Paul Goodman & Alan Zeldin

LELRBO)
PASCAL

for tbeMA C®

A Quick Path to Programming Power

Turbo Pascal for the Mac’
A Quick Path to Programming Power

Paul Goodman
Alan Zeldin

A Brady Book
New York, New York 10023

Copyright © 1988 by Paul Goodman and Alan Zeldin.
All rights reserved including the right of repro-
duction in whole or in part in any form

= BRADY

Simon & Schuster, Inc.
Gulf + Western Building
One Gulf + Western Plaza
New York, New York 10023

DISTRIBUTED BY PRENTICE HALL TRADE
Manufactured in the United States of America

10987654321

Library of Congress Cataloging-in-Publication Data

Goodman, Paul, 1958-
Turbo Pascal for the MAC: a quick path to programming power
Paul Goodman, Alan Zeldin.
p. cm.
“A Brady book.”
Bibliography: p.
Includes index.
ISBN 0-13-933011-9
1. Macintosh (Computer)—Programming. 2. PASCAL (Computer program
language) 3. Turbo Pascal (Computer program) I. Zeldin, Alan, 1957—
II. Title.
QA76.8.M3G664 1987
005.265—dc19

CONTENTS

Preface ix
Introduction xi

1. Turbo Pascal for the Macintosh 1
Why Turbo Pascal? 1
Macintosh Overview 2
Why This Book? 4
Starting Up 4
Running a Program 7
Editing a Program 10
Printing a Program 13
Printing the Active Window 13
The Macintosh Screen 14
Chapter Summary 15

2. Turbo Pascal Fundamentals 17
Introduction 17
A First Program 17
Syntax 18
More on Identifiers 20
Comments 21
Documenting a Program 21
Write and Writeln 23
Trial and Error—Semicolons 24
Data Types 26
Variables 28
Trial and Error—Improper Data 30
Run-Time Errors 30

iii

iv

TURBO PASCAL FOR THE MAC

Assignment Statements 31

Expressions 32

Operations 34

Mixing Data Types 35

Operator Precedence 36

Constants 37

More on Write and Writeln 38

Read and Readln 40

Review of Program Structure 41

The Dirty Dozen—The Most Likely Syntax Errors 42

Pascal Structures 49

Introduction 49

Decision Making—If-Then 49

The Boolean Data Type 55

Loops—More Like an Airplane Than a Brick 58
Programming Example— Calculating Bank Interest 64
Quick to the Draw 68

Chapter Summary 77

Functions and More on Data Types 79
Introduction 79

The Char Type 79

The ORD and CHR Functions 80

The SUCC and PRED Functions 83

Other Built-in Functions 83

More on Reals and Integers 84

The Arithmetic Functions 90

The Trigonometric Functions 92

The Logarithmic Functions 92

Console Functions 93

Toolbox Functions 94

User-Defined Data Types 96

The Case Statement 98

Comparing Enumerated Values 100
Subranges 100

User-Defined Functions 101

Drawing Ovals 103

Programming Example—Kepler’s Delight 105

—

Chapter Summary 107

Procedures 109

Introduction 109

Sequence of Execution 110

Using Procedures 111

Programming Example—Mortgage Calculator 123

Arrays and Strings 129

Introduction 129

Arrays 129

Programming Example—The TicTacToe Program 143
Strings 148

The String Functions and Procedures 151

. More on Structures 155

Introduction 155

The Repeat Loop 155

The Bubble Sort 158

Records 159

Time and Date Operations 169
Sets 170

Recursion 175

A Formal Look at Graphics 181
Introduction 181

Points 181

Drawing Lines 182

The Pen 190

The Cursor 194

Building a SketchPad 194

Displaying Text 196

Calculations with Rectangles 199
SketchPad Revisited 199

Fun Time with QuickDraw—The PaddleBall Program 203
Chapter Summary 210

CONTENTS V

vi TURBO PASCAL FOR THE MAC

9. Files 211 ~

Introduction 211

Files 211

Text Files 220

File Programming Techniques 224

A File Processing Application—The Checking and Savings
Program 227

Chapter Summary 249

10. Variant Records, Pointers, and Handles 251
Introduction 251
Variant Records 251
Pointers 256
The Memory Manager 263
Why Bother, Who Cares? 272

11. Events and Event Handling 273
Introduction 273
Events 274
The Toolbox Managers 274
Event Types 277
Pull-Down Menus 291
Swapping Menu Bars 300
Displaying the Apple Menu 303
The SystemTask Procedure 306
Miscellaneous Menu Routines 308

12. A Complete Macintosh Application—The TurboDraw
Program 313
Introduction 313
Drawing Programs 314
TurboDraw 314
Connecting the Nodes with Edges 323
Printing Pictures 325
Loading and Saving the Data Structures 330
FileNames 332

CONTENTS Vii

Appendix A. Turbo Pascal Reserved Words 349

Appendix B. Turbo Pascal Menu Summary 350

Appendix C. Compiler Error Messages 358

Appendix D. IOResult Codes 361

Appendix E. Documenting a Program 363

Appendix F. Differences Between Turbo Pascal and
Macintosh Pascal 370

Appendix G. Turbo Pascal Syntax Diagrams 373

Appendix H. Units 388

Appendix I. Macintosh Character Set 391

Bibliography 392

Index 394

Other Brady Books by Paul Goodman and Alan Zeldin
The MacPascal Book, 1985

Other Brady Books by Paul Goodman
The Commodore 64 Guide to Data Files and Advanced Basic, 1984

TRADEMARK LIST

Macintosh is a trademark licensed to Apple Computer Inc.
Mac is a trademark of Apple Computer Inc.

LaserWriter is a trademark of Apple Computer Inc.
ImageWriter is a trademark of Apple Computer Inc.
Turbo Pascal is a trademark of Borland International
Macintosh Pascal is a trademark of Apple Computer Inc.

IBM PC is a trademark of International Business Machines Corpo-
ration

MacWrite is a trademark of Apple Computer Inc.
MacPaint is a trademark of Apple Computer Inc.
MacDraw is a trademark of Apple Computer Inc.

Limits of Liability and Disclaimer of Warranty

The authors and publisher of this book have used their best efforts
in preparing this book and the programs contained in it. These efforts
include development, research, and testing of the theories and pro-
grams to determine their effectiveness. The authors and publisher
make no warranty of any kind, expressed or implied, with regard to
these programs or the documentation contained in this book. The au-
thors and publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of, the fur-
nishing, performance, or use of these programs.

PREFACE

On a cold day in the winter of 1642, in the northwest corner of France,
a young man put the finishing touches on a strange device built from
gears, pegs, and dials.

On a snowy day in 1971, in Zurich, Switzerland, a university profes-
sor put the finishing touches on a paper for publication.

On a sunny day in 1976, in a garage in northern California, two
young men wearing jeans put the finishing touches on a computer no
one could have predicted would cause a revolution.

History has ways of connecting events that take place hundreds of
years and thousands of miles apart. None of these men could have
realized the importance of their work in the future, nor completely
understood their connection to the past.

On a hot day in 1986, in Lexington, Utah, a team of computer scien-
tists at Borland International linked the works of Blaise Pascal, the
seventeenth-century mathematician, natural philosopher, and inven-
tor of the first adding machine, to Nikolas Wirth, designer of the Pas-
cal computer language, and to Steven Jobs and Steven Wozniak,
founders of Apple Computer, and completed an extraordinary com-
puter language, Turbo Pascal for the Macintosh.

That is the legacy of this book. Turbo Pascal for the Mac is intended
for both the novice who wants to learn how to program and the expe-
rienced Pascal programmer who wants to use Turbo Pascal. A high-
light of the book is its discussion of how to use QuickDraw graphics to
produce animation and interesting graphics effects. Graphics are inte-
grated into each chapter to demonstrate the topic and to provide some
entertainment. A separate graphics chapter includes a video game
program and ideas for others.

As a full implementation of Pascal, Turbo Pascal allows a program-
mer to express problems in a natural form that is similar to how people

X TuURBO PASCAL FOR THE MAC

think. As Macintosh software, Turbo Pascal takes full advantage of the
unique features of the Macintosh, making it easy to learn, to use, and
to debug the occasional programming mistakes that inevitably occur.
This book contains all that you will need to become a proficient Pascal
programmer.

INTRODUCTION

Start your engines. The Macintosh, with its plethora of sophsiticated
concepts and its rich repertoire of routines built into ROM, presents a
truly exhilarating programming environment to use and explore. Un-
fortunately, the would-be explorer has had trouble finding a suitable
programming language to work with. Certainly most programmers
have outgrown BASIC, and the C language implementations for the
Macintosh have been complex, tedious to use, and expensive. Many
feel that the ultimate Macintosh programming language now exists for
the Macintosh: Turbo Pascal from Borland International. Turbo Pascal
for the Mac was written to help those who wish to learn how to harness
the full power of the Macintosh with Turbo Pascal. The reader of this
book may have no programming experience and limited exposure to
the Macintosh, or the reader may already have some mastery of the
Pascal language and want to learn how to use the Mac’s more ad-
vanced features. The approach of this book is broad enough for both.
The book’s goals can be summarized as follows:

e To teach Pascal programming from the simplest concepts to the
most complex;

e To introduce the reader to the Macintosh User Interface Tool-
box and QuickDraw and explain the procedures and functions
they contain;

e To teach data file programming;

e To teach sophisticated Pascal programming topics such as
pointers, handles, and recursion;

xii TurBO PASCAL FOR THE MAC

¢ To show the reader how to develop “real” Macintosh applica-
tions with Turbo Pascal that implements pull-down menus,
event handling, file handling, and sophisticated graphics.

Turbo Pascal represents a significant advance in programming lan-
guage systems. As a programming language, Turbo Pascal is a full
implementation of the ANSI Pascal standard. Add to this full IEEE
numeric standards for accuracy, and you have a Pascal system suitable
for either scientific or business applications.

As a programming environment, Turbo Pascal combines a powerful
and fast compiler with easy generation of double-clickable applica-
tions and desk accessories.

As a way to explore the Macintosh, Turbo Pascal provides a safe,
easy environment to work with. Full access is provided to the Macin-
tosh’s User Interface Toolbox and QuickDraw graphics package, al-
lowing programs that conform to the standards of the Macintosh User
Interface. Turbo Pascal provides a programming safety net by softly
landing a programmer back into the editor when serious programming
€rrors occur.

Turbo Pascal for the Mac is written to fill the needs of new and expe-
rienced programmers by introducing the reader to all these areas of
Turbo Pascal. No knowledge of Pascal or previous exposure to the
Macintosh is assumed . Chapter by chapter, the reader will advance in
Pascal programming skills and knowledge and will learn all concepts
hand in hand with how to take advantage of the unique features of the
Macintosh. It is expected that after reading this book, the new pro-
grammer will be able to design and develop true Macintosh applica-
tions.

Chapter 1 introduces the reader to Turbo Pascal and the Macintosh
as a programming environment including QuickDraw and the User
Interface Toolbox. The reader learns to enter, compile, and run a sim-
ple Turbo Pascal program that utilizes QuickDraw graphics.

Chapter 2 presents the fundamentals of Turbo Pascal, covering data
types, input and output, variables, assignment statements, and expres-
sions. In this chapter the fundamentals of programming errors are dis-
cussed, and Turbo Pascal’s “dirty dozen,” the twelve most common
syntax errors, are included.

Chapter 3, entitled “Pascal Structures,” presents the basic building
blocks of a Pascal program. Covered is decision making with the If-
then-else statement and looping with the For loop and the While loop.

INTRODUCTION Xiii

This chapter takes the first serious look at the QuickDraw graphics
package, covering the use of the mouse and the rectangle data type.
Example programs show animation and the use of the mouse in inter-
active graphics programs.

Chapter 4 will introduce the reader to functions, both those built
into Turbo Pascal and those defined by the programmer. Simple Tool-
box routines are introduced along with programming examples. The
chapter also expands the concept of data types, covering the extended
real and integer types that are part of the Standard Apple Numerical
Environment and the enumerated data types.

Chapter 5 is devoted to procedures, the mechanism for dividing
large programs into smaller, more manageable sections. The use of
procedures will allow for the development of more sophisticated pro-
grams throughout the remainder of the book.

In Chapter 6 attention is focused on two of Pascal’s more sophisti-
cated data structures, arrays and strings. They provide the program-
mer with the tools necessary to handle and process large amounts of
text and numerical data. Other related topics in this chapter include
sorting and checking input validity.

