions, 92
Logical filename, 214
Longlnt data type, 84-85
Loops

For. See For loops
Repeat, 155-58
While, 66-68

LoWord function, 286

Macintosh
character set, 393
graphics coordinate system, 14
overview, 2-3

Macintosh Pascal, differences between Turbo
Pascal and execution speeds, 95-96, 370

MacWrite Style menu, 294
Masks, event, 281-84
Master Pointer, 267, 269
Maxlnt, 27
Members, 170
Memory

allocation of, 263-67
handles and, 267-71

Memory Manager, 263, 271
Menu bars, 291

swapping, 300-2
MenuCalculator program, 298-300
MenuHandle type, 292
Menulnfo type, 292
Menu list, 291-92
Menu Manager, 3, 291
Menus, pull-down, 291

creating, 292-300
displaying the apple (p) menu that lists, 303-6
swapping menu bars, 300-2

MenuSelect function, 296-98
Message field, 280
Metacharacters to control menu items, 293-94
Modifiers, keyboard, 289
Modifiers field, 280
Mortgage calculator program, 123-27
Mouse, 69

event masks and, 281-84
events generated by, 277, 280

Move procedure, 183
MoveTo procedure, 183

Moving text, 12

Nested For loops, 61-63
Nested H-then statements, 53-55
Nested records, 166-69
Network, 277
NewHandle function, 269-71
NewMenu function, 292
New procedure, 257
Nodes, in TurboDraw program, 315, 318-19,

323-25
Numbers

integers, 26-27
real, 27

ODD function, 91
OpenDeskAcc function, 306
Operand types.does not match operator error,

45-46
Operating system, 3
Operating System Event Manager, 277, 279
Operations (operators), 34-37. See also

Arithmetic operations
error in expression error, 45
operand types does not match operator error,

45-46
precedence of, 36-37

ORD4 function, 91
ORDfunction,81-83

user-defined data types and, 97
Ordinal types, 80
Oslntf, 271
Ovals, 189

drawing, 103-5

PaddleBall program, 203-10
PaintOvalcommand, 103
PaintRect command, 73
PaintRect procedure, 186
Parameters, in procedures, 112-14, 117-23

actual parameters, 117
comparing value and variable parameter

passing, 120-21
formal parameters, 117
mixing variable and value parameters, 121-22
value parameters, 117-18
variable parameters, 118-20
when to use variable parameters or value

parameters, 123
Parentheses: right parenthesis expected error,

44-45
Pascal. See Macintosh Pascal; Turbo Pascal
Pen, 190-93

changing size, 199-202
positioning, 182-84

PenMode procedure, 190-93
PenPat, 190
PenSize, 190
Period

missing at the end of a program, 45

period expected error, 44
Physical filename, 214
Pixels, 14
Point, 69-70
Pointers, 256-63

dangling,266
handles and, 267-71

Points, 181-82
Position.ff and Position.V, 69-70
Position function, 152
PrCloseDoc procedure, 329
PrClosePage procedure, 329
PrClose procedure, 327
PRED function, 83

enumerated types and, 97-98
PrintDefault procedure, 327
Printing

the active window, 13
a program, 13

PrintManager,325-30
PrJobDialog function, 328

INDEX 397

Procedures, 109-27. See also specific procedures
calling, 110
for drawing triangles, 111-14
in mortgage calculator program, 123-27
parameters in. See Parameters
scope of variables in, 114-17, 122-23
sequence of execution of statements and, 110
for strings, 152-53

Program(s), 41-42
to activate desk accessories, 307-8
to calculate bank interest, 64-65
case-changing, 173-74
Checking and Savings, 227-49
declaration of, 17-18
documentation of, 21-22, 363-69
editing, 10-13
entering, 5-7
infinite series, 87-90
Kepler's Delight, 105-6
MenuCalculator, 298-300
MenuDemo, 295-98
mortgage calculator, 123-27
PaddleBall, 203-10
printing, 13
ReverseText, 262-63
running, 7-10
simplest possible, 17-18
Sketchpad, 194-96

changing pen size in, 199-202
SwapMenus, 300-2
TicTacToe, 136-48
TurboDraw. See TurboDraw program
weather tracking, 163-66

PrOpenDoc procedure, 328-29
PrOpenPage procedure, 329
PrOpen procedure, 327
PrPicFile procedure, 329
Pseudocode,65
PtlnRect routine, 74

