
~
:.9E
J.S.A /
_/

UNDERSTANDING

APPLE®
IAlll:

Step-by-step Instruction for
the Beginner

An Alfred Handy Guide E:':]

by Richard G. Peddicord

UNDERSTANDING

APPLE®
BASIC

by Richard G. Peddicord

AN ALFRED HANDY GUIDE

Computer Series Editor:
George Ledin Jr.

~ ALFRED PUBLISHING CO., INC.
~ ~ SHERMAN OAKS, CA 91403

This Handy Guide is not a publication of Apple Computer
Inc. and should not be used in lieu of the instruction manuals
that accompany their products. All information regarding
Apple computers may not be accurate or completely up to
date.

Editorial Supervision: Joseph W. Cellini

Cover Design: Paula Bingham Goldstein

Copyright © 1983 by Alfred Publishing Co. Inc.
Printed in the United States of America
All rights reserved. No part of this book shall be reproduced
or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any
information or retrieval system without written permission
of the publisher.

Alfred Publishing Co., Inc.
15335 Morrison St.
PO Box5964
Sherman Oaks, CA 91413

Library of Congress Cataloging in Publication Data

Peddicord, Richard G.
Underst.anding Apple BASIC.

(An Alfred Handy Guide)
Bibliography: p.
Includes index.
1. Apple .// (Computer)-Programming. 2. Basic

(Computer program language). I. Title.
QA76.8.A662P43 1983 001.64'2 83-15654
ISBN 0-88284-246-3

CONTENTS

1. INTRODUCTION • • . • • • • • • • • . . . • • • . • • . . . • . . • . • 4

2. ABOUT YOUR APPLE ..•.••.•......•.•....• 5

3. A PRINTING CALCULATOR............... 9

4. LINE NUMBERS AND STATEMENTS • • • 12

5. VARIABLES AND ASSIGNMENT
STATEMElfrS •••••••••••••••••••••..•••.•.••• 14

6. INPUTTING DATA FROM THE
KEYBOARD • . • • • • • 16

7. READING DATA FROM YOUR
PROGRAM ••••.•••••• ••••••.•••••• •. ••••.. •••• 18

8. A COMPUTERIZED SHOPPING LIST • • • 20

9. ARITHMETIC EXPRESSIONS • • • • • • . • • • • • 22

10. LOGICAL EXPRESSIONS • • . . • . . • • • • • • • • • • • 24

11. IF ••• THEN .~................................ 26

12. FOR • • • NEXT • • • • • • • . . . • . . • • • • • • • • . • • • • • 28

13. LOAN AMORTIZATION . • • . • . . • • • • • • • . . • • • . . 31

14. MAGIC SUMS • . • • . • • • • • • • • • • . . • • • • • . • 33

15. STRING VARIABLES . • . • • • . . • • • . • 34

16. ONE-DIMENSIONAL ARRAYS • • • • • • • . 36

17. ACCOUlfrS RECEIVABLE • . • • • • • • • • . • • • • • 38

18. BUBBLE SORTING . • . • • • • • • • • . • • • . • . • . • 41

19. TWO-DIMENSIONAL ARRAYS • • • • • • • • • • . . 43

20. LOW-RESOLUTION
COLOR GRAPIDCS • • • • . • . • . . . • • • . • . • • • 46

21. HIGH-RESOLUTION
COLOR GRAPmcs • • • • • • • • • • • • • • . . . • • • . • • • • • 48

22. SYSTEM AND EDITOR COMMANDS . . . • . 50

23. DISK OPERATION • . • • • • • • • • • • • . • • . . . • • • 51

24. SEQUENTIAL FILES • • • • • • • • • • . • • • • • • • • . • • • 53

25. WHERE TO GO FROM HERE • • • • • • • • • • • • • 56

26. BIBLIOGRAPHY • • • • . • • • . • • • . . • • • • • • • • • • • • • • 57

27. INDEX • • • . • • • • • • • • . • • • • • • • • • • • • . • . • • • • . • • 58

3

1. INTRODUCTION

The Apple II computer continues to be one of the
most popular microcomputers of all time. The version
of BASIC that has become standard on these machines
is called Appleso:ft BASIC, and it is one reason why
the Apple is so popular.

Appleso:ft BASIC lets you do things that other
versions of BASIC do not, such as put many state
ments on the same line, use long variable names, and
omit certain parameters. Kids like it because it permits
lots of variation, and because it is user-friendly.

If you want to learn Applesoft BASIC, this Handy
Guide is a good place to start. It is very important that
you work the examples on an Apple computer and that
you try some of the exercises. Otherwise you may for
get, or never understand, some of the concepts.

Many schools and libraries have one or more
Apples. Phone around and ask if you can use one. Many
computer stores have Apples, and perhaps even some
of your friends have them. And of course you can always
buy one. The important thing is to be able to use an
Apple when you want to.

4

2. ABOUT YOUR APPLE

A great variety of software and hardware are
available for the Apple II computer, and its Applesoft
BASIC has become one of the more flexible BASICs in
operation today.

THE SCREEN

The Apple II features a high-resolution color screen
of 280 columns and 196 rows, with six different colors
(black, white, orange, pink, blue, and green) available
for each pi:cel, or picture element. This is about the
same resolution and color range as the personal game
computers on the market today. It follows that you can
program games on your Apple II. It is not possible to
attain the same speed as these commercial programs,
however, because you will be working in Applesoft
BASIC, and the commercial programs are written in
assembly language, which is faster because it's closer
to the machine language itself.

The low-resolution screen on the Apple II has 40
columns and 40 rows, and each pixel can be one of 16
different colors from black to white. The reason why
you have more choice of color with the lower resolution
has to do with the way the color TV signal is generated
and how the color image is stored.

HOOKING UP YOUR APPLE

The configuration that has proven to be most cost
effective and useful consists of an Apple II computer
with one disk drive connected to a TV set via an RF
modulator. The RF modulator converts the Apple's
TV signal into the same kind of signal that the televi
sion receiver is expecting. Most RF modulators for
computers generate an output signal that is picked up
on Channel 3 or 4.

The first thing you must do before turning on the
power is to check the connections on your system. Your
Apple II computer has a power cord that plugs into the
back (see Figure 2.1). Plug this into a grounded 115-
volt AC circuit. If you try to use an ungrounded circuit,
the manufacturer's warranty is void, and for good
reason.

Coming out of the Apple will be what looks like
a hi-fi cable, and indeed it has the same kind of plug
on the end, a so-called RCA phono plug. This plugs
into a little metal box that attaches to your TV set
antenna, and to your outside TV antenna. There will
be a sliding switch on the box that switches power
between the computer and the antenna. This arrange
ment permits the family color TV set to be used as
your Apple's output device.

You may or may not have a disk drive connected
to your Apple. If one is connected, so much the better.
If one is not connected, do not attempt to connect one
using only this Handy Guide. You must use the instruc
tions supplied with the drive. You can, however, hook
up your Apple II to a TV set and turn on the power to

5

Figure 2.1 Hooking up your Apple//.

both. The Apple's power switch is located in the back
on the far left. It is a rocker switch; push the top part
in to turn the power on. The power light in the lower
left corner of the keyboard will come on.

THE KEYBOARD

A diagram of the Apple II keyboard is shown in
Figure 2.2. Your first step is to try out a few of the
essential keys. The RESET key is most useful. Try it.
You will hear a bleep from the Apple's speaker and the
flashing square cursor will be immediately to the right
of the Applesoft prompt character,] . Whatever pro
gram you were working on will still be in memory, and
whatever shapes you had entered will still be there.
In other words, no real harm is done if you press
RESET.

The SHIFT key works the same as in a type
writer: hold it down while you strike a key; the upper
case version of the character will be sent to the central
processing unit.

In Applesoft, you enter characters one at a time
and then press RETURN. Until you press RETURN,
the machine has no idea what you have typed in. There
fore you can make all the corrections you want to a line
before sending it centrally. The arrow or cursor keys
(on the right side of the keyboard) are extremely useful

6

-.l

~

i'
t.:>
~

~
<t>

~
'E..
<t>
::.:::::

~
C"'
0

~

Hold down while striking
another key. Nothing will
appear on screen, but
special character will be
sent centrally

Press for
upper case

POWER I 48 K I

Resets system
I

Causes repetition of
any key held down

I
Returns to beginning
of new line

I
Moves right past
characters

I
---Moves left past

characters

in making corrections, since they move the cursor across
text on the screen without changing it. Only when you
press another key will the indicated change be made.
You will use these keys often.

If you want to move the cursor over many char
acters, you can hold down the repeat key (REPT) while
you hold down one of the arrow keys. This same REPT
key will cause any character to be repeated.

Some commands that you should be aware of are
listed below:

8

HOME Clears text and moves cursor to
top left.

DEL Put beginning line number after
DEL, then a comma, then the
ending line number. Every line
from begin to end will be
DELeted from program.

LIST Lists your program.

RUN Runs your program.

PR#l Enables printer in slot 1.

PR#6 Enables disk drive in slot 6.

PR#O Disables printer.

EXERCISES

1. Play follow the leader with us. Simply do each
thing listed below as many times as indicated:

a. Press RESET 3 times

b. Press SPACE BAR 2 times

c. Press RETURN 1 time

d. Press your nose 1 time

e. Press letter M 10 times

f. Press left arrow(+-) 10 times

g. Type PRINT ''GOTCHA'' 1 time

h. Press RETURN 10 times

3. A PRINTING CALCULATOR

Applesoft BASIC has a feature that is quite use
ful if you have some arithmetic calculations to perform.
Basically all you have to do is type the word PRINT

I followed by an arithmetic expression that the machine
can understand, hit RETURN, and the machine will
give you the correct answer.

ADDITION AND SUBTRACTION

Try this one:

PR I NT 5+6 (hit RETURN)
11

You can put several additions or subtractions in
one expression. If you don't use parentheses they will
be performed from left to right. For example,

PRINT 5+6-7-3+ll
5

The machine adds 5 and 6 to get 11, then sub
tracts 7, then subtracts 3, then adds 4.

If you put in parentheses, you can change the
meaning, as in:

PRINT 5+6-<7-3>+4
11

Because the parentheses are there, the machine
must subtract the 3 from the 7 before it does anything
else.

MULTIPLICATION

Multiplication is indicated by the asterisk *, as in

PRINT "13 TIMES 14 IS "13*14
13 TIMES lll IS 182

Notice that if you put a message in quotes it will
print exactly what you wrote. This allows you to iden
tify what the numbers are.