Chapter 7 continues the book’s examination of more sophisticated
programming and data structures with coverage of the Repeat loop,
records, and sets. These structures are explained in relation to how
they can be used in developing programs. This Chapter also takes a
unique look at recursion, a programming technique where procedures
and functions invoke themselves. Recursion is one of the most power-
ful programming techniques available in Pascal, but unfortunately it
is also one of the most confusing to learn. Unique examples are pre-
sented that use QuickDraw routines to graphically indicate the opera-
tion of recursive procedures. These examples help make this difficult
concept easy to understand and enjoyable to learn.

Chapter 8 presents a formal look at QuickDraw graphics. Many of
the graphics concepts explained earlier in the book are reviewed and
reinforced with a deeper level of understanding. Two graphics applica-
tions, a free-hand sketching program and a video game, are developed
as examples of QuickDraw programming.

Chapter 9 covers files and file programming techniques. Files are
the key to writing useful programs, yet information on their use and
operation is scarce. This chapter teaches the techniques needed to
store and retrieve data from both sequential and random files on the
Macintosh. Besides data files, the important text files are covered with

Xiv TURBO PASCAL FOR THE MAC

special emphasis placed on the use of devices such as the printer and
modem. A major file application is developed and presented in its
entirety. :

Chapter 10 completes the book’s discussion of Pascal language struc-
tures by presenting three topics used extensively in Toolbox program-
ming and throughout the remainder of the book. Variant records are
an extension on the concepts of records. Pointers and handles, along
with dynamic memory allocation, are the way flexibility can be added
to programs. They allow memory space to be created and destroyed
during program execution as needed, a feature necessary to do com-
plex things such as windows. Macintosh memory management tech-
niques and the Mac’s Memory Manager is explained in relation to
these concepts.

Chapter 11 moves from Pascal programming into Macintosh pro-
gramming and covers events and event programming, the key to devel-
oping true Macintosh applications. Events allow a program to respond
directly to user action such as keyboard and mouse input. The Toolbox
routines that manage the event queue and report on events to pro-
grams are presented along with helpful programming examples. The
chapter continues by covering the Toolbox’s Menu Manager, and pro-
gramming examples which utilize pull-down menus are presented, de-
veloped, and explained. Supporting desk accessories from a program
is also explained in detail.

Finally, Chapter 12 presents a complete Macintosh application com-
bining the Toolbox, QuickDraw, events, and file handling. The pro-
gram called TurboDraw is an object-oriented programming graphics
program suitable for use in flow charting and graphing. The reader is
taken through the entire process of planning and programming a Mac-
intosh application. Emphasis is placed upon selecting the proper data
structure for an application and the use of the Toolbox and QuickDraw
to follow the Mac’s User Interface guidelines.

Pedagogically speaking, Turbo Pascal for the Mac is the type of book
that teaches with the aid of small programming examples that demon-
strate the concepts without confusion. These are later combined into
larger examples. Normally, routines are introduced, explained, and
then used in a program. Much care has been taken to make sure that
the little questions do not go unanswered. An example of this might be
when the fact that a value is passed as a variable parameter could be
overlooked. The authors firmly believe that it is better to take the

INTRODUCTION XV

time to point out these possible oversights than to let the reader de-
velop a program with hard-to-detect bugs.

SPECIAL FEATURES OF THE BOOK

Complete Pascal Coverage. The book includes the topics neglected by
many Pascal texts; sets, variant records, pointers, and SANE (the Ap-
ple Standard Numeric Environment) are all covered.

Emphasis on Program Development. Starting with the first chapter,
program development is stressed by encouraging top-down program-
ming design and by pseudocoding many of programs.

Total Coverage of Files. The use of files occupies a complete chapter
rather than the five or six pages usually devoted to this important
topic. The reader is presented with the information and programming
techniques necessary to develop programming systems to solve sub-
stantial data storage applications.

In-Depth Look at Graphics. A majority of the QuickDraw routines are
presented. A difficult topic to grasp, QuickDraw concepts are intro-
duced in the first chapter and built upon from chapter to chapter. A
separate chapter is devoted to a formal description of QuickDraw and
includes two interactive graphics programs, SketchPad, a free-hand
drawing program and PaddleBall, a challenging video game.

Event Handling. Events are the key concept in all true Macintosh
applications. The book presents events and event handling and
presents the programming structures needed to develop Macintosh ap-
plications.

The Toolbox. Along with events, this book presents the Macintosh
User Interface Toolbox and those routines that deal with the mouse,
events, pull-down menus, printing graphics, and the clock.

Double-Clickable Applications. Very few Macintosh programming lan-
guages can produce double-clickable applications. Turbo does it eas-
ily, and it is fully covered by this book.

Complete Programming Systems Presented. The book progresses from
simple programs to complete, true Macintosh applications utilizing
event handling, pull-down menus, and files. The book’s final chapter
develops from scratch a sophisticated, object-oriented drawing pro-
gram

Xvi TurBo PASCAL FOR THE MAC

Appendices. Turbo Pascal for the Mac contains appendices that com-
plement the book with easy-to-reference information on menu com-
mands, documenting a program, differences with Macintosh Pascal,
syntax diagrams, QuickDraw procedures, SANE procedures, error
messages, bibliography, and the Macintosh character set.

It is expected that after reading Turbo Pascal for the Mac, the reader
will be able to race through the challenges of programming the Macin-
tosh and take the checkered flag. Always buckle your seat belt!

1

Turbo Pascal for the
Macintosh

WHY TURBO PASCAL?

Turbo Pascal for the Macintosh is one of the most unique program-
ming environments developed to date. It combines the programming
elegance of Pascal, the power of the Macintosh, and the speed of a
finely tuned race car along with the Macintosh’s familiar User Inter-
face and text editing. This combination provides a Pascal system that
is easy to use but also has remarkable power and flexibility.

Turbo Pascal presents the programmer with a unified environment
to work with. Its own Macintosh-style editor allows up to eight pro-
grams to be developed, compiled (translated to machine language,)
and executed side by side. If an error occurs, Turbo is right there,
returning you to the editor and directing you to the source of the error.
Turbo even handles with elegance those nasty System Errors by al-
lowing you to restart the program without having to turn off the com-
puter and without any loss of data. This ability to edit, compile,
execute, and debug in one context saves considerable time over other
languages where a programmer must work in several different con-
texts in a short period of time. With other development systems, the
program is written with a text editor or word processor and saved as an
ASCII file. This file is passed to a Pascal compiler, which checks it for
syntax and if no mistakes exist translates it into machine language.
After compilation the machine language program is not yet ready for
execution and is saved in a second file passed to a program known as a

2 Turso PASCAL FOR THE Mac

link/loader, which takes the machine language program and prepares
it for execution by linking it together with subroutines and run-time
libraries. The output of the loader is placed either directly in memory
or into a file for later execution. Turbo avoids all this without sacrific-
ing the power of a compiler. In fact, Turbo Pascal for the Macintosh
may be the fastest compiler ever developed, parsing over 12,000 lines
a minute.

For the novice programmer, Turbo provides a supportive environ-
ment excellent for learning. Turbo allows programs to be written for-
getting about the Macintosh environment by providing its own window
for all output. The major advantage is that much of the overhead in-
volved in writing programs for the Macintosh is eliminated. This is
significant because even the seemingly simple task of creating a new
window and displaying it is complex enough to befuddle a sophisti-
cated programmer, requiring extensive knowledge of the Macintosh’s
Window Manager, QuickDraw, and Event Manager.

For the experienced programmer, Turbo allows the development of
double-clickable applications and provides complete access to all of
the Macintosh’s User Interface Toolbox. The compiler even supports
development of specialized Macintosh programs such as desk accesso-
ries and device drivers.

MACINTOSH OVERVIEW

The designers of the Macintosh wished to provide programmers with
more than just a box containing basic computer components, as is done
by most other computer manufacturers. They wanted to include in a
computer all that would be needed for programmers to write programs
based on a group of elemental building blocks. Their goal was to estab-
lish a consistent look and feel for all programs that would run on this
computer. For instance, the way a user saves a file would be exactly
the same in all application programs. This decreases the time needed
to learn a program and makes it easier to remember how to use a
program. This was accomplished on the Macintosh by including in
read-only memory (ROM) a large set of program routines that can be
freely used by the programmer. These routines, most of which were
originally written for the Macintosh’s revolutionary predecessor the

TURBO PASCAL FOR THE MACINTOSH 3

Lisa, can be broken down into two parts, the operating system and the
User Interface Toolbox.

The operating system lies on the lowest level of the ROM software.
It performs basic tasks such as the handling of files and memory. Un-
like other computers, the user of the Macintosh has very little interac-
tion with the operating system, dealing with it through a program
called the Finder, which provides an easy-to-use graphical interface to
perform actions such as copying a file or changing a filename. A pro-
gram written with Turbo Pascal will also have very little contact with
the operating system relying on Pascal to indirectly use it to do things
such as open and close files.

The next level up is the User Interface Toolbox, the set of routines
that provides a way of constructing programs that conform to the stan-
dards established by Apple Computer. These standards are undoubt-
edly familiar to you already and include the use of pull-down menus,
windows, text editing, controls, and dialog boxes. The Toolbox is di-
vided into a set of managers, each one performing one of the standard
functions. There is a Window Manager, a Menu Manager, and so on.
The complete documentation for the Toolbox is found in a publication
written by Apple Computer known as Inside Macintosh. This book has
existed in a number of incarnations since the introduction of the com-
puter, including a three-binder edition, a phonebooklike edition, and a
version from a major book publisher. While invaluable to the Macin-
tosh programmer, Inside Macintosh is not the last word in clarity or
simplicity. It has been accurately described as 25 chapters, each one
assuming that you have already read the other 24. For more informa-
tion on obtaining a copy of Inside Macintosh, contact Apple Computer
or your local bookstore.

An important part of the Toolbox is the QuickDraw graphics pack-
age. QuickDraw is responsible for the drawing of all graphics on the
screen, including text. Built into QuickDraw is the ability to draw a
variety of graphical shapes and objects, to manipulate these objects,
and to draw text in a variety of shapes, sizes, and typefaces. Quick-
Draw itself is called upon by many of the Toolbox routines to do graph-
ical operations. Writing a program using QuickDraw is covered
intensively throughout this book.

Turbo Pascal provides direct access to all of QuickDraw and the
Toolbox. By direct access, it is meant these routines can be used in a
program as though they were a part of standard Pascal. By the time

o

4 TurBo PASCAL FOR THE MAC

the reader completes this book he will be fully familiar with the use of
both QuickDraw and the Toolbox.

WHY THIS BOOK?

This book is intended for all programmers from the complete novice
to those who are experienced programmers and want to know more.
The overall theme of this book is to integrate the concepts of Turbo
Pascal programming with the aspects of the Macintosh environment.
For example, most Pascal concepts are backed up by examples that
rely upon special features of the Macintosh not found on the IBM PC
such as QuickDraw graphics or other Toolbox features.

Turbo Pascal for the Macintosh teaches Pascal programming in the
Macintosh context from start to finish, meaning that by the last chap-
ter you will be developing programs that meet the standards of the
Macintosh User Interface. No knowledge of computer programming,
Pascal or otherwise, is required or assumed. The book provides in-
depth coverage of all Pascal concepts but merges this with the special
and intriguing features of the Mac. In fact, within the next few pages
you will be writing and running your first Pascal program using Quick-
Draw graphics.

STARTING UP

The best way to learn Turbo Pascal programming is to jump right in
by entering and running a program. Let’s start by a quick summary of
how to start up the Turbo Pascal environment. The concepts involved
are simple, and you will quickly learn how to handle Turbo Pascal like
an expert. This chapter will serve as a handy reference later on.

Turn on your computer, then insert your Turbo Pascal program disk
into the disk drive slot and start up the Turbo icon. The window that
appears is where you will enter the Turbo Pascal program. It will be
titled Untitled. Up to eight of these programming windows may be
open at once, each containing a different program. The Turbo editor
has features to help you easily manage the eight windows simultane-
ously.

TURBO PASCAL FOR THE MACINTOSH 5

[J=—— Turbo Pascal =———"T|

3 items 377K in disk 14K available
% %
What You got ... Turbo susten P aden

]

o]

program FirstTime;

Figure 1-1. The Turbo Icon

If you are at all familiar with text editing on the Mac, you will have
no problem entering and editing a Turbo program because it follows
the standard text editing conventions. However, if you are not that
familiar with the Mac, have no fear and read on. Locate the pointer on
the screen. When you move it into the window, it changes shape. Place
the pointer in the upper left-hand corner of the window and click the
mouse button. A blinking vertical line called the cursor will appear at
that spot. The cursor indicates the current insertion point for new text
being typed. Anything typed will be inserted starting at that spot in
the window. Any text to the right of that spot will be moved over. Now
that the cursor is waiting for text to be entered, let’s enter a program.
Type the following exactly:

uses

MerTypes, QuickDraw;
var

Oval :rect;

I

:Integer;

begin
for I:1 to 10 do

begin
SetRect(Oval, 10,20, 5.I, 5:I);
FrameOval(Oval)

end

end.