/

398 TuRBo PASCAL FOR THE MAC

Pull-down menus. See Menus, pull-down

QuickDraw, 3--4, 14, 68-76, 181-210
cursor in, 194
displaying text with, 196-99

' GetMouse and, 69-70
lines in, 111-14, 182-190
ovals in, 103-5
PaddleBall program, 203-10
pen characteristics in, 190-93
pen positioning in, 182-84
points in, 181-82
rectangles in, 70-76, 185-88

combining the mouse and, 74-76
recursion with, 177-80
SketchPad program for drawing on screen,

194-96
changing pen size, 199-202

Random file access, 218-19
Random files, 212-13
Readln statement, 23-24, 40-41

reading strings with, 150
text files and, 221-22

Read procedure, 216
Read statement, 40-41
Reals (real numbers), 27

COMP, 86-87
Double, 85-86
Extended, 85-86

Records, 159-69
arrays of, 163-66
declaration of, 159-60
elements or fields of, 160
event, 279-80
nested, 166-69
With statement and, 161-63
variant, 251-56

Rectangles, 70-76, 185-88
calculations with, 199
combining the Mouse and, 74-76
drawing, 186-88
round-cornered, 189-90

Rect data type, 70-71, 185
Recursion, 175-80

drawing of equilateral triangles with, 179-80
with QuickDraw, 177-80
subdivision of squares with, 178-79

Repeat loops, 155-58
Replacing text, 12
Reserved words, 18
Reset procedure, 215
ReverseText program, 262-63
Rewrite procedure (or statement), 214-16

text files and, 222-23
Right parenthesis expected error, 44-45
Roundfunction,83-84
Rounding errors, 84, 86
Running programs, 7-10
Run-time errors, 30-31

SANE (Standard Apple Numerical Interface), 86
Scientific notation, 27
Screen, Macintosh's, 14

program for drawing on, 194-96, 199-202
Search menu, Turbo Pascal, 353-55
Secs2Date procedure, 170
Seek procedure, 218-19
Semicolon, 17-18, 52

missing semicolon error, 24, 42-43
Sequential file access, 218
Sequential files, 212
SetClip procedure, 324
Set difference, 172
Set intersection, 172
SetltemMark procedure, 310
Setltem procedure, 309
SetltemStyle procedure, 310
Set operators, 171
SetRect procedure, 71-72, 186
Sets, 170-74

case-changing program using, 173-74
input verification and, 173

Set union, 171
SFGetFile procedure, 333
SFPutFile procedure, 332-33
ShowCursor procedure, 194
Signed integer, syntax diagram for, 19, 20
SketchPad program, 194-96

changing pen size in, 199-202
Sort, bubble, 158-59
SQR function, 90
SQRT function, 90
Squares, subdivision of, 178-79
Starting up, 4-7
Statements, 23
Stop rule, 176
Strings,28, 148-53,371

arraylike access to, 149-50
built-in functions and procedures for, 151-53
comparing, 150-51
declaration of, 149
reading, 150

Subprograms, 109. See also Procedures; User
defined functions

Subranges, 100-1
SUCC function, 83

·enumerated types and, 97-98
SwapMenus program, 300-2
Switch (toggle), 141
Syntax, 18-20
Syntax diagrams, 18-21
Syntax errors, 8, 42-4.8

colon expected, 43--44
comma expected, 47-48
duplicate identifier, 47
error in expression, 45
missing semicolon, 42-43
operand types does not match operator, 45-46
period expected, 44
right parenthesis expected, 44-45

type mismatch, 46
unexpected end of text, 45
unit missing, 46
unknown identifier, 43

SysBeep function, 74-75, 94-95
System Click procedure, 306
System errors, 30
SystemTask procedure, 306

Tag fields, 253
Text, displaying, 196-99
TextFace procedure, 198-99
Text files, 220-24
TextFontprocedure, 197-98
TextSize procedure, 198
TickCount function, 94-96
TicTacToe program, 136-48

GetMove procedure, 138-39
InitalizeArray procedure, 136-37
listing of complete program, 14~7
PrintBoardprocedure, 139
PrintPlayer function, 139
WinOrTie procedure, 139-41