If you need to multiply a sum of items by a given
number, as in a sales tax calculation, you would use
parentheses:

PRINT Cl.26+0.23+4.99>*0•6
.3888

DIVISION

Division is indicated with the slash sign (!). As
with multiplication, if you want to divide a sum of num
bers by a certain number, be sure to put all the terms
of the sum within parentheses. This forces the machine

9

to add them together before it divides. Say you want
the average of 5, 43, and 67. This will give it to you:

PRINT "AVERAGE IS ";(5+43+67)/3
AVERAGE IS 38.3333333

If you have an expression with only multiplication
and division, the operations will be performed from
left to right. Thus:

PRINT 1/2*3
1. 5

But:

PRINT 1/(2*3>
.166666667

We say that multiplication and division are on the
same level of the arithmetic hierarchy. A string of mixed
multiplications and divisions will be performed from
left to right unless parentheses make it otherwise.
Multiplication and division take precedence over addi
tion and subtraction. This means that they will be done
first.

For example,

PRINT 3+2*6
15

If addition took precedence over multiplication it
would add, then multiply, as in:

PRINT <3+2>*6
30

EXPONENTIATION

The last arithmetic operation is exponentiation,
the power operation. Recall that "a to the power b"
means a muliplied by itself b times. On the Apple key
board the hat symbol (/\)means exponentiation. Thus:

PRINT 3/\2
9
AND
PRINT 2/\3
8

Exponentiation is at the top of the hierarchy, in
that it will be done before multiplication and division.
A string of exponentiations will be done from left to
right.

IO

EXERCISES

1. Perform the following arithmetic calculations
using a print statement:

a. 457 + 32 + 94

b. 34 times 237

c. 64 divided by 16

2. Find the average of 3.208, -56.007, 3412.76
and -.004.

3. How much sales tax must you pay (at 6%) on
the total of the three purchases: $23,689;
$108,544; $14,320.

11

4. LINE NUMBERS AND
STATEMENTS

There are two different ways your Apple can exe
cute the commands that you give it. One of these, as
you have seen, is to immediately execute each state
ment as soon as you press RETURN. You tell the sys
tem to do this by not putting a number in front of the
statement.

If you put a number in front of the PRINT com
mand, or any other command for that matter, nothing
happens when you press return except the line you just
entered jumps up one line on your monitor, to make
room for the next line. The system is not even looking
at your statements, except to check that they have a
line number.

Every time you enter a statement with a line
number, the machine stores it in order of increasing
line number. If you just type the number and press
return, it will delete any statement with that number
that was stored. If you type a statement number, then
a statement, when you press return the new statement
will replace any old one with the same line number.

Whenever you want to see what your program
looks like so far, type LIST. The program lines will be
listed in increasing line number order.

In Applesoft BASIC you can have as many sep
arate BASIC statements on a line as you want. This is
a rather unique feature that proves very useful. State
ments on the same line are separated by a colon (:).
This is especially useful when you want to make a remark
(REM) on the same line.

Enter and RUN this program:

10 REM FIRST PROGRAM
20 PRINT "**********************"
30 PRINT "* APPLESAUCE IS BOSS *"
40 PRINT "**********************"

When the Applesoft prompt character appears after
the RETURN key is pressed in line 40 you type in the
three letters R-U-N and press RETURN. You should
get

RUN

* APPLESAUCE IS BOSS *

If you don't get this output type LIST and press
return. Your four-line program will appear on the screen,
and what was on the screen before gets scrolled out of
sight one line at a time. Check the LISTing against
the above listing for errors.

As the machine runs your program, line by line,
in increasing order of line number, it checks the syntax
of each statement as it executes it. If something goes
wrong, a ?SYNTAX ERROR IN (statement number)
will appear. That will tell you the first statement the
machine had difficulty with. Correct that statement
and RUN your program again.

12

To correct a program line type its line number
and the correct version. When you press RETURN it
will replace the old incorrect one. Later we will show
you how to use the editor to correct your errors.

EXERCISES

1. Make up a 4-line program with 3 statements
per line. Remember to use a colon (:)between
each statement. RUN your program.

2. List your 4 line program from Exercise 1. Find
one statement that you can delete and still have
your program run. Delete that statement by
retyping the line number followed by the
revised line. List your program to make sure
everything looks OK, then run it.

3. Enter a few PRINT calculations with the line
numbers 10, 20, 30, etc. in front of them. Run
your program.

4. Write a program that prints your name and
address, including ZIP code, after printing 3
blank lines.

5. Write a program that prints ''I WILL NOT
PLAY WITH COMPUTERS'' 100 times. You
may have to look ahead in this book, or ask
someone who knows BASIC, to solve this
problem.

13

5. VARIABLES AND
ASSIGNMENT STATEMENTS

To get any real work done by your program you
will have to use variables in place of actual numbers,
because you will want to do the same thing to different
sets of numbers or words. A variable is just a name
for a memory location that holds the data you want
your program to work with.

Your Applesoft BASIC recognizes three kinds of
variables, corresponding to three different types of data.
Except for special occasions, when working with num
bers you will be using the floating point numbers that
carry nine digits precision. These have variable names
consisting of letters and digits only and the first char
acter must be a letter.

Try this program:

10 REM FIRST PROGRAM WITH VARIABLES
20 V=3 : X=5 : W=-9
30 PRINT V+X-Wt "GOTCHA"

You should get

17 11 GOTCHA 11

If you didn't get this output, LIST your program and
locate the errors. Those are colons(:) in line 20, because
we are putting more than one statement on a line.

You can use variables to store strings of charac
ters, as in:

10 REM STRING VARIABLES
20 AS= 11 GOTCHA 11

30 PRINT "*** 11 ;As; 11 ••• 11 ;As;~***"

In line 20 there are a couple of things to notice.
For one, notice that the name for a string variable ends
in a dollar sign. This is always true. For another, notice
that the string itself, GOTCHA, is put between double
quotes. Whenever you assign a string of characters to
a string variable you should put double quotes around
the string.

Only the first two characters of a variable name
are used by the machine to uniquely identify the var
iable. You can use longer names to help yourself
remember what they stand for, if you want, but the
machine will only see the first two characters. Also
your name cannot contain as a subword any of the
reserved words used by Applesoft.

It is probably best to use one or two character
names whenever possible.

Consider this program:

10 REM ARITHMETIC ASSIGNMENTS
20 X=<5+6)/3 : V = 2/3
30 A=X+V
40 AS= 11 THE ANSWER IS II

50 PRINT A$;A

Whenever a statement begins with a variable name
followed by an equal sign it is called an assignment

14

statement. Its function is to take whatever appears on
the right side of the equals sign and put it in the var
iable location specified on the left side. In Applesoft
BASIC you can preface the variable on the left with
the word LET. For this reason these assignment state
ments are also called LET statements.

EXERCISES

1. Assign the values 3.14159, 181156, and .007 to
the variables P, C, and E respectively. Then
print the product of all three numbers. Put one
statement per line, four lines in all. List, then
run, your program.

2. Assign the value ZORO to the string Z$. Then
print it five times across the line, three spaces
between each printing.

3. (For advanced students only.) Make a large Z
across the screen using the word ZORO from
Exercise 2.

Hint: Use about 24 print statements.

15

6. INPUTTING DATA FROM THE
KEYBOARD

The programs you have tried so far have not
required that you do anything once your program starts
running. If there was any special data in it, you had to
put it there before you ran it.

It happens a lot that the programmer does not
know what numbers are going to be used when the
program is run. Therefore some means must be used
to enter the proper values while the program is run
ning. BASIC uses the INPUT statement for this
purpose.

Just so that you can get used to it, enter and
RUN this program:

10 REM FIRST INPUT PROGRAM
20 INPUT "GIVE US A NUMBER ";N
30 PRINT "YOUR NUMBER IS ";N

When you run it you will see the line GIVE US
A NUMBER printed, and then the cursor will wait in
a flashing mode for your number N. If you type in a
nonvalid number it will generate a ?REENTER mes
sage or sometimes an ?EXTRA IGNORED message.
Experiment around with this program using different
input errors. See what happens.

You can INPUT string variables, too, as in:

10 REM STRING VARIABLE INPUT
20 INPUT "WHAT IS YOUR FIRST NAME? ";Fs
30 INPUT "WHAT IS YOUR LAST NAME? ";Ls
ao PRINT "YOUR FULL NAME IS ";Fs;" ";Ls

You can input more than one data line at a time,
as in:

10 REM INPUT OF SEVERAL ITEMS
20 INPUT A1 A$1 B

When you RUN this you will see a question mark appear
on the far left, and the cursor will be waiting imme
diately after it. It is waiting for a number to put into
A. If you don't give it one (try it) it will respond with
a ?REENTER and when you do finally get it right,
that number will go into A. The machine will prompt
you for the additional input with a double question mark
(??)if you have not yet satisfied the INPUT statement.

In order to satisfy an INPUT statement with one
press of RETURN, you must separate your input items
with commas and include all string variable data inside
double quotes. If you type

?51"GOTCHA"16 <RETURN>

you can satisfy line 20 above with only one return.
In general it is best to INPUT only one variable

at a time and also have some kind of a prompt message.

16

EXERCISES

I. Write a program1to test someone's lmowledge
of multiplication. Ask them to do these mul
tiplications: 2 x 3, 5 x 9, 43 x 17, 856 x 222.
Ask them one at a time and compare the input
with the correct value. If they agree print
VERY GOOD and go on to the next question.
If the input is wrong print NO, THE COR
RECT ANSWER IS followed by the correct
answer. Then go on to the next question. When
all questions have been asked and answered
inform the person how many they got right.

Hints: Begin a simple program with just the
first question. (When you get that much to work
you can go on.) Repeat the structure you had
for the first question three more times. You
might want to use subroutines for the mes
sages to the user, because these are the same
for each of the questions. For example, if you
have in your program the lines

1000 PRINT "VERY GOOD"
1010 RETURN

. then every time you need to print VERY GOOD
all you have to do is use the ~ommand

130 GOSUB 1000
140 RE" PROGRA" RETURNS TO HERE

and the program will jump to line 1000 and
begin executing whatever instructions it
encounters. When it finds a RETURN state
ment, it jumps back to the statement imme
diately following the GOSUB.

2. Ask someone if they have heard of black holes.
Take their answer A$ and test it. If it is Y or
YES print MY, MY, YOU KNOW SO MUCH
and stop. If A$ is Nor NO print WELL THEY
ARE QUITE FASCINATING and stop. For
any other answer print PLEASE REPEAT
and ask the question again.