6 TurBo PASCAL FOR THE MAC

% File Edit Search Format Font Compile Transfer

Figure 1-2. An Editing Window.

If you make a mistake as you type, the Backspace key will erase one
character to the left. When you are done the window shown in Figure
1-3 should appear.

TURBO PASCAL FOR THE MACINTOSH 7

&% File Edit Search Format Font Compile Transfer

[l&==———— Untitled

program FirstTime;
uses

MemTypes, QuickDraw;
var

Oual : Rect;

I ¢ ‘Integer;

begin
for | :=1 to 10 do
begin
SetRect (Oval, 10, 10, 5%, 5*|);

FrameOual (Oual)
end
end

Figure 1-3. Program in the Window.
RUNNING A PROGRAM

Once you are satisfied that you typed the program correctly, we are
ready to run it. There are several ways to run a program from Turbo.
The first and fastest is to compile the program to memory. Compiling
causes the Turbo to translate your program from Pascal into machine
language. The To Memory option will cause the machine language pro-
gram to be stored in a section of memory from where it can be exe-
cuted. While the program is compiling, the checked flag will wave on
the screen. If you mistyped any of this program, an alert box such as
this will appear:

8 TuRrBo PAscAL FOR THE MAC

% Error 1:';' expected.

Figure 1-4. A Bug Box

In computer lingo, one would say that the program has a “bug.” The
bug box indicates that a syntax error exists in the program. Hitting the
Enter key or the mouse button will clear it, but the real task is to
locate the source of the error and correct. Errors detected by the com-
piler are known as “syntax errors” since they are triggered by im-
proper program syntax. Syntax is the set of rules that define the
proper construction of a language (more on this later). In a short pro-
gram such as this, a syntax error is easy to find. Turbo helps out by
attempting to point out the line that caused the trouble. We will not
try here to explain how to correct all syntax errors. Much of the rest of
the book is devoted to writing Pascal programs correctly. If you have
an error, correct that line to make it conform to the program above
and recompile. In the next chapter you will find a section label “The
Dirty Dozen,” which discusses the twelve most common syntax errors
and has suggestions for solving them.

Once any error is corrected, recompile the program. After a success-
ful compile you will notice that once the flag stops waving nothing else
happens. This is because we have told Turbo to compile the program
but haven’t yet given the command to run it. The compiled code will
sit in memory but will be erased when the program is edited.

We are now ready to run the program. Choose “Run” from the Com-
pile menu. The program window will quickly disappear, and a new
window will be opened where the output of the program will be dis-
played as is shown below.

This window is automatically provided by Turbo for both text and
graphics output of a program. Once the program has completed, Turbo
will quickly replace the program window. There is a technique for
“freezing” the program’s display on the screen, and we will soon see
what that is. What is important is that you entered the program cor-
rectly and that the program worked as expected. If the program did
not work as expected, check the program carefully and make sure that
it is exactly the same as the example.

TURBO PASCAL FOR THE MACINTOSH 9

Drawing

Figure 1-5. Tangential Circles

The compiling and running of the program could have been per-
formed in just one step by just choosing the Run option. If no compiled
code is in memory, Turbo will compile the program in the active win-
dow to memory and then run it. All this is done at blinding speed.
Borland International, the manufacturer of Turbo Pascal, claims that
Turbo for the Mac can compile 12,000 lines per minute, and there
seems to be no reason to dispute this claim. If you have ever worked
with other programming language systems, you will quickly learn to
appreciate this type of speed. If this is your first programming lan-
guage experience, consider yourself lucky. You have avoided having
to go out for coffee as the program compiles.

As mentioned, there is another way of compiling a program. The To
Disk option in the Compile menu will save the compiled program to a
file on the disk. The compiled program will appear with a generic icon
with the name given the program in the first line of the program such
as this:

10 TurBo PASCAL FOR THE MAC

F bl

® File Edit Diew Special

Turbo Pascal
RAMdisk

385K in disk 67K available

| ===z]
System Fi2=1 Finder

HE o F

Figd f2-10
FullPaint Figl-4 Clipboard File Fig1-5

<&

Resume

Figure. 1-6. Program Compiled to Disk

This program is ready to be executed by double clicking on the icon.
A window will come up, display the circles, and then disappear as the
Finder comes back. No interaction with Turbo will occur; the program
is now a true double-clickable application. This represents the sim-
plest way to create a double-clickable application in the entire Macin-
tosh universe. With other programming languages a programmer must
be extremely knowledgeable about Toolbox to create such a stand-
alone application, but Turbo sets it up automatically.

EDITING A PROGRAM

If a mistake is made while entering a program, or a change in the pro-
gram needs to be made, the following editing techniques are available.

TURBO PAsCAL FOR THE Macintose 11

To Insert Text

1. Move the pointer to the desired spot in the program and click
the mouse button to place the insertion point.

2. Enter the text.

To Delete Text

There are two different techniques for deleting text. For a small
amount of text:

1. Move the pointer to the right of the characters you want to
delete and click the mouse button to place the insertion point.

2. Use the Backspace key to delete the characters.
For a large amount of text:

1. Select the text to be deleted by placing the pointer at the start
of the text to be deleted and holding down the mouse button.

ITEXT BEING SELECTED

Figure 1-7. Selecting Text

2. Now drag the pointer across the text. Notice that, while drag-
ging, the area selected is displayed inverted (white characters
on a black background). At the end of the portion to be de-
leted, release the button. The text to be deleted should now be
in reverse video.

3. Delete the selected area by pressing the Backspace key.

TEST BEIMG SELECTED I

Figure 1-8. Highlighting Text

12 TurBo PASCAL FOR THE MAC

To Replace Text

1. Select the text to be replaced by using the dragging technique
described above.

2. Start typing the new text. The old text is replaced automati-

cally.

To Move Text

1. Select the text to be moved.
2. Choose “Cut” from the Edit menu.

3. Place the insertion point where you want the text to go and
click.

4. Choose “Paste” from the Edit menu.

To Copy Text

1. Select the text to be copied.
2. Choose “Copy” from the Edit menu.

3. Place the insertion point where you want the text to go and
click.

4. Choose “Paste” from the Edit menu.

TuRBO PASCAL FOR THE Macintosa 13

Shortcut

Double clicking the mouse button on a word automatically selects
the word.

These editing procedures are exactly the same as those used in Mac-
Write and in many other places in the Macintosh such as the Notepad.

PRINTING A PROGRAM

A copy of your Turbo Pascal program (the text itself, not the output)
can be printed on the printer connected to your Macintosh. Select
“Print” from the File menu. A dialog box will then appear on the

screen.
Imagelriter 2.5
Quality: O Best @® Faster O Draft

Page Range: @ Al O From: | I To: | | (cancel]
Copies:

Paper Feed: @ Automatic (O Hand Feed

Figure 1-9. The ImageWriter Dialog Box

What you see may vary slightly depending upon the version of the
print driver you are using and whether you have an ImageWriter or
are lucky enough to have a LaserWriter. The boxes for the number of
copies and the range of pages to print can be filled in by placing the
cursor in the box and clicking. The Tab key will move the cursor from
box to box without the use of the mouse.

PRINTING THE ACTIVE WINDOW

The active window is the frontmost window on the screen. The con-
tents of the active window can be printed by simultaneously holding
down the Shift, Command, and four keys simultaneously. You can
make any window the active window by clicking the pointer anywhere
inside of it.

14 TurBo PASCAL FOR THE MAC

THE MACINTOSH SCREEN

Turbo Pascal is capable of displaying high-quality graphics and ani-
mation. Before we can write graphics programs we must first take a
look at the Macintosh’s graphics coordinate system. The Macintosh’s
screen can be thought of as a grid of 512 vertical lines by 342 horizon-
tal lines not much different from graph paper. The vertical lines (X
coordinates) are numbered from 0 to 511, and the horizontal lines (Y
coordinates) are numbered 0 to 341. The location where a horizontal
line and a vertical line intersect is called a point and noted as (X, Y).
The upper left corner of the screen, the origin, is where vertical line 0
and horizontal line 0 intersect, point (0,0). The lower right-hand corner
of the screen is where vertical line 511 intersects horizontal line 341,
point (511, 341). Below and to the right of each point on the screen is a
dot that can be displayed on the screen as either white or black. These
dots are called picture elements, or pixels for short. For each of the
175,104 (342 by 512) points on the screen there is a corresponding
pixel.

The coordinate system actually extends beyond what is visible on
the screen. For instance, the coordinate (-10, -10) is above and to the
left of the origin. These points exist to help in calculating complex
geographic constructs that may extend beyond the visible portion of
the screen.

The Macintosh’s ROM contains a very complete and powerful graph-
ics package called QuickDraw. Turbo Pascal allows access to Quick-
Draw by simply using QuickDraw commands in a program as if they
were Pascal statements. The program that you typed and ran used two
different QuickDraw commands to define the size of an oval and then
to draw it in the window:

SetRect(Oval,10,10, 5.I, 5.I);
FrameOval(Oval)

The first of the commands, SetRect, defines a rectangle, one of
QuickDraw’s graphic types. The size of this rectangle will vary as the
program executions. The second command, FrameOval, actually draws
an oval on the screen whose size is the same as the rectangle defined.

TURBO PASCAL FOR THE MACINTOSH 15

X Axis
point {0,0) 512
' - N
N)

Y Axis k"“\\ Y 342

point {100,100

point {(511,341)
Figure 1-10. The Mac Coordinate System

CHAPTER SUMMARY

In this chapter we have seen how to enter, compile, and run a pro-
gram with Turbo Pascal. We even quickly looked at a small program
using QuickDraw graphics. All the commands and programming tech-
niques used will be explained in much greater detail in future chap-
ters.

2

Turbo Pascal Fundamentals

INTRODUCTION

In Chapter 1 we saw how to work with the Turbo Pascal environment
and how to enter and run a short Turbo program. In this chapter, we
will start to explore the basic elements of the Pascal programming
language. You will be introduced to the concepts of different types of
data, storing data in the computer, and the input and output of data.

A FIRST PROGRAM

The best way to go about learning Pascal is to dive right in, so here is
the simplest program possible in Pascal.

program Good_For_Nothing;
{This is our first program }
begin
end.

If you enter and run it, you will see that it does absolutely nothing.
However, it is useful to explore the required elements of a Pascal
program. All programs must begin with a program declaration consist-
ing of the word “program” followed by one or more spaces and then a
program name. This program’s name is Good_For_Nothing, and it is
followed by a semicolon (;). Together they form what is known as the
program declaration. The semicolon is used in Pascal to separate con-

17

18 TurBo PASCAL FOR THE MAC

secutive statements or declarations and must be present. A name in
Pascal is called an identifier. In Turbo Pascal, identifiers can be made
up of combinations of letters, numbers, and underscores. While an
identifier can be of any length, it must start with a letter, and only the
first 63 characters are significant (any two identifiers with the same
first 63 characters are considered the same). We doubt this will create
much of a problem for you. In practice, an identifier will contain from
one to about fifteen characters (who wants to type very long names?).
It is good practice to use identifiers that have a meaning that corre-
sponds to the functions they perform or the objects they represent.

The word “program” cannot be used as an identifier because it has a
special meaning in the language. Words like “program” are called re-
served words and are used by the compiler to be able to understand
the structure of the program. The 48 reserved words in the Turbo
Pascal language are listed in Appendix A.

After the program declaration a program may contain other optional
declaration sections. These are absent in Good_for_Nothing because
it is so simple they are not needed. Other possible declarations will be
discussed later. Following the declaration section in our program are
the reserved words “begin” and “end.” These mark the start and the
finish of the program’s instructions, those statements that perform
some action. This program contains no instructions whatsoever. The
reserved word “end” is followed by a period indicating the end of the
program.

SYNTAX

All languages need a set of rules that define the language. We can communi-
cate with other people who speak the same language we do because they use
the same rules for constructing sentences. Syntax is the set of rules for con-
structing valid statements in a language. In natural languages such as English,
we call these rules grammar. Programming languages also have rules of syn-
tax, but they are much more restrictive and simpler than those of natural
languages. Pascal’s syntax is so simple and well defined it can be expressed in
a series of diagrams. For instance, here is the syntax diagram for a digit:

TurBo PascaL FunpameNnTaLs 19

DIGIT

000900000

Figure 2-1. Syntax Diagram : Digit

To construct a syntactically correct digit, follow the diagram from the start-
ing point on the left to the end point on the right. Many paths are possible.
Any path that starts on the left and ends on the right describes a digit that is
syntactically correct. Notice that in this diagram any single digit from 0 to 9 is
a valid digit. A slightly more complex syntax diagram is that of an unsigned
integer (a whole number).