Time operations, 169-70
To Disk option, in Compile menu, 9-10
Toggle (switch), 141
Toolbox. See User Interface Toolbox
Toolbox, Macintosh's, 3

date and time procedure, 169-70
Event Manager, 274-77, 279
managers in, 274-77
SysBeep function, 94-95
TickCount function, 94-96
variant records in, 255-56

Triangles
procedure for drawing, lU-14
recursion used to draw, 179-80

Trigonometric functions, 92
Trunc function, 83-84
Truth tables, 56-57
TurboDraw program, 31~8

complete listing for, 334-4 7
connecting the nodes with edges in, 323-25
data structure of, 318
designing, 321-22
edges in, 319-20
filenames in, 332-34
loading and saving the data structures in,

330-32
nodes in, 318-19
printing pictures with, 325-30
user interface of, 316-18

Turbo Pascal
character pair special symbols, 349
Compile menu, 355-57
differences between Macintosh Pascal and, 370
Edit menu, 352

File menu, 350
Font menu, 355
overview of, 1-15

editing a program, 10-13
entering a program, 5-7
Macintosh environment, 2-3
printing a program, 13
printing the active window, 13
running a program, 7-10
screen, Macintosh's, 14
starting up, 4-7

reserved words, 349
Search menu, 353-55

INDEX 399

single character special symbols, 349
syntax diagrams, 373-87

Two-dimensional arrays, 13~3
Type mismatch error, 46

Unit missing error, 46
Units, 388-90
Unsigned integer, syntax diagram for, 19
User-defined data types, 96-98, 371
User-defined functions, 101-2
User Interface Toolbox. See Toolbox

Validity of input, Repeat loop used to check,
156-58

Value parameters, 117-18
comparing variable parameters and, 120-21
mixing variable parameters and, 121-22

Variable parameters, 118-23
comparing value parameters and, 120-21
mixing value parameters and, 121-22

Variables, 28-33
arrays of. See Arrays
assignment statement and, 31-32
Boolean, 55-58, 66-67
dynamic, pointers and, 256-63
expressions and, 32-34
scope of, in procedures, 114-17, 122-23

Variant records, 251-56

What field, 279
When field, 280
Where field, 280
While loops, 66-68
Window, 278
Window Manager, 3
Windows, 4-7

active, printing, 13
With statement, 161-63
Writeln statement, 23-26

field width parameter, 38-40
text files and, 222-23

Write procedure, file access and, 216
Write statement, 23-26

field width parameter, 38-40

I
I

i
I
I

I

/

I

I

I
ABOUT THE AUTHORS

Alan Zeldin is a software engineer in the New York/New Jersey
metropolitan area. He holds a bachelor's degree in music, and a
master's degree in computer science, and has taught computer science
at Queens College of the City University of New York. His early claim
to fame was Spy's Demise, a video arcade game for Apple, Commodore,
and Atari computers. His current interests range from relation
databases to computer-aided software engineering.

Paul Goodman holds a bachelor's and master's degree in computer
science as well as a Juris Doctor. He is a partner in the New York City
law firm of Elias and Goodman, P.C., where he concentrates on com
puter-related legal matters. He has frequently taught Pascal program
ming and is on the computer science faculty of Queens College. He is
author of several other books and articles on both computer and legal
topics. Every October he can be found near the back of the pack in the
New York City Marathon.

HARNESS FULL MACINTOSH™ POWER!

Wide-ranging enough for both beginners and more experienced users,
TURBO PASCAL® FOR THE MAC® is a comprehensive tutorial that
takes you step b)f step through examples combining the program
ming power of Turbo Pascal® with the unique features of the Mac®.
Its clear instruction teaches:

• The procedures and functions of the MacintoshTM User Inter
face, Toolbox, Quickdraw, and sound and music

• Pascal programming from the simplest to the most complex con
cepts

• Data file programming
• Sophisticated Pascal features such as pointers, handles, and recur

sion

You'll learn to use Turbo Pascal® to write real MacintoshT~1 appli
tions that feature pull-down menus, event handling, file handling,
advanced graphics, and animation.

This useful desktop companion helps you harness both a powerful
compiler and a powerful computer to increase your programming ef
ficiency.

A Brady Book • Distributed by Prentice Hall Trade • New York

0

1111 ~Ill ~lll~~~llllll 11
6

Cover design by Julie Linden
Computer·generated image by Leslie Bakshi

ISBN 0-13-933011-9