17

7. READING DATA FROM YOUR
PROGRAM

There is another way you can furnish your pro
gram with data while it is running. In the method out
lined in this chapter, you put the data in the program
using special DATA statements. For example, we might
have four names, each with an age and a height in
inches. Go ahead and enter this data:

10 REM FIRST PROGRAM WITH DATA STATEMENTS
20 DATA "GEORGE JONES"t 23t71
30 DATA "MONIR AFGAJAN"t 8t55
40 DATA "QUAN TRAN", 67163
50 DATA "MARCY WU"t 34t67

The first thing we want to do is to READ these
DATA statements and print the results. So as not to
have to write four separate print statements, we are
sending the program back to the same READ state
ment over and over again. When there is no more data
the program will stop. Try it:

60 READ N$1A1H
70 PRINT N$tAtH
80 GOTO 60

You will get the message ?OUT OF DATA ERROR
IN 60, and the cursor will wait for your next instruction.

Notice that by using commas between the print
elements in line 70 the different elements are aligned
with the tab settings on the screen.

You could have put all the data in one long DATA
statement or you could have used a separate DATA
statement for each item. READ and DATA work as a
team, and they follow these simple rules:

1. All the data elements in all the DATA state
ments in your program are collected together
as one string of data elements. They are col
lected in increasing order of line number.

2. Every time a READ statement anywhere in
your program has to read a data element, it
goes and reads the first available element that
has not already been read before in the same
program. The first element read is the first
element in the DATA statement with the low
est line number.

Another way to read all four DATA statements
without writing four INPUT statements and without
getting into a loop which triggers an error message is
to use a FOR ... NEXT loop, which we discuss in the
next section. For now, overlay the lines 60, 70, and 80
that you have on your screen with these lines:

55 FOR I=l TO 4
80 NEXT I

and RUN the program. This will keep all the existing
lines the same except for line 80, which will be replaced

18

by the new line 80. Line 55 will be added. Go ahead
and LIST, then RUN your program. You should get
this result:

lLIST

10 REM FIRST PROGRAM WITH DAT
A STATEMENTS

20 DATA "GEORGE JONES",23,71
30 DATA "MONIR AFGAJAN",9,s5
40 DATA "QUAN TRAN" ,57,53
50 DATA "MARCY WU",34,57
SS FOR I = 1 TO 4
60 READ NS,AtH
70 PRINT N$tAtH
80 NEXT I

lRUN
GEORGE JONES
MONIR AFGAJAN
QUAN TRAN
MARCY WU

23
8
67
34

71
5S
63
67

19

8. A COMPUTERIZED
SHOPPING LIST

You may have seen on occasion someone in a
supermarket with a hand-held calculator, entering
prices, tallying up what everything will cost long before
they get to the checkstand. Creating such a comput
erized shopping list can be quite helpful, especially if
you can see the name of the item next to its cost. In
the program we develop here, you will enter an item
name, how many items, the cost per item, and a tax
code (0 = no tax, 1 = tax). Use one data statement
per item, as in:

100 DATA "MILK"t3tl.11t0

This statement tells the program that we are
buying 3 units of milk at $1.11 per unit, and that there
is no tax. Your data statements should start with a
number not less than 100, so as to keep room for the
program. The last data statement should have a null
item name and zeros for each of the remaining items.
When the program detects such a statement it will
print the totals and stop.

What do we want the program to accomplish? For
one, as each item is read we would want to see it printed,
and the quantity multiplied by the unit cost to give an
item cost. If the item is to be taxed, we would want a
separate figure indicating the amount of tax for that
item (we will use 6% sales tax).

When all items have been read and printed, we
would want to see a total for the item costs without
tax, a total for the tax items only, and a grand total,
the actual amount you will pay.

If you think you can write such a program, now
is the time to try to do it, before you see someone else's
solution. If not, the program below is one solution.

JLIST

10 REH ***SHOPPING LIST***
20 READ N$1Q1PtT
30 IF N$ = "" THEN GOTO 110
40 c = Q * p
50 TC = TC + C
60 IF T = 1 THEN TX C * .OS
70 IF T = 0 THEN TX = 0
BO TT = TT + TX
90 PRINT Q1N$tCtTX
100 GOTO 20
110 PRINT "TOTAL COST= ";Tc
112 PRINT "TOTAL TAX= ";TT
114 PRINT "PAY THIS AMOUNT: ";re

+ TT
120 DATA "BREAD"t2t1.56t0
130 DATA "BEER"t2t2.54t1
140 DATA "SHAMPOO"t1t3.66t1
150 DATA "CAT FOOD"t14t.33t0
200 DATA "MILK"t3t1~11t0
210 DATA "EGGS"t1t.75t0
300 DATA ""tOtOtO

20

lRUN

2 BREAD 3.12
0
2 BEER s.oe
.30l!B
1 SHAMPOO 3.66
.21s6
ll! CAT FOOD
a.62 0
3 MILK 3.33
0
1 EGGS .75
0
TOTAL COST= 20.56
TOTAL TAX= .s2aa
PAV THIS AMOUNT: 21.oeaa

21

9. ARITHMETIC EXPRESSIONS

Recall from our earlier discussion that there is a
hierarchy among the various arithmetic operations that
goes like this:

1. exponentiation

2. multiplication and division

3. addition and subtraction

4. left to right

If you plan to do much financial and/or scientific
programming you will need to translate some fairly
complex equations into Applesoft BASIC. Here is an
example of the kind of thing you might encounter:

M

1~·(1+1:00) ·L
Pl=--------

(1+1:oor - l
The first thing to do is to separate the original

expression into a numerator Nl and a denominator Dl:

M

Nl = 1:01>° (1 + 1!io) . L
Dl=(l+~)M -1

1200

This way we can tackle each expression sepa
rately. The denominator looks easiest, and indeed it is.
We get

D1=(1+R/1200)AM-1

In order to work out this expression, we needed
to remember the hierarchy. Pretend you are the machine
for a moment; what would you do with the above arith
metic expression? Because exponentiation is at the top
you will raise everything in parentheses to the mth
power and then subtract 1. The expression inside the
parentheses involves first dividing R by 1200 and then
adding the result to 1. Again we make use of the hier
archy: division is done before addition.

The numerator demands a slightly different
treatment. Since the factor R/1200 appears twice this
would suggest using a separate expression

F=R/1200

would save programmer time. The required expression
then becomes

The complete program segment required to com
pute Pl then becomes

22

100 F=R/1200
110 01=(1+Fl'"t1-1
120 N1=F*(1+F)'"M*L
130 Pl=Nl/01

EXERCISES

1. Assuming these values, A=3.28, B= -6.43,
C = 1.087, write arithmetic expressions to
evaluate the following formulas. Test your
expression by running it.

A+ B Ac-B2

a. -C- b. A-B

AcB2
- 4C) + 2AB + B6

c. C2 - 9A + 1

2. Rewrite lines 100 to 130 so as to have the
machine do less total work. Notice that the
same calculation is being done twice.

3. The warp factor, W, of the spaceship Astrol
ogos, is the product of the shield energy, E,
the spacecraft velocity, V, and the gravity
coefficient, G. The gravity coefficient is the
cube of pi (pi= 3.14159) plus the Hamburg
constant .06351. Write a single arithmetic
expression to compute the warp factor. Test
your expression with these values: E = 4.238,
V = 115.233 (kilometers per second). You should
get a warp of----.

23

10. LOGICAL EXPRESSIONS

We have seen in the preceding section that the
value of an arithmetic expression is a number, and that
the machine obtains this number by plugging in the
current values in the expression.

Another type of expression, equally useful and
similarly constructed, is the logical expression. These
expressions are made up of logical variables (or con
stants) and logical operations between these variables
or constants. Every logical expression, including con
stants and variables, can take on only the values 0
(false) and 1 (true). At a particular time a given expres
sion is either true (value= 1) or false (value= 0).

One of the most often used logical expressions is
a comparison between two numbers. There are six types:

BASIC expression
A=B
A<>B
A>B
A>= B

A<B
A<= B

MAmwording
A is equal to B.
A is not equal to B.
A is greater than B.
A is greater than or equal
toB.
A is less than B.
A is less than or equal to
B.

Armed with this knowledge, you can try some
things out on your machine. For example, you know
that 3 is less than 5. Test the machine; ask it to:

PRINT 3<5

Practice writing different expressions of this type
that you know are true or false. Check yourself with
the machine.

The next step is to become familiar with the log
ical functions AND, OR, and NOT. For example, the
statement

10 IF 3<2 OR 4>3 THEN PRINT "HI"

will print HI because the second term in the expression
4>3 is true. The OR condition requires that at least
one of the arguments be true. Thus

20 IF 3(2 OR 4>5000 PRINT "HI"

will not cause anything to print.
The other logical operation, AND, requires that

both arguments be true in order for its output value
to be true.

Can you tell what the following expression will
evaluate to?

PRINT (3<4 AND 4<=3 > OR 3·2 <>S

Enter it and press return. See if you were right.

24

EXERCISES

1. Write a program that asks the user for values
for x, y, and z. Then have your program eval
uate the logical expression

and print TRUE if it is true, FALSE if it is
false.

2. Write a logical expression that is true if 3 times
n squared is greater than or equal to 57 minus
x.

3. The user has just iilput the answer to a yes/no
question. Design an IF ... THEN statement
that branches to statement 340 if the inputted
string A$ is Y or YES.

4. Write a program to input the interest rate in
percent and the principal in dollars for an
intended loan. If the interest rate is above 15
or below 10, or ifthe principal is above 25000,
print the message PLEASE REVIEW LOAN
PARAMETERS and stop. Otherwise print
LOAN LOOKS OK and stop.

25

11. IF ... THEN

Every computer program needs to make deci
sions: if such and such is true do this, otherwise do
something else. Without this ability a program will either
not do anything or else it will get stuck in a repetitive
loop.

In BASIC the most common form of a decision
statement is the IF ... THEN statement. An IF ...
THEN statement consists of the word IF followed by
a logical expression, followed by the word THEN, fol
lowed by one or more statements on that same line.
Here is an example:

IF 3<5 THEN PRINT "GOTCHA"

If the logical expression is true at the time the
IF statement is executed, the program will begin exe
cuting the statement immediately following the word
THEN. If there are several statements on the same
line as the IF statement, these will be executed one
after the other.

If the logical expression is false, however, the
program jumps to the next numbered statement. Thus
the output of the program:

10 IF 3()3 THEN PRINT "HIP":PRINT "HIP"
20 PRINT "HURRAY"

is simply ''HURRAY.''
One very common use for IF ... THEN state

ments is in testing to see if a loop has completed its
work. In the following program we use an IF ... THEN
statement to make it stop after printing 10.

10 N=N+1
20 PRINT N
30 IF N<10 THEN GOTO 10
40 STOP

This program uses the fact that all variables are
set equal to zero before the program starts. Thus the
first value of N that is printed is N = 1.

The logical expression following the word IF can
be as complicated as you can handle, but usually quite
simple expressions take care of most tasks.

26

EXERCISES

1. Write a short program to ask the user for his
or her favorite number. If it is less than 4 7
print SORRY, IT'S TOO LOW and stop. If the
number they input is 47 or more print SORRY,
IT'S TOO HIGH. Make sure your program
only prints one message.