UNSIGNED INTEGER

digit

-4
Figure 2-2. Syntax Diagram : Unsigned Integer

Once again, any path that goes from the start to the end defines a syntac-
tictally correct unsigned integer. To confirm that a number such as 327 is a
valid unsigned integer, we would follow the diagram traversing the middle
section three times and then exit. You may think of the box labeled “digit” as
an abbreviation for Figure 2-2 above.

The syntax diagram for a signed integer is built with the rules for an un-
signed integer:

SIGNED INTEGER

unsigned

oTeED"

Figure 2-3. Syntax Diagram : Signed Integer

20 TurBo PASCAL FOR THE MAC

In a syntax diagram, the elliptical symbols are atomic,—that is, they cannot
be subdivided into smaller diagrams. Rectangular symbols are those that can
be subdivided. For example, in the signed integer diagram, the unsigned inte-
ger symbol was defined previously.

MORE ON IDENTIFIERS

Not all words can be used as identifiers. A numeric digit or an under-
score cannot be the first character of an identifier. Spaces, punctua-
tion characters, and other special characters cannot be used in
identifiers either. A special character is any character that is not a
letter, space, or underscore. The following are all valid identifiers:

Big Bucks Total Rate3 Onelall
These, however, are not valid Pascal identifiers:
22go Big:Bang Counters$

Lowercase and uppercase characters are equivalent in an identifier;
therefore, the following two identifiers are treated as one and the
same by Turbo Pascal:

GrossPay grosspay

The underscore character is sometimes used as a separator between
words to make identifiers easier to read. The following identifiers are
considered to be different by Turbo Pascal:

Gross_Pay GrossPay

Here is the syntax diagram of an identifier:

Turso PascaL FunpamentaLs 21

IDENTIFIER letter —‘—:
—Pp{ letter :

A

Figure 2-4. Syntax Diagram : Identifier

From now on we will not bore you by including syntax diagrams for
each Pascal feature. A complete listing of the syntax diagrams for
Turbo Pascal can be found in Appendix G.

COMMENTS

In a Pascal program, information that is enclosed between curly
braces { and } are comments. Comments are used to document the
workings of a program and are meant for people, rather than com-
puters, to read. The Turbo Pascal compiler completely ignores all com-
ments. It cannot be emphasized too strongly that comments are
required for writing clear, maintainable programs that can be under-
stood when examined later. For historical reasons, a parentheses as-
terisk pair, ‘(»> and ‘+)’ can be substituted for the curly brace pair, ‘{’
and ‘}°. This is because many input devices used with early computers
in the 1970s could not read the brackets. The start and end of a com-
ment must be matching delimiters: ‘{’ and °}’ or ‘(+’ and ‘+)’, but not
‘{*>and)’ or ‘(»* and }°.

DOCUMENTING A PROGRAM

When you write a program, it is important that you include an explanation
of how the program works. This may not seem important or necessary when
the program is written, but you will be grateful sometime in the future when

22 Turso PASCAL FOR THE MAC

“Thou Shalt
Comment”

Figure 2-5. The Programmer’s Commandment

you look back at your work. The Eleventh Commandment should read, “Thou
shalt document thy programs.”

There are two aspects to properly documenting a program. The first is to
make your program self-explanatory by using meaningful identifier names.
Below are instructions that perform the same task.

X :=Y + 2;
SalePrice := Price + Tax;

The only thing that can be ascertained from the first statement is that two
variables are being added together and the result assigned to a third. How-
ever, from the second statement the reader can tell you why that statement is
being executed.

The second aspect of documentation is the use of comments. These should be
used when the identifier names alone cannot indicate the purpose of a state-
ment or a group of statements. Comments should describe what the program is
doing, not how it is doing it. Here is an example of a well commented program
section; its function is self-evident:

ConversionRate := 21374; (# of lire in a dollar}
{Calculate import cost}

Dollars := Lire « ConversionRate;

Duty := Dollars . TaxRate;

Cost := Dollars + Duty;

Comments should not just redescribe what can be ascertained from the in-
structions themselves. This is the way not to write comments:

{ multiply lire by conversion rate to get dollars }
Dollars := Lire . ConversionRate;
{ multiply dollars by tax rate to get duty !}

TurBo PascaL FUNDAMENTALs 23

Duty := Dollars . TaxRate;
{ add dollars to duty to get cost }
Cost := Dollars + Duty;

Appendix E contains an entire program meticulously documented to serve
as a guide.

WRITE AND WRITELN

Now let us look at a program that actually does something. For a
computer to be useful it must be able to output information for people
to see. The Macintosh can generate two different types of output:
graphics and text. These can be freely intermixed in a Turbo program.
Since text output is simpler, we will tackle it first. The two most com-
mon statements in Pascal that output text are the Write and Writeln
(pronounced “write line”) statements.

To demonstrate the Write statement, enter and run the following
program:

program MyNanme;

begin
Write('I am a Macintosh computer');
Readln

end.

If you made no errors, the Mac’s screen will clear and a new window
will appear. This is the console window used by Turbo Pascal as the
place that output is displayed. At this point you may not appreciate
the beautiful simplicity of the console window, but suffice it to say
that most programming languages on the Macintosh force the pro-
grammer to learn how to use the most complex features of the Toolbox
to run even the simplest program. The following will be displayed:

'I am a Macintosh Computer!

This program now contains two instructions, more accurately re-
ferred to as statements, sandwiched in between the ‘“begin” and
“end.” The Writeln statement was responsible for producing the out-
put. The last statement in the program (Readln) forces the computer

24 TurBo PASCAL FOR THE MAC

to wait for you to hit the Return key before returning to the Turbo
environment. If the Readln had not been in the program the message
would have flashed on the screen and the program would have re-
turned to the Turbo Pascal environment almost instantly.

TRIAL AND ERROR—SEMICOLONS

Try removing the semicolon after the Writeln statement. Running the pro-
gram should now produce this error:

% Error 1:'; edpected.

Figure 2-6. Missing Semicolon Error

The “; expected” message will probably be the one you most encounter in
Pascal programming. When it occurs, look in the vicinity of the insertion point
for a statement that requires a semicolon but is missing one.

Let’s try a second program:

program MyNameAgain;

begin Write('I ');
Write('am ');
Write('a ');
Write('Macintosh ');
Write('Computer ');
Readln

end.

Program MyNameAgain does the same exact thing as MyName.
Why? The Write statement acts just like Writeln except that no car-
riage return is performed after the information is displayed. Thus, all
the information is displayed on the same line in the console window.

TURBO PAscAL FUNDAMENTALs 25

MyNameRfAgain

| am a Macintosh computer

Figure 2-7. Displayed by MyNameAgain

Use the Change feature of the Turbo editor to change all the Write
statements in the program to Writeln. Now try running it.

program MyNameAgain;

begin Writeln('I ');
Writeln('am ');
Writeln('a ');
Writeln('Macintosh ');
Writeln('Computer ');
Readln

end.

It now displays:

26 TurBo PASCAL FOR THE MAC

I

an

a
Macintosh
Computer

The program now places each word on a separate line. The differ-
ence between Write and Writeln should now be clear. After a Writeln
statement is executed, the text insertion point returns to the begin-
ning of the next line, and whatever is displayed next will be on a new
line. However, whatever is displayed after a Write statement appears
on the same line.

More than one item can be used in a Write or Writeln statement as
long as each item is separated by a comma, such as

Writeln('I ', 'am ', 'a ', 'Macintosh ','Computer ');

All items contained within each Writeln statement will be displayed
on the same line. Write and Writeln can be mixed in the same pro-
gram. Now that we have a way to display information, let us examine
the kinds of information Pascal can handle.

DATA TYPES

In our everyday lives we deal with many types of information:
sounds, pictures, words, numbers, and so forth. Information used by a
computer is called data. Computers process many different kinds of
information, or data, including numbers, characters, strings of charac-
ters, pictures, sounds, and so on. Several different types of data can be
represented in Pascal.

Integers

The most basic data type is integer, which includes positive and
negative whole numbers (numbers that don’t have fractional parts).
Examples of integers are

1 23 -a252 0 1398 -1

TurBo PascaL FUNDAMENTALS 27

Notice that integers contain no decimal points. Commas are not used
or allowed in integers. The largest integer that can be used by the
Pascal language is called Maxint. This number is dependent on the
machine being used. On the Macintosh system MaxInt is 32767. The
smallest number that can be represented is ~MaxInt—1 or —32768.

Reals

At one time computers could only process integer data, but today we
can also represent numbers that have both a whole part and a frac-
tional part. Turbo Pascal lets us represent these numbers with the real
data type. Real numbers have a much larger range of values than
integers and are thus useful for representing very large or very small
quantities.

Examples of real numbers are:

3.4 -87.0 2i2.34 l.324e+b -?7.43e-2

The first three numbers listed are in the notation with which you are
most familiar, that is, numbers with digits to the left and right of the
decimal point. The last two numbers are in a form known as “scientific
notation.” The “e” stands for exponent and is always preceded by a
sign. A number in scientific notation is interpreted by multiplying the
number on the left of the “e” by ten raised to the number following
the “e.” Thus, 1.324e+6 is equivalent to 1.324 x 106 or 1324000.0 and
—7.43e-2 is equivalent to —7.43 x 1072 or 0.0743. Other examples are

-l2.34e+e equivalent to -1234.0
34.567e+l equivalent to 345.67
-932.13e-4 equivalent to -0.0932113

In Pascal, real numbers can be always be expressed in either stan-
dard or in scientific notation. When expressing a real number there
must always be at least one digit before the decimal point. For exam-
ple, 0.5 is a valid representation of one-half, whereas .5 is not.

28 TurBo PASCAL FOR THE MAC

Characters and Strings

Computers need to process information other than numbers in order
to communicate effectively with people. Pascal has two data types that
handle text information, the character and the string data types.

Characters are upper- and lower-case letters, numbers, and punctua-
tion symbols. Character data is enclosed in single quotes. Examples of
characters are the following:

tal DY orgE .t 130 o0ge vy

Since quotes are used to delineate a character, to represent a quote
we must use two consecutive quotes between quotes for a total of four,
such as

Strings are sequences of characters and are useful because they let
us combine individual characters into words or sentences. This allows
manipulation of more meaningful units than individual characters. As
with characters, strings are written between single quotation marks:

'This is a sample string'
'testing 123 testing!!!!

VARIABLES

In order for a program to use data, it must be stored in the com-
puter’s memory. The computer’s memory can be thought of as being
divided into many different compartments, each holding a single piece
of information of a specific data type. These compartments are called
variables.

Pascal uses identifiers to name each variable. The value of a vari-
able can change during the execution of a program, (hence the name)
and is used as sort of a working storage of information during the
execution of a program. To be used, a variable must be declared in a
variable declaration section, as demonstrated in the next program.

TurBO PAscAL FUNDAMENTALS 29

7

Figure 2-8. Compartments in Memory

program ShowvVars;

var
Number : Integer;
Ch : Char;

begin
Readln(Number, Ch);
Write(Number,' ',Ch);
Readln

end.

In this program two variables were declared: Number, which will
hold an integer, and Ch, which will hold a character. Variables are
declared after the program declaration but before the “begin” of the
program. The variable declaration section is indicated by the reserved
word “var” and consists of the variable’s identifier and its type, sepa-
rated by a colon (:).

var
identifierl : DataTypel;
identifier2 : DataTypei2:

Many separate declarations can exist with a semicolon separating each
individual variable declaration. If there are several variables of the
same data type, they may be declared together by separating them
with a comma. For example:

var
xl, x2 : Real;
count, sum : Integer;

30 TurBo PASCAL FOR THE MAC

When you run the program, it will wait until you enter at the key-
board an integer, a space, and a character followed by a return. The
integer value entered will be placed in the variable Number, and the
character will be placed in the variable Ch. Whatever is entered is
echoed to the screen by the Write statement. Whenever a variable is
listed in a Writeln statement, the contents of that variable are dis-
played. The details of Readln will be explained later in this chapter.

TRIAL AND ERROR—IMPROPER DATA

Run the program again and enter data of a type other than that expected.
What happened? When you hit the Return key, the System Error dialog box
appeared. What you have encountered is your first run-time error.

RUN-TIME ERRORS

Unlike syntax errors that can be detected by the compiler during compila-
tion, a run time error occurs during the execution of the program. There are
several possible situations that can cause a run-time error. The one we just
encountered is the entering of illegal input. Unlike other programs, Turbo
protects from System Errors by allowing a graceful exit through the Resume
option in the dialog box. This will deliver you back into the editor with the
source of the error highlighted. (If you compiled to disk, you will go directly
back to the Finder.) One of the chief goals of a programmer is to prevent
program “crashes” caused from illegal input. Several techniques have been
developed to protect against this; they are covered in later chapters.

Other sources of run-time errdrs include

e Dividing by zero
e Using variables that are out of their range (more on this later)

e Improper use of Toolbox functions.

Turso PascaL FunpaMmentats 31

* Error 99: Input/0Output Check Failed

Figure 2-9. I/O Error

ASSIGNMENT STATEMENTS

In the program that you were just playing with, variables were given
values via the keyboard during program execution. Data can be placed
in a variable in the program itself with an assignment statement such
as

Number := 23;
Ch := 'A';

The function of an assignment statement is to place the value on the
right-hand side of the assignment operator (:=) into the variable on
the left-hand side. The variable retains the assigned value until it is
altered by some other statement in the program. Notice that in the
assignment operator there is no space between the colon and the equal
sign. An assignment statement is not an algebraic equation, and it is
not solved as one. This is the reason the assignment operator looks
different from an equal sign. The assignment operator is interpreted
to mean “gets the value.” Hence, Number :=23 can be read as the
variable Number gets the value 23. It may be helpful to think of the
integer value 23 as being placed into the memory compartment that is
labeled Number. Likewise Ch := ‘A’ can be thought of as the character
“A” being put in the compartment labeled Ch.

The value assigned to a variable must be of the same data type as
that variable (an integer value must be assigned to an integer vari-
able, a real value to a real variable, and so on). Given the following
variable declarations:

32 Turso PASCAL FOR THE MAC

A 23

Ch Number
Figure 2-10. The Assignment Operator

var
I : Integer;
Rl, R2 : Real;
Ch : Char;

the following assignment statements are all legal:

I:=17;
Rl := 2.03;
R2 := 15.0;
Ch := 'B';

while, the following assignment statements are all illegal:

I := -17.27; -17.17? is not an integer

Rl := 15; 15 is not a real value

Ch := 22; Ch is a character variable

Ch := 'g22'; '22' is a character string, not a
character

Improper assignments will be revealed as syntax errors by the com-
piler. This is one of the unique features of Pascal. Many other lan-
guages permit this type of statement to be performed without any kind
of checking.

EXPRESSIONS

The value of an arithmetic expression can also be assigned to a vari-
able. For example:

TuRrBO PascaL FUNDAMENTALS 33
NewNumber := § + 3;

In this assignment statement, the variable “NewNumber” is given
the value of the expression on the right-hand side of the assignment
operator {:=}. This statement can be read as “the variable
NewNumber gets the value obtained by adding together 5 and 3.” That
value is, of course, 8.

NewNumber := 5 + 3;
K\\\;:?»///equals
8

Figure 2-11. NewNumber := 5 + 3;
An expression can contain variables as well as constants.
NewNumber := OldNumber + 17;

This statement adds 17 to the value of the variable OldNumber and
assigns that value to the variable NewNumber. There is no change in
the value of OldNumber since it appears on the right side of the as-
signment operator; only a variable on the left side of the assignment
operator will be changed in an assignment statement. The value of one
variable can be assigned to a second variable in the same way.

NewNumber := OldNumber;

Here the value of OldNumber is assigned to NewNumber. They will
now both have the same value. It is quite common to have assignment
statements with the same variable on both sides of the operator. This
may seem strange at first, but on closer examination its use will be-
come apparent.

Number := Number + 3;

This statement simply adds 3 to the value of Number. It is inter-
preted just like any other assignment statement. The expression on
the right side is evaluated and assigned to the variable on the left side.
That is, add 3 to the value of Number and place the resulting value
back into Number. Another way of describing this statement is that

34 TurBo PASCAL FOR THE MAC

the “new” value of Number is the “old” value of Number plus three.
For example, if Number contained seven before the statement was
executed, it would contain ten after it was executed.

OPERATIONS

Addition is not the only operation that can be performed in an ex-
pression. Several other arithmetic operators are available in Pascal:

real or integer addition

real or integer subtraction

real or integer multiplication

real division

div integer division

mod modulo division (remainder of integer division)

N * o+

The +, +, and — operators work as expected on both integer and real
numbers, but different divisions exist for real and integer values. The
div operator is used to divide one integer by another. When two inte-
gers are divided using div, the remainder is discarded. Some examples
are shown in Table 2-1.

Table 2-1. Integers Divided Using DIV

Expression Value
8 div 2 4
8 div3 2
8div9 0

The mod operator is used to find the remainder of an integer divi-
sion. For instance, 10 mod 3 is 1, because 10 divided by 3 leaves a
remainder of 1. (Table 2-2)

Table 2-2. The Mod Operator

Expression Value
8 mod 8

8 mod 2
8 mod 9
8 mod 3

N OoOOCO

Turso PascaL FUNDAMENTALS 35

Both 8 div 0 and 8 mod 0 are illegal since you cannot divide by 0.
Either would generate an error.

Real division (the / operator) divides two real values giving a real
result: 5.0/2.0 yields 2.5 and 10.0/1.0 yields 10.0

MIXING DATA TYPES

With any of the operations, real values can be mixed with integer
values. When this is done the integer value is automatically converted
to a real prior to the operation. For instance, in the addition of 4 + 3.7
an integer and real are both used. The integer 4 will first be converted
to the real 4.0 and then added to 3.7. The result is 7.7 . The result of an
expression can only be assigned to variables of the same data type.
Breaking this rule will cause an error during compilation. Given these
variable declarations:

var
I, J : Integer;
X : Real;

the following statements are all legal:

I =3+ 3; Integer result assigned to an integer

X :=1I + 2.0; Integer result assigned to an integer

X :=5 7/ 2; Integer result assigned to an integer

X :=J; Integer result assigned to an integer
while the following statements are all illegal:

Jd = Y; Can't assign a real value to an

integer variable
J := 3.0 div 2; Div needs two integer operands
Jd :=3J / I; Real division produces a real result

Table 2-3 summarizes the data type of the result of different opera-
tions.

36 TurBo PASCAL FOR THE MAC

Table 2-3. Data Types

Type of Operand

Real Real Integer Integer
Operator Real Integer Real Integer
+ Real Real Real Integer
- Real Real Real Integer
. Real Real Real Integer

/ Real Real Real Real
DIV error error error Integer
MOD error error error Integer

OPERATOR PRECEDENCE

How is the value of an expression calculated when more than one
operator is used? For instance, in the following expression the order of
operations is significant.

7+ 24

If the addition is done first, the result is 36. If the multiplication is
done first, the result is 15. However, Pascal has rules of operator pre-
cedence that are used to decide what is done first. Operators with a
high precedence get evaluated before operators with a low prece-
dence. Multiplication, real division, div, and mod have a higher prece-
dence than addition and subtraction.

Operator Precedence Table

High Precedence ., /, mod, div
Low Precedence +, -

When operators of the same precedence are found in an expression,
they are evaluated from left to right.

The natural precedence of the operators can be overcome by the use
of parentheses. For instance:

(7 +2) - 4

Tureo PascAL FUNDAMENTALS 37

Some more examples:
Table 2-4. The Use of Parenthese

Expression Value
3+2+3 9
3+2)+5 25
14mod3 +1 3
1+2+3+4 11
(1+2)+3+4 13
1+2+(3+4) 15

CONSTANTS

Constants, as the name implies, are values that never change. Pascal
can also have named constants that are represented by identifiers.
Examine the following program:

program Constant;

const

TwentyThree = 23;
Ayyy = 'A';

var

Number : Integer;

Ch : Char;
begin

Nunber := TwentyThree;
Ch := Ayyy:
Write(Number,' ',Ch);
Readln
end.

This program would display

23 Ayyy

Constants are declared after the program declaration but before the
variable declaration section. The reserved word ‘“const” is used to in-

38 TurBo PAscAL FOR THE MaAcC

dicate the constant declaration section, which consists of the con-
stant’s identifier and the value of the constant separated by an equals
sign (=). The assignment operator is not used. A semicolon separates
each of the constant declaration statements.

Once a constant is defined it cannot be changed later in the pro-
gram; in fact, trying to assign a new value to a constant will produce
an error when you compile your program. Try it and see. Constants are
used rather than the values themselves to make a program more read-
able. Additionally, the use of constants can prevent errors since any
erroneous attempt to alter its value will result in a program error
when you attempt to compile the program. It is far better to detect an
error in this fashion than to hunt for the source of an improper calcula-
tion or rely on the result of that calculation.

MORE ON WRITE AND WRITELN

Write and Writeln allow an optional parameter called the field
width, which is used to provide control over how data is displayed. The
field width parameter is specified by following any item in a Write or
Writeln statement with a colon (:) and a positive integer. The integer
determines how many spaces are allocated for displaying the item.
The easiest case to look at is that of displaying strings. The field width
parameter indicates how many spaces are used to display the string. If
the string does not take up all the spaces allocated, it is right-justified
within the field as demonstrated in Figures 2-12 and 2-13.

Write('Cantaloupe' : 15)

15

A\

ClA|N(T[A|L|OJU(P|E

Figure 2-12. Right-Justified

TurBo PascaL FUNDAMENTALS 39

Write('Cantaloupe:20)

20

A\

C|A[N|T|A|L[{O[U|P|E

Figure 2-13. More Spaces
If the number of characters in the string exceeds the field width
parameter, the excess characters on the right side are truncated. Fig-
ure 2-14 demonstrates this:

Write('Cantaloupe':5)

5
——

C|A[N|T|A

Figure 2-14. Truncation
In order to display real numbers in standard notation, two field
width parameters are used. The first represents the total field width,
not including the decimal point, and the second is for the number of
digits to be included after the decimal point. It is important to remem-

ber that reals are right-justified in the number of spaces indicated by
the first parameters. Consider the following assignment statement:

R := 2.55;

the following Writeln statement:
Writeln(R:4:2)

displays the following:

2.55

40 TurBo PAsCAL FOR THE MAC

10
10

If the total field width given is too small for a real number or an
integer, the entire value will be printed anyway. The following se-
quence of statements:

will display:

.04

In displaying a real, the value will be rounded off to the number of
decimal places specified by the second field width parameter, round-
ing off the number if necessary.

The effect of omitting a field width parameter differs with each data
type. A string will be printed in precisely the number of characters
required. Integers will occupy a minimum of eight spaces, but more
are used if needed. An integer will never be truncated. Reals will be
displayed in scientific notation.

READ AND READLN

So far in all the programs we have seen, variables were given values
via assignment statements. However, in Pascal there is a way to pro-
vide a variable with a value during execution with the Read and
Readln statements.

As we have already seen, the Readln statement stops and waits for
information to be entered from the keyboard. When a Readln state-
ment is executed, the information that is entered on the keyboard is
placed into the variable specified in the statement and echoed to the
console window. The user signals that he has finished the entry by
pressing the Return key. Below is an example of using Readln in a
simple program:

program CirclelArea;

co

nst

TurBo PascaL FunpaMentars 41

Pi = 3.14159;

var

Area, Radius : Real;
begin

Write('What is the radius of the circle ?:');
Readln(Radius);

Area := Pi . Radius .« Radius;

Write('The area of a circle with radius ',Radius,' is
',Area);

Readln
end.

The Read statement works in the same fashion as the Readln except
that the input does not have to be terminated by hitting the Return
key. Instead, the data entry is terminated when a space or comma is
entered.

Read and Readln can work with all of the data types already dis-
cussed. More than one variable can be used by separating them with
commas. For example:

program MoreThanOne;
var
Moe, Shep, Curly : Integer;
begin
Readln(Moe,Shep,Curly);
Writeln(Moe,Shep,Curly);
Readln
end.

The user must type some nonnumeric character between the three
integers to indicate where one integer ends and the next begins. Be-
cause we are using a Readln statement, a carriage return must follow
the last value entered.

REVIEW OF PROGRAM STRUCTURE

The four sections of a program we have examined so far are

1. the program declaration;

42 TurBO PASCAL FOR THE MAC
2. the constant declarations;
3. the variable declarations;
4. the program body (everything between “begin” and “end”).
Remember that the variable and constant declaration sections are op-

tional and not required by a syntactically correct program, although
every program that is nontrivial will have both these sections.

THE DIRTY DOZEN—THE MOST LIKELY
SYNTAX ERRORS

While 99 possible syntax errors can be triggered in your programs,
there are 12 that are most likely to occur, especially for new program-
mers. Here is a list of the “dirty dozen” and possible solutions.

* Error 1:'; edpected.