Solution:

10 inPut "whats Your favorite number?"H

20 if f<47 Print "sorrvr its too low":
stoP
30 Print "sorrvr its too hifh"

2. Ask the user for their street address number.
Print EVEN if it is even or ODD if it is odd.

Hint: to find out if a certain number, N, is
even, divide it by 2 and see if you get a whole
number. Try using this logical expression:

N/2=INT(N/2)

3. Make the machine count from 10 to 300 in
increments of 10, that is, have it print 10, 20,
30, 40, and so forth until it gets to 300.

Solution:

10 N=N+10
20 PRINT N
30 IF N<300 THEN GOTO 10
ao STOP

4. Ask the user for two numbers. If the square
of the first number is greater than twice the
second number print YES and stop. Other
wise print NO and stop.

27

12. FOR ... NEXT

The task of doing something over and over again
is at the very basis of getting work done, whether it
be taking a sum, building a protein, or mowing a lawn.
In fact the very notion of a machine is bound up with
this notion of doing something over and over again.

In programming, doing a thing over and over is
called the loqp procedure. In taking a sum of many
numbers, the loop procedure usually consists of adding
one number to a running total. In building a protein,
it could be adding one more amino acid to the growing
molecule. In cutting a lawn, it could be one straight
path plus a turn.

For our purposes a loop procedure will be a block
of BASIC statements that fits between a FOR ...
statement on top and a NEXT statement on the bot
tom. The entire block, including the FOR and the NEXT,
is called the loqp. Try this one:

10 REM FIRST FOR • • • NEXT LOOP
20 FOR N=l to 24
30 PRINT "GONNA GETCHA"
40 NEXT N
RUN

If you look at line 40 you will see a numeric var
iable following the word NEXT. In this case it is N.
Notice that it matches the numeric variable right after
FOR in line 20. Thus N is the loqp index. Its value is
being controlled and tested throughout the running of
the loop procedure.

Let us reprint that last program with some anno
tation so that you can learn the words that are asso
ciated with the use of FOR ... NEXT loops.

10 REM FIRST FOR • • • NEXT LOOP

the loop index~-----
20 FOR I = 1 TO 2a • (the end value)

30 PRINT "GONNA GETCHA"

40 NEXT I -------1 you don't really need to
show the loop index in
Applesoft

In Applesoft BASIC, the loop index is first set
equal to the initial value, and then the loop procedure
is immediately executed while that assigned value of
the loop index remains constant. At the completion of
the loop procedure, during the execution of the NEXT
statement, the value of the loop index is tested against
the end value, whi~h is placed immediately following

28

the word TO. If the loop index has reached or exceeded
the final value, the loop itself has been completed, and
program control goes to the statement following the
NEXT statement. If, however, the value of the loop
index has not reached the final value, then an incre
ment is added to the loop index, and program control
goes to the statement immediately following the FOR
statement, that is, the first statement of the loop pro
cedure. If we do not mention the increment value, as
in line 20 above, it is assumed to be one. Otherwise we
write STEP following the final value and give a value
for the increment. The increment can be positive or
negative.

The general form of a FOR ... NEXT loop is
therefore this:

FOR <LOOP INDEX> = <INITIAL VALUE> TO
<FINAL VALUE> STEP <increm~nt>

<LOOP PROCEDURE>
NEXT <LOOP INDEX>

The loop index following the NEXT can be deleted
in Applesoft BASIC. It will be assumed to belong to
the nearest FOR statement towards the top of the
program.

EXERCISES

1. Use a FOR ... NEXT loop to print the mes
sage THE JEDI ARE COMING 1000 times.
Use control-S (hold down CTRL key and press
S) to stop the output, control-S to resume it.
Use RESET to stop the program when you
want to move on.

2. Consider the following reggae stanza:

HAVE YOU HEARD THE OCEAN ROAR?
LET IT ROAR (repeat 7 times)

Print this stanza five times. Use two FOR ...
NEXT loops, the outer one going from 1 to 5,
and the inner one going from 1 to 7. Each cho
ral response LET IT ROAR should be on a
separate line.

3. Of the first 1000 integers (that is, the numbers
1, 2, 3, 4, ...) how many are divisible by 2,
5, or 17?

Hint: Inside a FOR ... NEXT loop that goes
from 1 to 1000 you can put a long IF statement
that increments a counter by one if it is true.
The logical expression following the IF would
have three expressions separated by two ORs.
The first expression would be true if the num
ber was divisible by 2. An expression like
N/2 = INT(N/2) will do the trick.

29

30

4. How many of the first 1000 integers are per
fect squares, that is, a number whose square
root is also an integer?

Hint: Use the square root function, SQR(N)
to take. the square root o~ N, and then use the
integer function to see if it is a whole number.
The answer is --.

5. Print the multiplication table up to 9 x 9, using
two FOR ... NEXT loops each going from 1
to 9, one inside the other. The trick here is to
use a PRINT statement which ends in a semi
colon, so that the next PRINT statement will
resume on the same line where the last one
left off. After the inner FOR ... NEXT loop
is complete (when you have just printed the
row number times nine) you can issue a PRINT
statement with nothing else in it. This will make
any PRINT statement following it start on a
new line.

13. LOAN AMORTIZATION

Just about everybody borrows money from time
to time, and there are all kinds of loans. A few con
cepts, however, apply to almost all loans.

Every loan has an amount that was borrowed.
This is called the principal, and we shall use the letter
B to represent it. Its value is obtained by this statement:

20 INPUT "HOW MUCH WILL YOU BORROW?";B

The next question, obviously, is at what interest
rate:

30 INPUT "HOW MUCH ANNUAL INTEREST?";!

If we know the annual interest rate I in percent,
like 12.6 percent, how do we convert that into a number
that we multiply the principal by in order to get the
interest? We divide by 100. For example, 57% of some
thing means to multiply the amount of that something
by .57. We have compounded the interest daily because
most banks do it that way. In line 30, as soon as we
know the annual interest rate, we might as well con
vert it into a daily interest factor:

40 D = <11365>*•01

This value of D times the balance due at the
beginning of the day gives the interest that must be
paid to borrow the money for that one day. If it is not
paid it is added to the balance due, and the next day
starts with a larger balance due.

The program next needs to determine the repay
ment schedule. This takes a couple of lines:

50 INPUT "HOW MANY PAYMENTS PER YEAR?";N
60 INPUT "HOW MUCH EACH PAYMENT?";P

At this point the program has all the information
it needs to print the amortization table, which shows
how the balance due goes down with time, assuming
all the payments are made on time.

We will compound the interest daily between
payments:

70 FOR 1=1 TO 365/N
80 B=B+B*D
90 NEXT

Now the payment arrives and we apply it to the
balance:

100 B=B-P
110 K=K+1
120 PRINT Kt6

Statement 120 will print one line on our amorti
zation table showing the payment number and balance
after payment.

Next we check to see if the balance is still greater
than zero. If it is we enter another payment period.

31

130 IF B>O THEN GOTO 200
140 PRINT "LOAN IS PAID OFF"

Enter and run the program. Below is a sample
run. Keep working at the program until it does every
thing it is supposed to.

lRUN
HOW MUCH WILL YOU BORROW? 1000
HOW MUCH ANNUAL INTEREST? 15.S
HOW MANY PAYMENTS PER YEAR? 12
HOW MUCH EACH PAYMENT? 145
1 867.818483
2 733.9426
3 598.350632
4 461 • 020579
5 321.930164
6 181.05682
7 38.3776936
8 -106. 130363
LOAN IS PAID OFF

32

EXERCISES

1. Replace the variable B in line 120 with the
expression INT(B*l00)/100. This will round B
off to the nearest cent. The integer function
gives you the largest integer (whole number)
not greater than the number inside the paren
theses. For example,

INT<2.3456•100)/100
=INT<234.56)/100
=234/100
=2.34

2. Add two more items to the detail report line
printed in line 120: the INTEREST portion of
the monthly payment and the PRINCIPAL
portion of the monthly payment.

3. Add a feature to your program of Exercise 2:
have it print a total of all the interest and also
the sum of the original amount borrowed plus
the total interest.

4. Make the last part of the loan amortization
program better for the user. Indicate that they
will get a refund, and show the amount (mul
tiply the balance by - 1).

5. Modify the loan amortization program so that
it asks the user for the amount of the payment,
P, each time a payment is due. Your new INPUT
statement should go between statements 90
and 100. Delete line 60. Include the features
in the above exercises.

14. MAGIC SUMS

In this section you can practice the use of FOR
... NEXT loops and review a little mathematics, all
just for fun. The problems will all be of the same type,
something like:

s = 3 + 5 + 7 + ... +33

where you have to direct the machine to total up the
missing numbers, indicated with + . . . +.

In this case you write the short program:

10 FOR N = 3 TO 33 STEP 2
20 S = S + N
30 NEXT N : PRINT "THE SUM IS "tS

Go ahead and RUN it. You should get THE SUM IS
288.

Here's another one:

s = 10 + 15 + 20 + . . . + 55

The answer is 1495. Don't go on until you get it.
Suppose you see something like this:

s = 1<>2. + 2<>2 + 3<>2 + • . • lo<>2

The trick to programming this is to make the loop index
move from 10 to 20 to 30 and so forth, that is, up by
ten each time, and to do the squaring of the loop index
before adding it to the sum. Try this solution:

10 FOR I 10 TO 100 STEP 10
20 S = S + I/\2 : NEXT I ; PRINT "THE SUM IS
II: s

The program design becomes more complicated
when you have magic sums of the form:

s = 42 + 63 + 84 + . . . + 12

Notice that the power each term is raised to goes up
by one with each new term. The question mark indi
cates that we don't need to know what the value of the
power will be when the last term is reached. Again,
we want to make the loop index move from 4 to 6 to 8
and so forth up to 12. Here is one solution:

10 FOR I = 4 TO 12 STEP 2
20 S = S + I/\(P+2>
30 P=P+1
40 NEXT I : PRINT "THE SUM IS 0 ;s

Notice that we are taking advantage of the fact
that all variables are reset to zero before your program
is run. We thus know that S and P start at zero.

33

15. STRING VARIABLES

In addition to working with numbers, BASIC
works with words formed from the different charac
ters on the keyboard. These words are called strings
to emphasize the fact that they contain characters con
nected together one after the other, and they need not
form an understandable word. You can imagine that
each letter is connected only to the next one in the
sequence, and that you can pick up the entire string
by the first character and swing it around a little.

The name of the area in memory where the string
is stored is called a string variable. In Applesoft this
name must have a dollar sign ($) as its rightmost char
acter, as in

SO AS = 11 GOTCHA 11

This command will put the string GOTCHA in
the memory area called A$. The double quotes (' ') tell
where the string starts and stops. They are not part
of the string.

The number of characters in a string is called its
length. The string GOTCHA has length 6. When you
manipulate a string it is often necessary to know its
length, and in Applesoft BASIC this is accomplished
by writing, in this case,

60 L = LEN<AS>

In general, you put the name of the string inside
the parentheses, and the LEN function returns the
number of characters in the string.

Run the following program:

10 REM THE NULL STRING
20 NS = 1111

30 PRINT LEN <NS>;N$; LEN ("GOT
CHA">

lRUN
06

This tells you several things about how Applesoft han
dles the string with no characters, or null string. Notice
it can be defined by putting no characters between the
double quotes. The machine automatically sets every
string variable equal to the null string before it begins
execution of your program.

Most string manipulation requires that you work
with substrings of a string. Applesoft has three com
mands which allow you to pull out the lefthand, middle,
or righthand part of a word, as the following program
shows:

10 REM PROGRAM TO DEMONSTRATE
LEFTt MIDt & RIGHT

20 A$ "MISSISSIPPI"
30 L$ = LEFT$ <ASt3)
40 M$ = MID$ (A$t4t4)
50 R$ = RIGHT$ <A$t4>
60 PRINT L$: PRINT M$: PRINT R$
70 PRINT R$;M$;L$

34

.-

lRUN
MIS
SISS
IPPI
IPPISISSMIS

In line 30, 3 is the number of characters to pull
off from the left, and in line 50, 4 is the number of
characters to pull off from the right. In 40, however,
4 is the character at which to start the string out of
the middle, and 4 is the number of characters it is to
contain.

Enter and run this program.
String manipulation using these word separators

is required when you are processing names. You may
have to strip off first and middle names in order to do
an alphabetic sort. See Exercise 3 below.

EXERCISES

1. Have the user input his or her first, middle,
and last names separately. Then print the entire
name.

2. Have the user input their entire name, as on
a diploma, into a single-string variable. Find
out how many characters are in the first name,
by counting until you come to a blank char
acter. Print that number. Test your program
with several names.

3. Have the user input their entire name, as in
Exercise 2 above. Then print their last name.
Use the LEN function to make sure you print
their last name, in case they entered no middle
name.

4. Ask the user for their favorite song. Then print
the number of times the letter a occurs in their
answer.

35

\

16. ONE-DIMENSIONAL
ARRAYS

Sooner or later you will be working with a set of
numbers which represent measurements on a single
item, such as the temperature outside your house. If
you have a lot of measurements you will not want to
give each number a separate name that you have to
remember, for you would soon saturate your memory
as a programmer.

The solution to this problem, and the one that
most computer languages have adopted, is to name the
individual occurrences automatically, by using a two
part name. The first part is called the array name, and
it is shared by all the values in the array, and the sec
ond part is called the subscript portion, and it must be
a non-negative integer, that is, a whole number.

The individual numbers in a one-dimensional array
are usually thought of as being stored in a nice long
row of cells-sort of a motel for numbers. We can give
the array name to the entire row of cells, the motel
name, so to speak, and then simply number the indi
vidual cells 0, 1, 2, 3, and so forth.

In all versions of BASIC that we know of, array
names and subscripts are written like this:

565X = A(34)

This statement would take the floating point number
in cell 34 of the array A and write it on top of the
number that was in X.

Usually the subscript is a variable or an expres
sion, as in

45 BAL = RECEIPTS<CUSTOMER>

which is valid in Applesoft but not in most versions of
BASIC. The machine only looks at the first two char
acters, however, so you have to make sure the first two
characters are unique.

Let's say you have 30 numbers that you want to
put into the machine, and they are all of the same type,
perhaps a month's worth of daily temperature read
ings. You might as well call them Ti, T 2, Ta, ... , T80
even before you put them into the machine, say to check
their values with a friend. It has become customary in
mathematics printing to write the cell number slightly
below the single letter that is the array name so that
the typesetter needn't set parentheses. It was called
the subscript, because it was below the line.

This routine will input your 30 numbers into an
array called T:

10 REM ENTER 30 NUMBERS IN ARRAY T
ZO DIM T< 30>
30 PRINT "ENTER A NUMBER AFTER EACH QUESTION
MARK"

36

40 FOR I = 1 TO 30
50 INPUT T<I>
60 NEXT I
70

EXERCISES

1. Ask the user for 12 numbers. Put these into
an array N starting in location 1. Make sure
to include a dimension statement at the top of
your program. When all the numbers have been
entered, print the contents of N, one value per
line.

2. Have your program find the largest number in
the array N of Exercise 1 above. One way to
do this is to load n(l) into a temporary variable
T and then use a FOR ... NEXT loop to look
at the other locations 2 through 12. If you dis
cover an element larger than the one in T, put ·
the larger value jn T. When the loop is done T
will contain the largest element in the array
N.

3. Continue the program in Exercise 2 above by
adding a routine that finds the average of all
12 values.

4. Construct a one-dimensional string array by
asking the user for their seven favorite movie
stars. Then write program segments to
accomplish the following tasks:

a. Print all 7 names.
b. Print the longest name.
c. Print all names that start with 'a.'
d. (advanced students only) How many times

does the letter 'E' occur among all the
names?

37

17. ACCOUNTS RECEIVABLE

If you are in business and take in money from
several sources, those sources are called your accounts
receivable. Each one of them has a balance due you at
any particular time, and you must keep track of this
balance by processing the various bills and payments
for that one account.

If you wish to use your Apple computer to cal
culate your accounts, when a pavmenJ, arrives you must
enter its account number, date, and amount. The pro
gram will update the balance for that account by sub
tracting the amount of the payment. We have credited
their account.

When an invoice is processed you will enter its
account number, date, type, and amount. The program
will add the amount of the invoice to the balance. We

· have demted their account.
In this system you can have up to 10 accounts and

100 transactions. The program starts like this:

10 REM ***ACCOUNTS RECEIVABLE***
20 DIM B<lO> :REM ACCOUNT BALANCE
30 DIM T<lOO> :REM TRANSACTION TYPE
40 DIM D<lOO> :REM TRANSACTION DATE
50 DIM A<100> :REM TRANSACTION AMOUNT

Notice that we are keeping a record of each trans
action, using three one-dimensional arrays.

For testing purposes we will include some initial
data:

60 DATA 245,973,54,4442,1733
70 DATA -7610•53111208,320
80 FOR I=l TO lO:READ B<I>:NEXT

So at this point the 10 account balances have been
initiali2.ed with the above values. We are ready to process
transactions.

90 K=l :REM K IS TRANSACTION NUMBER
100 INPUT "TRANSACTION TYPE? ";T<K>
110 IF TCK>=O THEN GOTO 300
120 INPUT "ACCOUNT <1 TO lO>:";C<K>
130 INPUT "AMOUNT ";A(K)

At this point the transaction has been stored. Next
we update the balance:

140 IF T<K> = 1 THEN B<C>=B<C>+A<K>
150 IF T<K> = 2 THEN B<C>=B<C>-A<K>

and then we go on to the next transaction

160 K=K+l : GOTO 100
300 M = K - 1

When all transactions have been entered and
processed we end up at statement 300 above. The value
of M is the number of transactions. It is K -1 because
the k-th transaction is not a real one. Our report will
consist of a list of transactions for each account. See if
you can understand the code.

38

310 FOR I=1 TO 10
315 PRINT "TRANSACTIONS FOR ACCOUNT ";I
320 FOR K=1 TO M
330 IF CC K > =I THEN PR I NT CC K > , ACK >
340 NEXT
350 NEXT

JLIST

10 REM ***ACCOUNTS RECEIVABLE*
**

20 DIM BC10): REM ACCOUNT BALANCE
30 DIM TC100>: REM TRANSACTION TYPE
40 DIM CC100>: REM TRANSACTION ACCOUNT
50 DIM AC100): REM TRANSACTION AMOUNT
60 DATA 245,973,54,4442,1733
70 DATA _75,0,531,1200,320
80 FOR I = 1 TO 10: READ BCI>: NEXT
90 K = 1: REM K IS TRANSACTION NUMBER
100 INPUT "TRANSACTION TYPE:";TCK>
110 IF T<K> = 0 THEN GOTO 300
120 INPUT "ACCOUNT (1 TO 10>:";C CK>
130 INPUT "AMOUNT:";ACK>
140 IF TCK> = 1 THEN BCC> BCC> + ACK)
150 IF TCK> = 2 THEN 8CC> = BCC> - ACK>
160 K ; K + 1: GOTO 100
300 M ; K - 1
310 FOR I ; 1 TO 10
315 PRINT "TRANSACTIONS FOR ACCOUNT ";I
320 FOR K ; 1 TO M
330 IF CCK> ; I THEN PRINT CCK> ,ACK>
340 NEXT
350 NEXT

JRUN
TRANSACTION TYPE:1
ACCOUNT C1 TO 10>:1
AMOUNT:25
TRANSACTION TYPE:1
ACCOUNT C1 TO 10):1
AMOUNT:456
TRANSACTION TYPE:2
ACCOUNT C1 TO 10>:6
Al10UNT:322
TRANSACTION TYPE:2
ACCOUNT (1 TO 10):6
AMOUNT:763
TRANSACTION TYPE:1
ACCOUNT (1 TO 10):3
AMOUNT:456
TRANSACTION TYPE:1
ACCOUNT C1 TO 10>:7
A110UNT:6789
TRANSACTION TYPE:2
ACCOUNT (1 TO 10):5
AMOUNT:653
TRANSACTION TYPE:2
ACCOUNT <1 TO 10>:7
AMOUNT:23
TRANSACTION TYPE:O
TRANSACTIONS FOR ACCOUNT
1 25
1 456
TRANSACTIONS FOR ACCOUNT 2
TRANSACTIONS FOR ACCOUNT 3
3 456
TRANSACTIONS FOR ACCOUNT 4
TRANSACTIONS FOR ACCOUNT 5
5 653
TRANSACTIONS FOR ACCOUNT 6
6 322
6 763
TRANSACTIONS FOR ACCOUNT 7
7 6789
7 23
TRANSACTIONS FOR ACCOUNT B
TRANSACTIONS FOR ACCOUNT 9
TRANSACTIONS FOR ACCOUNT 10

39

40

EXERCISES

1. Modify the program above so that it prints out
the current balance for each account before it
lists the transactions for that account. You could
do this by changing one line, number 315.

2. Modify the detail line of the above report (line
330) so that it prints the transaction type T(K)
instead of the account C(K).