Figure 2-15. Missing Semicolon Error

The missing semicolon is probably the most common error encoun-
tered in Pascal programming. Its source is obvious: there is no semico-
lon where there should be one. When this is the cause, Turbo will
return you to the editor with the start of the line after the missing
semicolon highlighted.

There is a common but more subtle way to trigger this error. When
the begins and ends of a program are not balanced—that is, do not
match up—this error can be triggered. Consider the following pro-
gram.

program SubtleError;
var

I, Sum : Integer;
begin

for I :=1 to 10 do

TurBo PascaL FUuNDAMENTALS 43

begin

Sum := Sum . 2;
Sum := Sum + I
end.

Close examination of the program will show that there is a missing
end statement, the one needed to close the compound statement in the
For loop. The missing semicolon error will be triggered, and Turbo will
highlight the last end.

% Error 41: Unknown identifier.

Figure 2-16. Unknown Identifier Error

The unknown identifier error is caused by not declaring a variable
that is used in the program. For instance:

program UnknownI;

var
I : Integer;

begin
for I := 1 to 10 do
Sum := Sum + 1

end.

In this simple program, the identifier Sum is not declared and thus
will cause this error. The solution: simply add it to the variable decla-
ration.

% Error 2: ' eqpected.

Figure 2-17. Colon Expected Error

The colon expected error is most often caused by failing to use a
data type in a variable declaration. For instance:

44 Turso PASCAL FOR THE MAC

var
K ;

Here K is declared as a variable, but no data type is given. Since the
compiler is expecting a colon after the identifier, this error is trig-
gered. Note that using the equal sign for the assignment operator will
not cause this error but instead will trigger Error 07, := expected.

% Error 10: '.' edpected.

Figure 2-18. Period Expected Error

The period expected error most often occurs when there are too
many ends in a program. For instance:

progran TooEndorNotTooEnd;
var

I : Integer;
begin

for I := 1 to 10 do

Sum := Sum + 1

end
end.

In this program, there are two ends but only one begin. The pro-
grammer apparently forgot that a compound statement was not used
with this For loop. Since the compiler expects a period after the first
end encountered, this is the error triggered.

% Error 5: ') expected.

Figure 2-19. Expected Error

Right parenthesis expected is caused when the parentheses in a
statement are not balanced. This can occur either in an expression
such as

TurBO PascAL FUNDAMENTALS 45
Total := ((Height . Weight) + (Age . Waist);
or, in a Writeln statement such as
Writeln (Name, Address, ZipCode;

This error happens more frequently than left parenthesis expected
since we type from left to right.

% Error 77: Error in expression.

Figure 2-20. Error in Expression Error

The error in expression error is caused by improperly using opera-
tors in an expression:

Dog := Cat div mod Bird;

* Error 91: Unexpected end of text.

Figure 2-21. Unexpected End of Text Error

The source of this error is almost always just a missing period at the
end of a program. Since this very subtle to catch, it can lead to great
frustration.

% Error 47: Operand types does not match operator.

Figure 2-22. Operand Types Do Not Match Operator

This is a simple error caused by using the wrong operator with a
value. For instance, all of these will trigger this error:

46 TuRrBO PASCAL FOR THE Mac

= R Not 4;
:= 4.0 div 12;
e= IC' + 7Y,

% Error 44: Type mismatch.

Figure 2-23. Type Mismatch Error

This error happens when a value of one data type is assigned to a
variable of another. For instance, given the following variable declara-
tion:

var
Int : Integer;
R : Real;

the following expression would trigger this error:

Int := R + l1l.2;
since it is attempting to assign a real value to an integer variable. If
this operation need take place, either the real value must be con-

verted to an integer with the Round or Trunc functions, or a real vari-
able must be used instead.

% Error 88: Unit missing.

Figure 2-24. Unit Missing Error
This error occurs when a Toolbox or QuickDraw routine is used, but
the proper Uses statement has not been included in the program. For
most of the Toolbox routines this Uses is required:

Uses MemTypes, QuickDraw, ToolIntF, OsIntF;

TuRrBO PAscAL FUNDAMENTALS 47

% Error 43: Duplicate identifier.

Figure 2-25. Duplicate Indentifier Error

There are two common sources of this error. First is declaring the
same identifier for two variables as in the following:

ar
Integer;

v
J
L Real;

K, L
M, N

[
[}
The other, more subtle, source is forgetting to start the program

with a begin. For instance:

program ANewBeginning;

var
Larry, Moe : Integer;
Moe := 15;

Since the compiler found no begin, it assumes that the assignment
statement is just another variable declaration and will trigger dupli-
cate identifier.

% Error 3: ', expected.

Figure 2-26. Comma Expected Error

This error can occur in a multitude of situations. The most common
is failing to separate items in a Write statement with a comma.

Write(First Second);

A more subtle occurence is when a built-in function is used with the
wrong number of arguments. For instance, the GoToXY routine re-
quires two arguments, X and Y. If one is missing, this error is trig-
gered:

48 TuRrBO PASCAL FOR THE MAC
GoToXY(Y):

Turbo will apply this same standard to all the Toolbox routines and
thus provides a very high level of type checking for the use of the
Toolbox.

This error is caused by using a control variable that is not an enu-
merated type. For instance: :

var)
R : real:

begin

For R := 2.0 to 5.0 do

Here a real variable is being used as the control variable for the For
loop.

3

Pascal Structures

INTRODUCTION

We have already seen the basic building blocks of a Pascal program;
how a program is formed; how values are assigned to variables; and
how simple input and output is done. More will be needed to write
programs that are capable of doing more complex tasks. This chapter
will introduce you to some Pascal’s structures, the building blocks of
programs. We will see how decisions can be made in programs, how
statements can be repeated and we will be introduced to rectangles,
the first of QuickDraw’s many drawing shapes.

DECISION MAKING—IF-THEN

The If-then structure allows for execution of different statements
depending upon the result of a conditional test. A conditional test is
an expression that can have a value of either True or False. The form
of the If statement is

IF conditional test is True
THEN statementl;
statementd;

If the result of the test is True, then Statementl is executed; other-

wise it will be skipped. Statement2 is executed no matter what the
value of the test. The following program uses an If-then statement to

49

50 TurBo PASCAL FOR THE MAC

make a decision based upon a value that is entered. Enter it and then
run it several times with different values.

program FirstIF;
var
Num : Integer;
begin
Write('Enter a number any number : ');
Readln(Num); ‘
Write(Nunm,' is a ');
if Num > 100 then
Write('BIG ');
Writeln('number');
Write('Press <Return> to continue ');
Readln
end.

Here the If statement reads:

if Num > 100 then
Write('BIG ');

The value of Num is entered by the user. If the input is less than 100
(for instance 79), the Write statement that is part of the If will be
skipped, and the output would read: 79 is a number. However, if the
value is greater than 100, the Write statement contained in the If
statement would be executed, and the output would read: 179 is a big
number.

Conditional Tests

Several different types of comparisons called conditional tests can
be made in an If statement. Following are the possible conditions that
can be tested:

Equal to

Not equal to

Less than

Greater than

Greater than or equal to
Less than or equal to

AV VYV A A
v

PascaL STRUCTURES 51

In Table 3-1 are some examples of conditional expressions and their
values. Assume I has a value of 3 and J has a value of 4.

Table 3-1. Conditional Expressions

Expression Value
3>2 True
I#»2=4 False
I1<>]J True
I-J<=] True

The following program reads three positive integer values from the
keyboard and finds the largest of the three:

progran Iffy;
var
Num), Num2, Num3 , Biggest: Integer;
begin
Write('Enter 3 integer nunmbers separated by spaces ');
Readln(Numl, Num2, Nun3);
Biggest := O;
if Numl > Biggest then
Biggest := Numl;
if Num2 > Biggest then
Biggest := Numg;
if Nun3 > Biggest then
Biggest := Nun3;
Writeln('The largest of the numbers is ',Biggest);
Write('Press <Return> to continue ');
Readln
end.

In this program each value is compared against the current largest
value to see if it is larger. The variable representing the largest value,
Biggest, is initialized to zero, which we will assume is smaller than any
value entered. This assures that the first meaningful value of Biggest
will be the value of Num1. Try to enter several sets of values and see if
you can get the program to “crash.” What input produces undesirable
results, and how can the program prevent itself from crashing?

52 TurBo PASCAL FOR THE MAC

Compound Statements

If we were only allowed a single statement to be executed as part of
an If-then, its usefulness would be severely limited. There exists a way
to execute many statements rather than just one. Wherever a single
statement can be used, it can be replaced by a compound statement. A
compound statement is a sequence of statements separated by semico-
lons and bracketed by a begin and end. Thus, a program can have
many begin and ends sets. The statements contained in a compound
statement are always executed together. Here is a short example of a
compound statement:

program CompoundExample;
var
Num : Integer;
Rbs : Integer;
begin
Write('Please enter number : ');
Readln(Num);
if Num < O then
begin {Start of Compound statement}
Abs := Num » -1;
Write(' The absolute value of ',Num);
Writeln(' is ',Abs) {No semicolon}
end; (End of Coumpound statement} {Uses a semicolon}
if Num >= 0 then
Writeln(' The absolute value of ',Num,' is ',Nunm);
Write('Press <Return> to continue ');
Readln
end.

This program finds the absolute value of a number (that number
without any sign). If the value entered is a negative value, the com-
pound statement in the If-then is executed multiplying the number by
-1 and then displaying it. If the number is positive, the number is just
displayed as is. This program also demonstrates one of the rules of
good programming. Whenever a value is to be entered, the program
should prompt the user with a message telling what is expected.

A short note on semicolons. A statement before an end never gets a
semicolon. An end that comes before a statement gets a semicolon.

PASCAL STRUCTURES 53

If-then-else

The If-then statement allows a second clause called else to allow two
mutually exclusive statements (or compound statements) as part of
the If, one executed if the condition is True, the other executed if the
condition is False.

The form of the If-then-else is:

if condition then
Statementl
else
Statemente;
Statement3;

For example:

if Hours <= 40.0 then
Pay := Hours + Rate
else
Pay := 40 . Rate + (Hours - 40) . Rate -+ 2.0;

In this example from a hypothetical payroll program, the If state-
ment is used to determine pay based on the number of hours worked.
If the value of Hours is 40 or less, the statement after the then, Pay :=
Hours + Rate; is executed calculating the paycheck. If the value of Hrs
is greater than 40, then the else clause, Pay := 40 . Rate + (Hours -
40) « Rate + 2.0; is executed and adds in overtime pay.

Nested If Statements

The statement that follows after a then or else can also be an If
statement. The nesting of If statements can be used to make multiple
decisions based on the same data. Type the following short program:

progranm CaliforniaDreaming;
var
Temp : Integer;
begin
Write('WHAT'S TODAY'S TEMPERATURE? !');

54 Turso PAsCAL FOR THE Mac

Readln(Temp);
if Temp > 70 then
if Temp > 80 then
Writeln('GO TO THE BEACH')
else
Writeln('GO TO THE POOL?')
else
Writeln('GO TO THE MOVIES');
Write('Press <Return> to continue ');
Readln
end.

Table 3-2 shows a list of some possible inputs and their associated
output:

Table 3-2. Possible Inputs and Outputs

Input Output
75 GO TO THE POOL
60 GO TO THE MOVIES
89 GO TO THE BEACH

In the program two “elses” are used. An “else” always belongs to
the If-then that is physically closest to it. In order to see what belongs
to what, it is important that a program be properly indented. The
reader of a program should immediately be able to tell which “else”
belongs to which If statement based upon the way it is indented. For-
tunately, Turbo Pascal’s editor has an auto indent feature that makes
it easy to properly format a program. Here is a look at another way of
structuring the If statements to get the same result.

if Temp > 80 then
Write('GO TO THE BEACH')
else if Temp > 70 then
Write('GO TO THE POOL')
else

Write('GO TO THE MOVIES');

Notice the indenting in this example. Each Write statement is in-
dented the same number of spaces to emphasize that each is depend-
ent on the value of temperature.

What do the following statements print?

PASCAL STRUCTURES 55

Stars := Y4;
if Stars >= 3 then
if Stars = 5 then
Write('much better than');
else
Write('worse than');
Writeln('average');

If you said “average,” then you are wrong. If you said “worse than
average,” you are correct. Remember the rule that an “else” belongs
to the closest If statement? That rule applies here also; the “else”
clause belongs to the if Stars = 5 clause. This segment is tricky be-
cause the indenting fools us into interpreting the code in the wrong
way. You can bracket an If statement in a begin-end pair and override
the “else” to the nearest If statement rule. The program should be
rewritten as follows to have the “else” belong to the if Stars >= 3
clause:

Stars := 4;
if Stars >= 3 then
begin
if Stars = 5 then
Write('much better than')
end
else
Write('worse than');
Writeln('average!');

THE BOOLEAN DATA TYPE

Closely related to conditional tests is the Boolean data type. In fact,
the result of a conditional test is a Boolean value. A variable of type
Boolean can have one of only two possible values represented by the
words “true” and “false.” They are called Booleans in honor of George
Boole, the father of algebraic logic.