3. Add a DATE feature to your developing
accounts receivable program. Add an extra
array and an extra input statement. Add the
date on the detail line. Use the format MMDD
so that you can later sort on the date. You will
probably want to use the TAB (N) command
to tab you to column N, especially if you have
a printer. One approach is to put only one data
element per print line, with a TAB in front of
it and a semicolon after it. The last print item
for that line will not have a semicolon. If you
do this you can modify the output with mini
mum effort. Once your detail line gets more
than a few items long you will need a header
line above the columns of data. This can be
done either in one PRINT statement or in
several.

18. BUBBLE SORTING

Now that you have some experience with one
dimensional arrays, it is time you learned a standard
sorting technique, the so-called BUBBLE SORT. There
are several variations on the same basic idea, which is
to examine pairs of array values, and if a particular
pair is out of order, you switch the values, then go on
to examine another pair. When you have examined and
switched enough pairs, your array will be sorted.

First let's get the numbers into an array called
A:

10 REM ***BUBBLESORT***
20 DIM AC20>
30 INPUT "HOW MANY NUMBERS?";N
40 IF N>20 THEN PRINT "TOO BIG":GOTO 30
50 FOR I=1 TO N
60 INPUT "NUMBER PLEASE:";A<I>
70 NEXT

So at this point N contains the number of values
to be sorted, and the unsorted values are in A(l), A(2),
••. A(N).

The method we will use finds the largest value in
the array and puts it in the first position. This is accom
plished by comparing the first position with each of the
other positions in turn (2, . . . , N). Whenever the first
value is smaller than the value it is being compared
with, interchange the two values. By the time you have
gotten to the end of the array, position one will contain
the highest value.

Next you compare the second position with each
of· the positions below it, and make any necessary
interchanges.

You keep going in this manner until you are start
ing your compare and interchange with position N -1,
that is, the next to last position. Here there is only one
comparison to make.

Check the code to make sure it does what we say
it will:

80 FOR P=1 TO N-1
90 FOR I=P+1 TO N
100 IF A<P>>=A<I> THEN GOTO 120
110 T=A<I>:A<I>=A<P>:A<P>=T
120 NEXT
130 NEXT
140 FOR 1=1 TO N:PRINT A<I>:NEXT

Go ahead and enter and run this program. Keep
at it until it works.

EXERCISES

1. Write line 110 a different way, but have it
accomplish the same thing.

2. Compress lines 80 to 140 above into the least
number of numbered statements. Verify that
your solution works.

41

3. Modify the bubble sort program so that the
smallest number ends up on top and the larg
est number ends up on the bottom.

4. A slightly different bubble sort makes N -1
passes through the array A, except it looks
only at adjacent pairs, starting at the top. It
put the smallest number at the bottom (into
A(N)) after the first pass. On the second pass
there is no need to go beyond A(N -1). Finally
on the N -1 pass you need only compare A(l)
and A(2). Rewrite the sort program so that it
uses this method.

JLIST

10 REM ***BUBBLE SORT***
20 DIM A<20>
30 INPUT "HOW MANY NUMBERS? ";N
40 IF N > 20 THEN PRINT "TOO BI

G11
: GOTO 30

50 FOR I = 1 TO N
60 INPUT "NUMBER PLEASE: 11 ;A<I>
70 NEXT
80 FOR P = 1 TD N - 1
90 FOR I = P + 1 TD N
100 IF A<P> > = A<I> THEN GOTO

120
110 T = A<I>:A<I> = A<P>:A<P> = T
120 NEXT
130 NEXT
140 FOR I = 1 TON: PRINT A<I>: NEXT

JRUN
HOW MANY NUMBERS? 6
NUMBER PLEASE: 12.678
NUMBER PLEASE: -871453
NUMBER PLEASE: 104.39
NUMBER PLEASE: -.00076
NUMBER PLEASE: -.0076
NUMBER PLEASE: 56.433
104.39
56.433
12.678
-7.SE-04
-7.SE-03
-87.453

FLOWCHART FOR BUBBLE SORT

42

Input N

Input A(l)

T = A(l)

A(I) = A(P)

A(P) = T

no

19. TWO-DIMENSIONAL
ARRAYS

We have seen that one-dimensional arrays natu
rally arise when we have a series of measurements on
one item. We can think of a one-dimensional array as
either a row of cells, or as a column of cells.

A two-dimensional array can be thought of as a
rectangular array of cells, with R rows and C columns:

0 1 2 3

COLUMN

x . . . C-1

ROW

The row subscript, Y, goes from zero to R-1, and
the column subscript goes from zero to C-1. To put a
value of 8. 7 into a certain cell, say row Y, column X,
you would write

730 CECX1Y> = 8.7

where CE is the name of the two-dimensional array.
As an example, we can create an array MULT

with 10 rows and 10 columns, where the value in row
Y, column X is the product X times Y.

10 REM MULTIPLICATION TABLE
20 DIM MULTCS19)
30 FOR Y = 0 TO 9 : FOR X = 0 TO 9
40 MULTCX1Y> = X*Y
50 NEXT : NEXT

This block of code will generate the array. Notice
that the dimension statement uses one less than the
number of rows or columns, because the numbering
starts with zero. Notice also in line 50 that you don't
have to specify the loop index immediately after NEXT.

In order to print out the above two-dimensional
array we continue the code:

60 FOR Y 0 TO 9
70 FOR X 0 TO 9 : PRINT MULTCX1Y>;" ";

NEXT
80 PRINT NEXT

Go ahead and enter this program and RUN it.
You can achieve almost the same thing with one simple
command, MAT PRINT MULT, but you will not get
good screen alignment.

43

A good example where a two-dimensional array
is needed is in frequency distribution analysis. Sup
pose, for example, that you give a test with 8 questions
on it, each with a multiple choice answer 1 to 5. Let's
say 100 students have taken the test, and their answers
have been coded into a block of 100 data statements,
each DATA statement containing 8 answers by an indi
vidual student.

If you want to discover what kind of test it was
you will almost certainly want to lmow how many stu
dents answered each question in each of the possible
ways. For example, how many students answered
question number 7 with a 3? What was the most pop
ular answer to question number 2?

What you want here is a two-dimensional array
H (for how many) with say 5 rows (one row for each
answer) and eight columns. When all the DATA state
ments have been read, H(X, Y) should contain the num
ber of students who answered question X with answer
Y.

How do we build H? The idea is to read one DATA
statement at a time, see how that student answered
the first question. If it was with a 3, say, the cell cor
responding to question 1 answer 3 should be incre
mented by 1, or the same,

H(lt3) = H(lt3) + 1

Whatever the answer to the first question, we go
to the appropriate cell and increment it by one.

We go through the remaining seven questions in
a similar manner. When all DATA statements have been
read, H should contain the required count.

See if you can write a program that calculates
and prints H. Use the dimension H(8,5) and waste the
extra row and column of the zero subscripts. Compare
your program with the following solution.

10 REM FREQUENCY DISTRIBUTION OF TEST
ANSWERS

20 DIM H<BtS>
30 FOR S = 1 TO 100 GOSUB 100 : NEXT
40 GOSUB 200 REM PRINT THE ARRAY H

100 REM PROCESS ONE STUDENT
110 FOR C = 1 TO B : READ A
120 H<CtA> = H(CtA> + 1 NEXT : RETURN
200 REM PRINTOUT ROUTINE
210 FOR R = 1 TO 5 : FOR C = 1 TO 8
220 PRINT H<CtR); " "; : NEXT: PRINT : NEXT

lPRINT CHR$(9) "BON"

lLIST

10 REM TWO DIMENSIONAL ARRAY PROBLEM
20 DIM H(6t5)A(10t6)
30 FOR I = 1 TO 10: REM FOR EACH OF TEN

STUDENTS
40 REM GET THEIR 6 EXAM SCORES
60 READ A<Itl)tA(lt2)1A(l13>tA(lt4)tA(lt5)t

A<I·t6)
70 REM PROCESS THAT STUDENT
80 FOR Q = 1 TO 6:H(Q1A(l1Q)) = H(Q,A(l,Q))

+ 1: NEXT Q
90 NEXT I: REM THAT STUDENT IS DONE
100 REM NOW PRINT THE FREQUENCY

DISTRIBUTION ARRAY H
110 FOR A :: 1 TO 5: FOR 'Q :: 1 TO 6: .PRINT

H(Q1A);" ";:NEXT Q

44

120 PRINT : NEXT A: PRINT "THATS IT"
125 REM
130 DATA 1 t2 ,3 ,z ,5 ,5
140 DATA 2t2t3t2t5t3
150 DATA 1 .2 ,4,5,1 ,3
160 DATA 1 ,4 ,3 ,5 ,5 ,3
170 DATA 2t2t3t5t1 t4
180 DATA s t2, 1 ,5 ,4 ,4
190 DATA 1 ,z ,3 ,5 ,4 ,3
200 DATA 1 t2 ,4 .2 t2 ,2
210 DATA 2'1 ,3,5'1 ,3
220 DATA 2t2t2t2t2t2

lRUN
5 1 1 0 3 0
4 8 1 4 2 2
0 0 6 0 0 5
0 1 2 0 2 2
1 0 0 6 3 1
THATS IT

45

20. LOW-RESOLUTION COLOR
GRAPHICS

Now that you know about two-dimensional arrays,
using Applesoft color graphics will be easy. The screen
that you see in low-resolution mode has 40 columns (0
to 39) and 40 rows (0 to 39). The ''value'' in cell (X, Y)
can be one of 16 colors (shown later). It is called a pixel,
short for picture element.

Just to get started, run this program with a color
TV monitor. You should see all 16 colors (black should
be no visible phosphor activity) as vertical stripes each
two pixels wide.

10 REM COLOR TV 6AR GENERATOR
20 GR : REM SET LOW RESOLUTION GRAPHIC MODE
30 FOR C = 0 TO 15 : REM FOR EACH COLOR
40 COLOR = C REM : SET THAT COLOR
50 FOR Y = 0 TO 39 : REM PAINT THE STRIPE
60 PLOT 2*CtY PLOT 2*C+1 ,y : PLOT PAIR

PIXELS
70 NEXT : REM FINISH STRIPE
80 NEXT : REM FINISHED ALL 16 COLORS
90 PRINT "ADJUST YOUR TV SET USING NEXT PAGE"

46

Below are listed some of the available commands.

LOW-RESOLUTION GRAPHICS
COMMANDS

COLOR= x

GR

Here x is a number from 0
to 15 as follows:

0 black
1 magenta
2 dark blue
3 purple

4 darkgreen
5 grey
6 medium blue
7 light blue

8 brown
9 orange

10 grey
11 pink

12 green
13 yellow
14 aqua
15 white

The selected color will be
used for plotting until the
color is changed by another
COLOR command.

Sets low-resolution graph
ics mode, clears screen, and
moves cursor to move into

text window. The color is
automatically set to black
(0).

HTABx Moves cursor to column x,
x=0,1,2, ... , 39.

PLOTx,y Creates a pixel at x,y of
whatever color is currently
set.

VLIN Yi, Y2 Draws a vertical line from
ATX (X, Y1) to (X, Y2)

HLIN X1, X2 AT y

VTABy

HOW TO MAKE HORIZONTAL
LINES

This particular task is done automatically by
Applesoft, but it is instructive to see how you would
have to do it on your own if the features were not
available. The numbers you need are the leftmost hor
izontal coordinate, the rightmost horizontal coordi
nate, and the vertical coordinate. Let us assume these
variables are named HL, HR and V, respectively. We
should mention that Applesoft permits two characters
worth of recognized variable name, and that second
character can be very useful as a mnemonic.

Let us say we are in Applesoft low-resolution
graphics (40 by 40) and we wish to draw a yellow line
all the way across the screen, in its vertical center. The
code that does this is easy to follow:

10 REM HORIZONAL YELLOW LINE
20 GR
30 COLOR = 13
40 FOR H = 0 TO 39 : PLOT Ht9 : NEXT
50 PRINT "THERE YOU HAVE IT"

Go ahead and run this program. You should get
this output:

BLACK

14---- YELLOW

BLACK

THERE YOU HAVE IT

47

21. HIGH-RESOLUTION COLOR
GRAPHICS

You have seen what you can do with low-resolu
tion graphics. Although you have a wide color selec
tion, there is not enough resolution to form detailed
pictures. For this purpose you will want to use hi,gh
resolution graphics, which features a screen 280 pixels
wide by 160 pixels long. Each pixel can be 1of8 dif
ferent colors (2 blacks, 2 whites, and 4 other colors).

Here are the commands you can use.

HIGH-RESOLUTION GRAPHICS
COMMANDS

HGR Sets high-resolution graphics page
1; clears top 280 x 160 area to
black; bottom 4 lines text.

HGR2 Sets high-resolution graphics page
2; clears entire 280 x 192 screen to
black.

HCOLOR=x Sets color (0 to 7) for next
plotting.

HPLOT x,y Places colored dot at horizontal
coordinate x and vertical
coordinate y. 0,0 is top left corner.

HPLOT xl,yl Draws a line from the point xl,yl
TO x2,y2 to the point x2,y2 in the selected

color.

HPLOT x,y Places colored dot at x,y.

HPLOTTO Draws a line from last point
x,y plotted to x,y in current color.

As an example of a high-resolution program, we
can show you how to make random lines on high-res
olution screen 2.

The idea is quite simple and, indeed, so is the
program. First we plot one point at the origin:

10 REM ***RANDOM LINES***
20 HGR2:HCOLOR=7
30 HPLOT OtO

You can go ahead and run this much if you want.
You should get a small white dot at the upper left of
your screen.

Next we get a random horizontal coordinate x and
a random vertical coordinate y via the statements:

30 X=INT<279*RND<1>>
40 Y=INT<lBS*RND<l>>

48

The RND(l) argument will produce a random
number between 0 and 1, and the INT function chops
off any decimals.

Now all that remains to do is to plot a line from
the last point plotted to the coordinates x, y:

50 HPLOT TO x,y
60 GOTO 30

Go ahead and run this program. It is fun to watch.
In this case the machine is doing quite a bit of work
for you with very little instruction on your part. That
is basically what you want from a good machine.

EXERCISES

1. Modify the random lines program so that it
plots the lines in random colors.

Hint: Use HCOLOR = INT(7*RND(l)) at the
right place.

2. Use this same technique to draw random
squares on high resolution screen 2. Each
square should be 50 pixels on a side. Don't
worry if a square gets displayed partly off
screen; it will automatically wrap around to
the other side.

3. Draw squares of different colors and widths,
one inside the other, getting smaller and smaller
towards the center.

Hint: Find someone that knows BASIC better
than you and work on this project with them.

49

22. SYSTEM AND EDITOR
COMMANDS

Now that you have tried a few short programs,
and have made numerous typing and logical errors, it
is time to take advantage of various system features
that make life easier. These commands are divided into
two groups: system comm.ands, which operate on com
pleted program text, and editing comm.ands, which
operate on individual characters within a developing
program text.

Here is a partial list of available system com
mands that should get you going. If you want to see
what is actually available, consult one of the references
at the back of this Handy Guide.

SOME SYSTEM COMMANDS

RUN Executes program starting at
lowest line number.

RUNx Executes program starting at line
numberx.

SAVE Saves a program on cassette tape.
Start the recorder, then type
SAVE. Bleeps from the Apple
speaker mark the start and stop of
the recording.

LOAD Loads a saved program from
cassette tape into memory. Start
the tape on a silent stretch before
the start bleep, and then type
LOAD. You will hear a bleep
when the LOAD routine
encounters the start of the
program, and another bleep at the
end.

NEW Deletes current program.

LIST Lists current program.

LIST x-y Lists from line x to line y.

50

23. DISK OPERATION

If the Apple II you are working with has a disk
drive you are lucky indeed. Without a disk drive there
is no convenient way to transfer work in and out of the
machine.

You will notice a little door in the center of your
disk drive. It pulls from the bottom and swings up. Go
ahead and do it.

If there is a diskette in the drive you can remove
it by holding it between your thumb and forefinger and
pulling straight back. Find the jacket that protects the
diskette and put the diskette in it. You can practice
putting the diskette in the drive and closing the door.
Always close the door before the system uses the disk
drive.

You will need a SYSTEM MASTER diskette. We
recommend DOS 3.3 for Apple II users, but DOS 3.2
will work fine.

Turn the power off, insert the system master into
the disk drive, and turn the power on. This will cause
the system master to load, or boot.

When you get the Applesoft prompt back again
you can try out some of the DOS commands.

First type CATALOG and press return. The in
use light on the disk drive should come on, and the
drive will make certain characteristic sounds. A list of
files on the diskette will appear on the screen. A sample
is shown below:

]CATALOG
DISK VOLUME 254

*A 006 HELLO
*I 018 ANIMALS
*T 003 APPLE PROMS
*I 006 APPLESOFT
*1 026 APPLEVISION
*1 017 BIORHYTHM
*B 010 BOOT13
*A 006 BRIAN'S THEME
*B 003 CHAIN
*I 009 COLOR DEMO
*A 009 COLOR DEMOSOFT
*1 009 COPY
*B 003 COPY.OBJO
*A 009 COP YA
*A 010 EXEC DEMO
*B 020 FID
*B 050 FPBASIC
*B 050 INTBASIC
*A 028 LITT LE BR I CK OUT
*A 003 MAKE TEXT
*B 009 MASTER CREATE
*B 027 MUFFIN
*A 051 PHONE LIST
*A 010 RANDOM
*A 013 RENUMBER
*A 039 RENUMBER INSTRUCTIONS
*A 003 RETRIEVE TEXT

The letters A, I, T, and B tell what type of file it
is:

A= Applesoft BASIC Program
I= Integer BASIC Program
B = Binary object module
T= Text file

51

The three digit number to the right of the letter
tells how much space, in sectors, the file takes up. One
sector is one-sixteenth of a full circle on any one of the
35 concentric tracks around the read-write surface of
the diskette. Such a sector holds 256 bytes, or
characters.

If there is an Applesoft or Integer BASIC pro
gram (type A or I) on a diskette in the drive, then type
LOAD followed by the filename. This will make the
drive spin, and shortly a copy of the program will be
available in main memory. You can LIST it as soon as
the prompt appears.

As a shortcut, you can enter RUN followed by
the filename, and the program will be loaded and run.

If you have a program that you want to save on
diskette, you enter SAVE followed by the filename and
press return. When the prompt reappears your file is
saved. If you use the same name as a file that is already
on the diskette, the program in memory will be put on
the diskette under that name and the old program will
be scratched, that is, erased.

You cannot save programs on a system master
diskette because it is permanently write-protected. If
you will pull a diskette out of the drive about two inches
you will notice a small rectangular cut out on those
diskettes that can be written to. No cut out, no write.
On permanently write-protected diskettes the jacket
has no such cut out.

So if you plan to save programs you will need a
diskette with the cutout exposed. In addition the disk
ette needs to be initialized. If it responds successfully
to a CATALOG command, then it has already been
initialized.

To initialize a blank diskette, first boot DOS, then
insert the blank diskette in the drive. Create a short
greeting program, call it HELLO, that prints a few
lines of identifying information. Then enter INIT
HELLO, press return, and wait for the ·disk drive to
stop spinning. It could take a minute or so.

Test that your diskette has been initialized by
asking for a catalog.

SAVEx Save the program called x on the
diskette.

LOADx Load the program called x on the
diskette.

CATALOG List the contents of the cassette.
You will get a listing of each
named file on the diskette, with
each line reporting, in order:

• write protection (* means
protected)

• type of file: A= Applesoft
source; I= Integer BASIC
source; B =binary object;
T =text or data.

• number of sectors
• name of file

Always ask for a catalog when you
mount a new diskette, to make
sure everything is OK.

52

24. SEQUENTIAL FILES

After you have used your Apple a while you will
feel the need for some sort of way to store records of
various kinds: phone numbers of friends, shopping
expenses, business accounts, titles of hi-fi cassettes you
own, income tax deductions, and on and on. You will
want to store this data in a form that remains when
you turn your Apple off.

There are only two convenient ways to store
information outside the machine: cassette tape and
floppy diskette. You can use either system with Apple
soft, but the diskette system is to be preferred, for
several reasons. For those of us who have done a lot
of programming on microcomputers, it is impossible to
imagine getting much work done without a disk drive
available. On the other hand, if you have a long pro
gram on which you have worked many hours, and you
don't want to lose it, and you don't have a disk drive,
then any standard hi-fi cassette player and hi-fi tape
will allow you to store and reload your program or data.

In this and subsequent sections we will assume
that you have at least one disk drive connected to your
Apple //. We will further assume that you have loaded
the DOS System Master, version 3.2 or 3.3, or its
equivalent.

Putting data into text (T) disk files on a diskette
requires some forethought and attention to detail, pri
marily because access to the diskette for data storage
purposes is via a rather roundabout way: you have to
pretend that the diskette drive is some sort of a printer.

Let us begin with the task of storing one simple
utterance on our diskette, the message GO RAIDERS.
We will attempt to write it to a diskette, turn off the
machine, remove the diskette, put the diskette back
in, power up the machine, and recover the message we
had stored.

Begin by entering NEW followed by:

10 REM FIRST DISK DATA STORAGE PROGRAM
20 D$=CHR$(4)

This seemingly innocent program puts a control
D character into the string variable D$. Thereafter,
when we need a control D character somewhere in our
program we can just use the string variable name D$.