A variable is declared as a Boolean with

var
X, Y : Boolean;

56 TuRrBO PASCAL FOR THE MAC

Here the variables X and Y are both of type Boolean. A value is
assigned to a Boolean variable with an assignment statement.

rue;

X :=T
:= False;

Y

Boolean Operators

Since Booleans are not numeric values, they cannot use the same
operators as numeric types and therefore must have operators of their
own. These operators are the standard logical operators And, Or, and
Not.

Truth Tables

The operator And takes two values and gives a result of True only if
both values are True. The operator Or gives a result of True if either
value is True. The operator Not simply flips a single value. The table
of possible results of a Boolean operator is called a truth table. Table
3-3 to 3-5 are the truth tables for And, Or, and Not:

Table 3-3. And

Valuel Value2 Result
True True True
True False False
False True False
False False False

Table 3-4. Or

Valuel Value2 Result
True True True
True False True
False True True

False False False

PASCAL STRUCTURES 57

Table 3-5. Not

Valuel Result
True False
False True

The Boolean operators should not seem all that strange to you since
they are used in everyday English. For instance, you might say, “I’m
going swimming and I’m going water skiing.” If you did neither or only
one, the statement is False. On the other hand, if you said, “I’m going
bowling or I’m going to play Frisbee,” then the statement would be
True if you did either.

Boolean Expressions

Just like numeric expressions where many values are reduced to a
single value, there are also Boolean expressions. A Boolean expression
can consist of

1) a single Boolean value; or
2) a single Boolean variable; or

3) a combination of values and variables connected by operators.

When more than one operator are used together, the order in which
the operations are evaluated is significant. All Nots are applied first,
followed by And operator and then Or. This order can be altered with
the use of parentheses. It is recommended that you always use paren-
theses in large Boolean expressions to make them more readable and
understandable. For example, the following two expressions using
Boolean variables X, Y, and Z are equivalent:

X OR NOT X AND Y
X OR ((NOT X) AND Y)

In Table 3-6 are some sample Boolean expressions and their results.

58 TurBo PASCAL FOR THE MAC

Table 3-6. Boolean Expressions

Expression Result
True True
True or False True
True or False and False True
(True or False) and False False
not True or False False
Assuming

X := True;

Y := False;

True or Y and not X True

Only a Boolean value can be assigned to a Boolean variable. Pascal
goes to quite a bit of trouble to check that all values assigned are
compatible with the type of variable used. This is done to prevent
erroneous values from being assigned to variables. Because of the
large amount of the type checking done, Pascal is referred to as a
“strongly typed language.”

LOOPS—MORE LIKE AN AIRPLANE THAN A
BRICK

Up to this point all the programs we have written have one thing in
common. They executed in a sequential order, starting with the first
statement and proceeding to the last (although sometimes an If state-
ment provided a fork in the road). You can think of this type of pro-
gram as being similar to a brick dropped out of a seventeenth-floor
window. It starts at the top and quickly descends straight down. There
was no way to repeat the execution of some part of the program, just
as there is no way for the brick to do a loop-the-loop on an air current.
Fortunately, Pascal has three different loop structures to make a pro-
gram more like a paper airplane than a brick. The loop structure are
For, While, and Repeat. Each of the three different loops has its own
uses and attributes. The first loop to be discussed is the For loop.

To demonstrate the function of the For loop, run this short program,
which uses QuickDraw’s rectangle commands.

PASCAL STRUCTURES

program OverlappingRectangles;
uses

MemTypes, QuickDraw;
var

Square ¢ Rect;

Shift, I ¢ Integer;

SetRect(Square,10+Shift,10+Shift,
4O0+Shift,40+Shift);
FrameRect(Square); (Draw Rectangle}
Shift := Shift + 5
end;
Readln;
end.

Displayed by the program is the following:

59

OverlappingRectangles

Figure 3-1. Overlapping Rectangles

60 TurBo PAscAL FOR THE Mac

A For loop is used to repeat the execution of a statement a fixed
number of times. In the program the For loops repeat the statements,
which draw a rectangle 20 times. The structure of the For loop is

for variable := expression to expression do
statement;

The loop uses a variable known as the control variable, which is set
to an initial value and then successively incremented each iteration of
the loop until it hits the final value. Both the initial and final values of
the control variable are given as either constants or expressions.
Three reserved words are used in the For loop. “For” indicates the
type of loop and comes before the initial value of the control variable.
This is followed by “to,” which comes before the final value for the For
loop, and “do,” which comes before the statement (or compound state-
ment) that is to be repeated by the loop. This statement is sometimes
known as the body of the loop.

Here is an example:

for K := 1 to 5 do
Writeln('The value of K is ',K);

In this For loop the initial value is 1 and the final value is 5. The
statement after the “do” is executed once for every integer value of
control variable from 1 to 5, displayed as

The value of K is 1
The value of K is 2
The value of K is 3
The value of K is 4

The value of K is 5

The value of the control variable K is changed after each execution
of the Writeln statement contained in the loop. When the final value
of 5 was reached, the Writeln was executed for the last time.

PascAL STRUCTURES 61

In the next example, the values of the control variable in the For
loop are added together.

Sum := 0;
for I:= 1 to 3 do
Sum:=Sum + I;

In this loop, the statement after the “do” is executed once for every
integer value of the control variable (I) from 1 to 3.
Let’s trace the execution of the loop presented in the example.

I Sum

(entering the For loop)
0 (before execution)
1
3
b

wne |

As you can see, the loop was executed three timej; once for each
value of I from 1 to 3. This loop does the same thing as the following

statements:
Sum := Sum + 1;
Sum := Sum + 2;
Sum := Sum + 3;

The single statement in the For loop accomplished all three of these
additions. The value added to Sum is the same as the control variable,
which is modified in the loop.

Nested For Loops

When one For loop is placed inside another, the result is known as
nested loops. When there are nested For loops, the inner loop is com-
pletely executed for each value of the outer loop. To demonstrate this
concept, let’s examine a program that produces a simple multiplica-
tion table, the type you memorized back in grade school, generated by
one For loop nested inside another.

62 TurBo PASCAL FOR THE MAC

program MultTable;
var
Row, Col, Value : Integer;
begin
Writeln(' ':5, 'Multiplication Table');
Writeln;
Write('
for Row :=
Write(Row:3
Writeln;
for Row :=
Write('-');
Writeln;
{«sStart to build table .}
for Row := 1 to 10 do
begin
Write(Row:4,':");
for Col := 1 to 10 do
begin
Value := Row + Col;
Write(Value :3)
end;
Writeln
end;
Writeln;
Write('Press <Return> to continue ');
Readln
end.

:5 <Generate Heading>

)i
1 to 10 do
)i

1 to 80 do

The table is generated by the nested For loops:

{«»Start to build table ..}
for Row := 1 to 10 do
begin
Write(Row:l4,':");
for Col := 12 to 10 do
begin
Value := Row + Col;
Write(Value :3)
end;
Writeln
end;

PAscAL STRUCTURES 63

MultTable

=

Multiplication Table

25384 5 6 ¢ 8 9

10

OopEN

12
14
16
18
10 20

1
2
3
4
5 10
6
7
8
9

OV~ U WK —

-y

3
6
g
12
15
18
21
24

27
30

Press <Return>

4

8
12
16
20
24
28
32

36
40

to

S 6 7 8 9

10
15
20
25
30
35
40
45
S0

12
18
24
30
36
42
48
54
60

14
21
28
35
42
49
56
63
70

continue

16
24
32
40
48
56
64
T2
80

18
27
36
45
54
63
72
81

10
20
30
40
50
60
70
80
a0

90100

For each value of Row, the inner loop with Col as its control variable
is completely executed for all 10 values of Col. It is then reexecuted
for the next value of Row. In summary, there are 100 iterations of the
inner loop but only 10 of the outer loop.

Downto

A slight variation in the For loop allows the loop to count down, too.

For instance:

ot I3~

This loop prints 5 4 3 2 1. The keyword “downto” has replaced the
keyword “to,” indicating the direction of the counting. The initial
value must now be greater than the final value, or the statement will

Figure 3-2. The Multiplication Table

S5 downto 1 do
Write(I):

not be executed.

64 TurBo PAScCAL FOR THE MAC

One limitation of the For loop is that the control variable can only
be increased or decreased by one. This can be overcome by using a
second variable that is independent of the control variable. Let’s write
a loop to add the even numbers between 1 and 10.

EvenNumber := 0;
EvenSum := 0;
for Count := 1 to § do

begin
EvenNumnber := EvenNumber + 2;
EvenSum := EvenSum + EvenNumber

end;
Writeln(EvenSunm);

Notice that Count goes from 1 to 5, but at the same time the values
of EvenNumber are from 2 to 10 by twos.

PROGRAMMING EXAMPLE—CALCULATING
BANK INTEREST

A For loop can be used in a program to calculate daily interest on
any amount for any period of time. In the following program, the user
is asked to enter the principal amount and the number of years for
which to compute the interest. The interest is compounded daily, and
the information is printed for every 30 days. The formula for com-
pound interest is as follows:

Interest := Principal « (1 + Rate / 3kS5)
Here is the pseudocode (see below) for the program:

Get principal amount
Get number of year
Get interest rate
for each year do
for every day in the year do
calculate the daily interest
add it to the principal
if the day is divisible by 30 then
Write (information)

PAsCAL STRUCTURES 65

In this book we will express algorithms in a cross between Pascal
and English known as pseudocode. As your programs become more
and more complex, it will become increasingly difficult to conceive of
the entire program at one time. This is where pseudocode comes in.
Pseudocode is a language that is closer to the way people think than
Pascal. Pseudocode can be used to bridge the gap between the abstract
thoughts in your mind and a more concrete realization of these ideas
as a Pascal program. You may not need to write pseudocode for every
program you create, but if a program gets large and complicated or
you don’t know where to start, pseudocode can be a indispensable aid
in organizing your ideas.

Now here is the program:

program Interest;

const

DaysInYear =

var

Day, Years,

3k5;

Yr : Integer;
Rate, Interest, Principal : Real;

begin
Writeln('Interest Compounded Daily');
Writeln;
Writeln;
Write('Enter the principal t ')

Readln(Principal);
Write('Enter the number of years : ');
Readln(Years);
Write('Enter the interest HER D
Readln(Rate);
Rate:=Rate /
for Yr := 1 to Years do

for Day

100 ;
=1 to

begin
{Calculate daily interest]
Interest := Principal » (Rate / 3bS5);
{Add interest to principall
Principal := Principal + Interest;
if Day mod 30 = 0O then

begin

end;

Write('Press
Readln

end.

{Progran}

end

<Convert rate to a fraction>

3kS do

Write('For day ', Day:3);
Writeln(' The Principal is !,
Principal:8:2)

{FOR loop}
<Return> to continue ');

66 TuRrBO PASCAL FOR THE MAC

The While Loop

The second of Pascal’s looping structures is the While loop. Unlike
the For loop, where the number of iterations is known before the loop
is executed, the While loop is a free loop dependent on what happens
inside the body of the loop.

The structure of the While loop is as follows:

while Boolean expression is True do
Statementl;
Statement2;

First, the value of the Boolean expression is evaluated (similar to
the if statement); if its value is True, the loop body is executed and the
Boolean expression is once again checked. This process continues until
the value of the Boolean expression becomes False.

Enter the following program, which uses the While loop as well as
one of the special features of the Macintosh:

program NewLoop;

uses

Memtypes, QuickDraw, OSIntF, ToolIntF;
var

Count : Integer;
begin

Count := 0;
while not Button do
begin
Count := Count + 1;
Writeln ('Iteration Number', Count)
end
end.

If you run the program, you will see a quickly scrolling message in
the console window indicating the iteration of the loop. The loop is
stopped just by hitting the mouse button. How? Notice that the condi-
tional test in the While loop is not Button. Button is a special Boolean
variable maintained by Turbo Pascal (actually it is a Boolean function,

PASCAL STRUCTURES 67

which we will discuss later, but for now let us think of it as a Boolean
variable). It has a value of False if the mouse button hasn’t been
pressed since it was last checked and True if it has. Since we want the
loop to terminate when the button is pressed, we reverse the value of
Button so that it is False after the button has been pressed, terminat-
ing the loop. The unusual statement just after the program declara-
tion.

uses
Memtypes, QuickDraw, 0SIntf, ToolIntf;

is not a Pascal structure but is rather a message to the Turbo compiler
that certain features of the language not currently included into a
program will be used. The use of Button necessitated this.