In Applesoft BASIC we command the diskette
file system using special PRINT statements, those of
the form

PRINT DS;"messa~e"

where message is a string of characters. You will see
what kind of messages apply.

The first thing you must do is to OPEN the file.
This involves giving it a filename and commanding the
machine to OPEN it:

30 PRINT D$;"QPEN SESAME"

Among other things this command reserves space
to send data back and forth from main memory to the
diskette.

53

Next you will need to tell the machine to write to
the diskette, rather than to the printer or some other
device. This is accomplished by another PRINT
statement,

40 PRINT os;"WRITE SESAME"

Now then it will be a simple matter to put our message
onto the diskette. We add the statement:

50 PRINT "GO RAIDERS"

and we shut down the diskette-write operation by issuing

60 PRINT 0$

without any punctuation following the D$.
Finally we want to CLOSE our file,. to make sure

that everything will be OK when we go to read it:

70 PRINT os;"CLOSE SESAME"

Go ahead and enter and RUN the program so far. The
disk drive will light up and whir for a while and then
the cursor will reappear. Take the diskette out. You
will have created one text file, with one record in it
containing the message ''GO RAIDERS.'' Next we
will see if we can get it back.

Type NEW to erase the program, and LIST to
confirm that it has been erased. Press RETURN until
everything is out of sight. You can even turn the power
off and reboot DOS.

Enter this program:

10 REM PROGRAM TO RECOVER GO R
AIDERS

20 DS = CHRS <4>
30 PRINT os;"OPEN SESAME"
40 PRINT D$;"READ SESAME"
50 INPUT MS: PRINT MS
60 PRINT 0$
70 PRINT D$;"CLOSE SESAME"

lRUN
GD RAIDERS

7 CLOS

If you managed to get back GO RAIDERS and
another prompt cursor without any error messages you
should congratulate yourself.

To summarize: all disk controls (for text or data)
are issued using PRINT D$;''message'' where D$ is
the control D character, CHR$(4). Each file you work
with must be given a filename, OPENED before using
and CLOSED before exiting your program. When you
write to the disk you use WRITE in a print statement.
Thereafter all items appearing in PRINT statements
without the D$ are sent serially to the disk file, exactly
as they would be if they were sent to the printer, exc~pt

. that no tab function takes place with the disk file. The
commas in a PRINT statement are treated like they
were semicolons, as far as the disk file is concerned.

A PRINT (data items) statement with no comma
or semicolon at the end will cause a RETURN char-

54

acter to be placed after the last print item. This
RETURN is used to recover the printed field, as it
signals to the INPUT statement that all items have
been input. If you are printing more than one data item
per print field you will want to separate them by com
mas, which you must insert as alphanumeric characters.

As an example of a more complex sequential file
program we show a program to take the frequency
distribution data on ten students and put it out to the
disk.

LOAD WRITESTUDENT
JLIST

10 RE" DISK STORAGE OF STUDEN
T DATA

20 D$ g CHR$ <4>
30 PRINT Dti"OPEN SCORES"
40 PRINT Dti"WRITE SCORES"
50 FOR I g 1 TO 10
80 FOR Q g 1 TO 6
70 READ S: PRINT S: NEXT
90 NEXT I: PRINT D$
100 PRINT Dti"CLOSE SCORES"
200 DATA 1t2t3t2t5t5
210 DATA 2t2t3t2t5t3
220 DATA 1t2t4t5t1t3
230 DATA 1,4,3,5,5,3
240 DATA 2t2t3t5t1t4
250 DATA 5,2,1,5,4,4
280 DATA 1,2,3,5,4,3
270 DATA 1t2t4t2t2t2
280 DATA 2t1t3t5t1t3
290 DATA 2t2t2t2t2t2

lRUN

JLOAD READSTUDENT
lLIST

10 RE" DISK READ OF STUDENT D
ATA

20 D$ g CHR$ (4)
30 PRINT D$; II OPEN SCORES 11

40 PRINT Dti"READ SCORES"
50 FOR I g 1 TO 10
6() INPUT S1tS2tS3tS4tS5tS8
70 PRINT s1; 11 II ;s2; II II ;s3; II II iS4

; II II ;55; II "IS6; II II

80 NEXT I

JRUN
1 2 3 2 5 5
2 2 3 2 5 3
1 2 4 5 1 3
1 4 3 5 5 3
2 2 3 5 1 4
5 2 1 5 4 4
1 2 3 5 4 3
1 2 4 2 2 2
2 1 3 5 1 3
2 2 2 2 2 2

55

25. WHERE TO GO FROM HERE

There are many features of Applesoft BASIC that
we have not considered. The references listed in the
Bibliography will introduce you to this additional mate
rial. In particular, the Applesoft II Basic Program
ming Reference Manual is a must if you plan to do
extensive work with the Apple II.

A good text editor and a printer can be wonderful
things to have as they fulfill an endless variety of pur
poses. The text for this Handy Guide was developed
using a text editor called Apple Writer and the ever
popular Epson MX-80 printer. It is much easier to
write programs using an editor, because you can go
back and change characters anywhere you want.

Several spread sheet type programs such as
VisiCalc are available for the Apple. These are very
powerful and easy to use tools for fiscal planning of any
kind. You could even develop your own spreadsheet
software, but it takes a lot of work to make such pro
grams run smoothly.

All kinds of games are available for the Apple.
Since there are thousands of games, you will have to
sort your own way through them. There is a pirated
version of Pacman, called Taxman, that is quite good,
especially for beginners using only the keyboard.

If you want to do your own game programming
then you will have to enter the elite group of Assembly
Language Programmers. There is much you can do
with Applesoft BASIC, but speed is very important
for games, and assembly language is by far the fastest
way to get things done. You can get a Graphics Tablet
for your Apple II, and this is a good way to get graphic
information quantized. Several routines let you make
drawings with minimal effort and store them for later
recall.

There are also interface boards that let you hook
up a television camera to your Apple. Such systems
are however quite demanding to design and program
because of the high speed and large memory required.

You can get various synthesizer boards for your
Apple which allow you to compose music. You can even
program the self-contained speaker to play notes.

For business and data files type applications the
reader is referred to Finkel and Brown (see Bibliog
raphy) for a detailed account of how to use sequential
and random access disk files. The subject is quite com
plicated, and beyond the scope of this Handy Guide.
Besides, it is difficult to improve upon their work in
this area.

If you want lots of challenging exercises, consult
the book by George Ledin. It has all kinds of them, at
many different degrees of difficulty.

There is a version of LOGO that runs on the Apple.
This language is very easy to use and very powerful
graphically. It would be a good language to study in
addition to BASIC.

Programming, like any skill, needs practice time.
If you put in that time, you will always get better, and
you will always know what to do next.

56

BIBLIOGRAPHY

Roy Angeloff and Richard Mojena, Applied BASIC
Programming, Wadsworth Publishing Company,
1980.

Apple Computer Inc., The Applesoft Tutorial.
Apple Computer Inc., Applesoft II BASIC Program

ming Reference Manual.
Apple Computer Inc., The DOS Manual.
LeRoy Finkel and Jerald R. Brown, Apple BASIC:

Daw File Programming, John Wtley & Sons, 1982.
George Ledin Jr., A Structured Approach to General

BASIC, Boyd & Fraser Publishing Company, 1980.
Richard G. Peddicord, Underswnding BASIC, Alfred

Publishing Company, 1980.
Lon Poole and Mary Borchers, Some Common BASIC

Programs, Adam Osborne & Associates, 1977.

57

INDEX

AND (logical) 24
Arrays 36,43
Assignment statements 14

Branching 26

CATALOG 51
CHR$ 53
CLOSE 54
Conditional branching 26
Constants 14

Data entry 16
Data files 53
DATA statements 18
DELete 8
DIMension 36
Disk drive 51
Disk Operating System 51

Editing 50

Files 51
FOR ... NEXT 28

GOSUB 17
GOTO 18

HOME 8

IF ... THEN 26
Initializing 52
INPUT statements 16
INTeger function 32

LEFT$ string function 34
LEN function 34
LET statements (see assignment statements) 15
Line numbers 12
LOAD command 52

MID$ string function 34
Multiple statements on a line 12

Null string 34

OPEN 53
OR (logical) 24

PR# slot control 8
PRINT statement 9
Prompt 6

READ statement 18
REMark statement 12
RETURN 6
RIGHT$ string function 34

(Continued)

59

SAVE command 50
Sector of disk 52
Serial (sequential) files 53
Sequential data file 53
String variables 34
String manipulation 34
STR$ string function 34
Substrings 34

Text file 14

Variables 14

60

GET ON THE ALFRED
COMPUTER MAILING LIST!
KEEP UP-TO-DATE!

Send us your complete name and address,
and we'll send you catalogs, newsletters, arid
new product listings, as they become available.

Or fill out and mail this coupon:

Name

Address

City State Zip

Handy Guide Titles You Own

Comments: -------------

Send to: ALFRED PUBLISHING CO., INC.
Post Office Box 5964
Sherman Oaks, California 91413

0

5351

r;) Alfred Handy Guides
Practical, economical, and concise
Alfred Handy Guides tell you what you need to
know quickly and easily-without a lot
of reading!

"A busy executive or professional who feels the need for a
crash course in the subjects co1,ered by the Handy Guides
would do well to pick up a few on the way to the commuter
train or the airport" Personal Computing Magazine

The Alfred Handy Guide
Series to Computers
How to Buy a Personal Computer
How to Buy a Portable Computer
How to Buy a Word l'rocessor
How 10 Choose a Computer Camp
How to Make Money with Your Personal Computer
How to Use Atari Computers
How to Use the Apple lie
How to Use the Coleco Adam
How to Use the Commodore 64
How to Use the IBM PC
How to Use the IBM PCjr
How to Use the TRS-80 Model 100 Portable Computer
How to Use V1siCalc/ SuperCalc
The Personal Computer Glossary
Quick and Easy dBase II
Quick and Easy Wordstar
Understanding APL
Understanding Apple Basic
Understanding Apple Graphics
Understanding Art1flc1al Intelligence
Understanding Atan Graphics
Understanding BASIC
Understanding COBOL
Understanding Commodore 64 Basic
Understanding Commodore 64 Graphics
Understanding Computer Crime
Understandmg Computer Graphics
Understanding Computer Information Networks
Understanding CP/M
Understanding Data Base Management
Understanding Data Communications
Understanding Electronic Mail
Understanding FORTH
Understanding FORTRAN
Understanding LISP
Understanding LOGO
Understanding Microcomputer Hardware
Understanding Pascal
Understanding Robots
Understanding Software Law

Look for new titles and new ser ies.
For more information:

Alfred Publishing Co. , !nc .
15335 M orrison St.
P.O. Box 5964
Sherman Oaks, CA 91413

ISBN 0-88284-246- 3

~
3808 1 00295