Normally, we must alter the value of the condition being checked in
the body of the While loop; otherwise an infinite loop will be created.
For example, the following loop will never end since the value of the
variable Int will never change and thus never be greater than 5:

Int := 1;
while Int <= § do
Writeln(Int);

This loop will continue forever, or until the frustrated programmer
turns off the computer. This is a good time to make an important
point: Always save your program before running it. This would pre-
vent loss of the program if you had to reboot the computer to stop a
runaway loop. If you plan to do a lot of programming, it will make
sense to install the plastic programmer’s switch on the left side of your
Mac. This will allow you to interrupt the execution of a program by
producing a System Error and should allow you to resume using the
Turbo editor without powering down the computer and losing any un-
saved data.

Our next example of a While loop is used to simulate the div and
mod operators.

progran Divide;
var

Top, SaveTop, Bottom, Answer, Remainder : Integer;
begin

Write('Enter the dividend : ');

68 TurBo PASCAL FOR THE MaAC

Readln(Top):
Write('Enter the divisor : ');
Readln(Bottom);
Answer := 0;
SaveTop := Top;
while Top >= Bottom do
begin
Top := Top - Bottonm;
Answer := Answer +1
end; {while}
Remainder := Top;
Writeln(SaveTop, '/',Bottom, ' = ', Answer:l, ' R ',
Remainder:1);
Write('Press <Return> to continue ');
Readln
end. {Program}

Let us trace the program for the values Top := 18 and Bottom := 5 in

Table 3-7.
Table 3-7. Values for Top and Bottom
Top Bottom Answer Remainder SaveTop
18 5 0 — 18
13 5 1 — 18
8 5 2 — 18
3 5 3 — 18
loop terminates
3 5 3 3 18

Notice that SaveTop was needed to hold the value of Top since the
original value is changed in the loop.

QUICK TO THE DRAW

Perhaps the most important component of the Macintosh is the
QuickDraw graphics library stored in the Mac’s ROM. QuickDraw
forms the foundation on which many of the features are built. Like the
other features of the User Interface, QuickDraw was designed to eas-

PascAL STRUCTURES 69

ily interact with programs written in Pascal. This is especially true
with programs written with Turbo Pascal. At this point in our familiar-
ity with the Pascal language, we can think of QuickDraw as consisting
of a number of “commands” used to generate and display graphics.
The first set of commands we will look at are the rectangle commands.
The QuickDraw commands operate in part with a special set of graphi-
cal data types. To access these commands and data structures, a pro-
gram needs to communicate with several of Turbo Pascal’s units. A
unit is essentially a section of the Pascal system not normally con-
nected to a program. To access the units needed to work with Quick-
Draw, the Uses statement is included right after the Program
declaration.

uses
Memtypes, QuickDraw, 0SIntf, ToolIntf;

The Mouse

We have already seen how the Button function can be used to report
on the state of the mouse button. Button and other mouse routines are
not actually part of QuickDraw but belong to the Toolbox’s Event Man-
ager, of which we will see more later on. The second of the mouse
routines is GetMouse, which reports on the position of the cursor on
the screen. By successive calls to GetMouse, we can track the cursor as
it is moved across the screen by the mouse. GetMouse reports the
cursor position in two components, the current horizontal and vertical
coordinates relative to the upper left-hand corner of the cursor win-
dow. To do this we need to use one of QuickDraw’s special data types
called point. A variable of type point has two components, horizontal
and vertical position. A variable is declared a Point in the variable
declaration section.

var
Position : Point;

This variable of type Point named position actually has two parts
known as Position.H and Position.V.

70 TurBO PASCAL FOR THE MAC

Position.H—holds the horizontal distance from the upper left-hand
corner

Position.V—holds the vertical distance from the upper left-hand cor-
ner

The next program displays the position of the cursor in the console
window.

program MouseDenmo;

uses
Memtypes, QuickDraw, 0SIntf, ToolIntf;
var
Position : point;
begin
while not Button do
begin
GetMouse(Position);
Writeln('Horizontal = ' : 15, Position.H : 3);
Writeln('Vertical = ' : 15, Position.V : 3);
end;
Writeln('That's all, folks!)
end.

Run the program and move the cursor around the screen with the
mouse. The coordinates of the cursor will be displayed in the window.
Notice the speed with which the information is written to the screen.
The program is terminated by hitting the mouse button.

Rectangles

The first drawing shape of QuickDraw we have seen are rectangles.
Here is the deeper explanation promised. A rectangle is a mathemati-
cal structure defined by two points, the point in the upper left-hand
corner of the rectangle and the point in the lower right-hand corner.

To display a rectangle in the console window, you must first declare
a variable of one of QuickDraw’s data types called Rect. The Rect data
type is not a standard part of Pascal data type and is used only by
QuickDraw.

This variable declaration:

PascaL STrRucTures 71

(Upper, Left)

(Lower, Right)

Figure 3-3. Coordinates of a Rectangle

var
Square, Oblong : Rect;

declares the variables Square and Oblong to be of the Quickdraw data
type Rect.

Once we have defined a rectangle, we are ready to assign coordi-
nates to it. This is accomplished with the use of the SetRect command.
SetRect works with five arguments, the name of the rectangle and the
upper left-hand and lower right-hand points listed as follows: upper
horizontal coordinate, upper vertical coordinate, lower horizontal co-
ordinate, lower vertical coordinate. Here are two SetRect examples:

SetRect(Square, 10, 10, 40, u40):
SetRect(Oblong, 50, 50, &0, 90);

The first command defines Square as having an upper left-hand cor-
ner of 10,10 and a lower right-hand corner of 40, 40. The second com-
mand defines Oblong as having an upper left-hand corner of 50, 50 and
a lower right-hand corner of 80, 90. Assigning coordinates to a rectan-
gle does not display that rectangle in the window. To do that we need
the FrameRect command.

program DrawRectangles;
uses
MemTypes, QuickDraw;

72 Turso PASCAL FOR THE MAC

var
Square, Oblong : Rect;

begin
SetRect(Square, 10, 10, 40, 40);
SetRect(Oblong, 50, 50, 80, 90);
FrameRect(Oblong);
FrameRect(Square);
Readln

end.

Displayed in the window by this program is

Figure 3-4. Sample Rectangles

Now that we know how to draw a single rectangle, we can create
interesting effects by using a For loop to display a series of overlap-
ping rectangles. We simply need to define a rectangle and then rede-
fine it shifted slightly.

An animation effect can be achieved by erasing a rectangle after it
has been drawn and then redisplaying it shifted slightly. The
EraseRect command is used to erase the rectangle indicated.

program MovingRectangles;

uses
MemTypes, QuickDraw;
var
Square ¢ Rect;
Shift, I : Integer;

begin

PASCAL STRUCTURES 73

begin
Shift := Shift + §5;
SetRect(Square, 10 + Shift, 10 + Shift,
40 + Shift, 40 + Shift);

FrameRect(Square); {Draw rectangle}
EraseRect(Square) {Erase rectangle}
end;
Write('Press <Return> to continue ');
Readln

end.

This program moves the rectangle across the window at a fast speed.
You can slow down the animation by wasting time between the writing
and erasing of the rectangle. This can be done by inserting a For loop
that does nothing, such as

for K := 1 to 20 do;

Notice that no statement is actually executed by the For loop.

Experiment with these programs and try to create interesting dis-
plays. You might want to use the PaintRect command instead of
FrameRect. PaintRect will display a rectangle that is filled in with
black.

You should note that the coordinate system in the console window
has 0,0 as the upper left-hand point. This will not change even if you
enlarge or move the window. '

Try More

Develop a program using a While loop that draws increasingly
smaller rectangles inside of rectangles until they are too small to
draw.

74 Turso PASCAL FOR THE MAC

Reach Further

Develop a program that moves a rectangle from the left side to the
right side of the screen, but rotate the rectangle as it moves.

Combining the Mouse and a Rectangle

QuickDraw contains a routine called PtInRect, which will tell us if a
particular point is in a particular rectangle. PtInRect is a Boolean like
Button and returns True if the point is inside the rectangle and False
otherwise. PtInRect needs two pieces of information to work, the point
and the rectangle. This is deceptively powerful; by connecting this
with the GetMouse procedure, we can easily tell the position of the
mouse relative to other objects on the screen. A short example pro-
gram:

program Boong;
uses
Memtypes, QuickDraw, 0SIntf, ToolIntf;
var
R : Rect;
Position : point;
Done : Boolean;
begin
SetRect (R, 30,30,40,40);
FrameRect(R);
Done := True;
While not Done do
begin
GetMouse(Position);
if ptInRect(Position, R) then
begin
Writeln('Booong'):;
Done := False;
SysBeep(100)
end; {if}
end; (While}
end. ({progranm}

PASCAL STRUCTURES 75

ple. For instance, SysBeep(100) will sound the speaker for 2.2 seconds.
A programming style note: This program had lots of ends, each one
labeled with a comment for clarity.

We can make this program slightly more interesting by moving the
rectangle across the screen, making it sort of a target to hit with the
mouse. This can be done by framing the rectangle, erasing it, changing
the coordinates of the rectangle, and then reframing it. An animation
effect is created by the continual drawing, erasing, and offsetting of
the rectangle.

program BooongBooong;
uses
Memtypes, QuickDraw, 0SIntf, ToolIntf;
var
R : Rect;
Position : point;
Done : Boolean;
h,v : Integer;
begin
h := 30; v := u40;
Done := True;
While not Done do
begin
SetRect(R, h,h,v,v);
FrameRect(R);
GetMouse(Position);
if ptInRect(Position, R) then
begin
Writeln('Booong!');
Done := False;
SysBeep(100)
end ;{if}
h :=h + 1; {move the rectangle}
v :=V + 1;
{Check to see if the rect has crossed the screen}
if h > 51) then Done := False;
end; {while}
end.

If you run the program, you may think that the box moves too
quickly across the screen. This is because of the sheer speed of pro-
grams compiled by Turbo. In fact, a precaution was taken to end the

76 TurBo PASCAL FOR THE MAC

program if the horizontal coordinate of the rectangle exceeds 511. A
way of slowing down the movement of the box would be to include
somewhere in the While loop a statement that does nothing but kill
processor time. A single statement just won’t do, what is needed is a
For loop that just iterates without performing anything. Here is a
slower version of the program:

program SlowBoong;
uses
Memtypes, QuickDraw, O0SIntf, ToollIntf;
var
R : Rect;
Position : point;
Done : Boolean;
h,v : Integer;
Wait : Integer;
begin
h := 30; v := 40
Done := True;
While not Done do
begin
SetRect(R, h,h,v,v);
FrameRect(R);
GetMouse(Position);
if ptInRect(Position, R) then
begin
Writeln('Booong');
Done := False;
SysBeep(100)
end ;({if}
h := h + 1; {Move the rectangle}
v := v + 1;
{Check to see if the rect has crossed the screen}
if h > 511 then Done := False;
for wait := 1 to 500 do; {Kill some time}
EraseRect(R);
end; ({(while]
end.

e

PASCAL STRUCTURES 77

CHAPTER SUMMARY

We have covered much ground in this chapter. First, decision mak-
ing with the If statement and conditional tests were introduced. Two
loops, the For and While, were covered, and many examples of both
were presented. We also took our first look at QuickDraw implement-
ing programs using rectangles and the mouse routines Button and
GetMouse. Finally, we used much of what was presented in the chap-
ter all together in a program that moved a rectangle across the screen
and made the user catch it with the mouse. In the next chapter, we will
take a deeper look at data types, see more of the routines available in
Pascal and the Toolbox, and design and write our own routines.

4

Functions and More
on Data Types

INTRODUCTION

In Chapter 2, the data types Integer, Char, and String were intro-
duced. These are not, however, the only data types available in Turbo
Pascal. In this chapter, we will take an in-depth look at all data and
the functions, both built-in and user-defined, that can be used with
them.

THE CHAR TYPE

We have seen that the data type string can be used to hold a se-
quence of characters. The type Char also holds character data but is
limited to holding just one single character. It may seem strange that
both String and the more limited type Char are available. However,
historically, standard Pascal only included Char; String is an extension
added to the language by many versions of Pascal including Turbo.

The declaration: '

var
Ch : Char;

declares a variable named Ch, capable of holding a single character.
The following statement

79

80 Turso PascAL FOR THE MAC

Ch

¢ = 'A':

Writeln(Ch);

assigns a character ‘A’ to Ch and then displays it.

Character data is stored in the Macintosh in a form known as ASCII
(which stands for American Standard Code for Infor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>